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Abstract: Cerebral excitability and systemic metabolic balance are closely interconnected. Energy
supply to neurons depends critically on glucose, whose fluctuations can promote immediate hy-
perexcitability resulting in acute symptomatic seizures. On the other hand, chronic disorders of
sugar metabolism (e.g., diabetes mellitus) are often associated with long-term epilepsy. In this paper,
we aim to review the existing knowledge on the association between acute and chronic glycaemic
imbalances (hyper- and hypoglycaemia) with seizures and epilepsy, especially in the developing
brain, focusing on clinical and instrumental features in order to optimize the care of children and
adolescents and prevent the development of chronic neurological conditions in young patients.

Keywords: epilepsy; hypoglycaemic seizures; hypoglycaemia; hyperglycaemia; diabetes mellitus;
paediatric age

1. Introduction

The interplay between blood sugar levels and susceptibility to seizures is especially
complex. Glucose is the main energy supply of the central nervous system. The human
brain accounts for only 2% of body weight but consumes about 20% of glucose-derived
energy of the whole body, and cerebral metabolic requests are likely much higher in
paediatric age [1–5]. This remarkable metabolic demand is due to both neuronal workflow
(generation of action and postsynaptic potentials, maintenance of ion gradients, and resting
potentials) and the biosynthesis of neurotransmitters by neurons and astrocytes [2–4].
The grey matter utilizes a significantly greater amount of energy compared to the white
matter [5,6], and the demand for glucose briskly increases with neuronal activation [7].

Glycogen stores in the brain are tiny and limited to astrocytes, thus the brain is reliant
on a continuous intake of glucose from the systemic circulation. Glucose movements within
different compartments happen through glucose transporters (GLUTs). The entry within
the central nervous system is mediated by the GLUT1 subtype, which allows facilitated
diffusion through the blood–brain barrier. GLUT1 also mediates glucose uptake from
brain extracellular fluid into glial cells. Instead, the GLUT3 subtype lets glucose flow into
neurons [2] and is much more efficient than GLUT1, insomuch as neurons are privileged
with respect to glial cells in case of high metabolic demand [2].

In human cells, energy can be produced from glucose by glycolysis in the cytosol
and by oxidative phosphorylation (oxphos) in mitochondria. Intracellular glucose is
initially metabolized to pyruvate by glycolysis, with no request for oxygen. Thereafter,
pyruvate enters the mitochondrion and undergoes oxphos, which is much more efficient
than glycolysis in terms of energy production; oxphos can only be performed in aerobiosis.
Pyruvate is, instead, transformed to lactate in anaerobiosis, and energy production as ATP
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molecules is only obtained by low-efficiency glycolysis. The healthy brain may increase
both glycolysis and oxphos in order to maximize the energy supply after acute activation [8].

In epilepsy, there is a derailment of glucose catabolic pathways. Seizures greatly
enhance the cerebral metabolic rate, increasing oxygen consumption, cerebral blood flow,
and glucose uptake by neurons. Glucose metabolism is acutely shifted towards glycolysis
and lactate production (ictal hypermetabolism), followed by a postictal decrease below
baseline (postictal hypometabolism) [9,10]. Mitochondrial oxygen consumption also in-
creases acutely, yet there is a net shift towards less efficient glycolysis despite aerobiotic
conditions, reminiscent of the Warburg effect observed in cancer cells. Cerebral glucose
availability may also be limited, because, in chronic epilepsy, GLUT transporters may be
dysfunctional [10,11].

On the other side, the disruption of mitochondrial oxphos could be involved in epilep-
togenesis. Experimental oxphos inhibition results in the destabilization of hippocampal
membrane potentials and provokes epileptiform activity in initially healthy male rats [12].
Neuronal excitability can also be directly affected by glycaemic levels. In the animal
model, blood glucose concentrations positively correlate with susceptibility to seizures,
and diabetes mellitus favours blood–brain barrier alterations during experimental epileptic
seizures [1,13]. In humans, both hyper- and hypoglycaemic conditions have been found to
exacerbate seizures [14–16]. As a matter of fact, glucose imbalances influence the brittle
energy homeostasis of the brain. A disruption of energy availability affects the sodium–
potassium pump and the resting state potential and increases intracellular calcium and
reactive oxygen species that promote cell death [17]. Hyperglycaemia can directly increase
neuronal excitability acting on the ATP-sensitive potassium channels of hippocampal
and neocortical neurons; hypoglycaemia depresses GABA levels enhancing excitatory
transmission [18,19].

Seizures usually improve with the control of glycaemic status in patients with type 1
diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) [20], whereas fluctuations
in blood glucose have been associated with drug-resistant epilepsy [21].

In this paper, we aim to review the existing knowledge on the association between
acute and chronic glycaemic imbalances (hyper- and hypoglycaemia) with seizures and
epilepsy, especially focusing on the developing brain of children and adolescents. The main
issues we will deal with are summarized in Figure 1.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 2 of 22 
 

 

molecules is only obtained by low-efficiency glycolysis. The healthy brain may increase 
both glycolysis and oxphos in order to maximize the energy supply after acute activation 
[8]. 

In epilepsy, there is a derailment of glucose catabolic pathways. Seizures greatly en-
hance the cerebral metabolic rate, increasing oxygen consumption, cerebral blood flow, 
and glucose uptake by neurons. Glucose metabolism is acutely shifted towards glycolysis 
and lactate production (ictal hypermetabolism), followed by a postictal decrease below 
baseline (postictal hypometabolism) [9,10]. Mitochondrial oxygen consumption also in-
creases acutely, yet there is a net shift towards less efficient glycolysis despite aerobiotic 
conditions, reminiscent of the Warburg effect observed in cancer cells. Cerebral glucose 
availability may also be limited, because, in chronic epilepsy, GLUT transporters may be 
dysfunctional [10,11]. 

On the other side, the disruption of mitochondrial oxphos could be involved in epi-
leptogenesis. Experimental oxphos inhibition results in the destabilization of hippocam-
pal membrane potentials and provokes epileptiform activity in initially healthy male rats 
[12]. Neuronal excitability can also be directly affected by glycaemic levels. In the animal 
model, blood glucose concentrations positively correlate with susceptibility to seizures, 
and diabetes mellitus favours blood–brain barrier alterations during experimental epilep-
tic seizures [1,13]. In humans, both hyper- and hypoglycaemic conditions have been found 
to exacerbate seizures [14–16]. As a matter of fact, glucose imbalances influence the brittle 
energy homeostasis of the brain. A disruption of energy availability affects the sodium–
potassium pump and the resting state potential and increases intracellular calcium and 
reactive oxygen species that promote cell death [17]. Hyperglycaemia can directly increase 
neuronal excitability acting on the ATP-sensitive potassium channels of hippocampal and 
neocortical neurons; hypoglycaemia depresses GABA levels enhancing excitatory trans-
mission [18,19]. 

Seizures usually improve with the control of glycaemic status in patients with type 1 
diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) [20], whereas fluctuations 
in blood glucose have been associated with drug-resistant epilepsy [21]. 

In this paper, we aim to review the existing knowledge on the association between 
acute and chronic glycaemic imbalances (hyper- and hypoglycaemia) with seizures and 
epilepsy, especially focusing on the developing brain of children and adolescents. The 
main issues we will deal with are summarized in Figure 1. 

 
Figure 1. Flow chart summarizing the main themes of the review and the potential mechanisms
implicated in the pathophysiology of epilepsy in the context of hypo- and hyperglycaemia.



J. Clin. Med. 2023, 12, 2580 3 of 20

2. Materials and Methods

The literature review was performed by searching PubMed and Scopus search engines
for full papers in English up to and including April 2022 (10 April 2022). We used the key-
words: (hypoglycem*) AND (epilep* OR seizur*) AND (child* OR paediatric population)
(n = 1377 + 179), (hyperglycem* OR non-ketotic hyperglycem* OR diabetic ketoacidosis OR
hyperosmolar hyperglycaemic state) AND (epilep* OR seizur*) AND (child* OR paediatric
population) (n = 183 + 35), (diabet* mellitus) AND (epilep* OR seizur*) AND (child* OR
paediatric population) (n = 571 + 389). Zotero 5.0 reference manager was used to exclude
duplicate papers. The full text of all potentially eligible articles and their supplementary
information were obtained and independently assessed by two authors (E.B. and S.D.V.).
We resolved any ambiguities regarding eligibility through discussion.

3. Results
3.1. Hypoglycaemia

Hypoglycaemia is a condition characterised by the lowering of plasma glucose levels.
Although there is no uniform cut-off, a plasma glucose level of 50 mg/dL or less has
been considered sufficient to define hypoglycaemia, as many counterregulatory responses
occur at this level [22–24]. Severe hypoglycaemia is a medical emergency presenting with
neuroglycopenic (e.g., confusion, impairment of vigilance, behaviour disturbances, acute
symptomatic seizures) and autonomic symptoms (e.g., diaphoresis, tachycardia, tremulous-
ness) [25]. Acute symptomatic seizures develop with different characteristics according
to the age of onset and aetiology of hypoglycaemia, and reflect aberrant neurotransmitter
metabolism, cerebral blood flow, and even blood–brain barrier and microvascular func-
tion [26]. Hypoglycaemia can acutely induce the release of excitatory amino acids, such
as glutamate, resulting in neuronal hyperexcitability [26], chronically reducing the avail-
ability of cerebral glycogen stored by astrocytes [26,27]. It can also lead to structural brain
abnormalities that may persist even after the hypoglycaemia has resolved, favouring the
development of neurocognitive deficits and epilepsy in the long term [28,29].

3.1.1. Neonatal Hypoglycaemia

In paediatric populations, hypoglycaemia is not a rare condition. Its incidence reaches
a peak in the new-born (0–28 days of age) and decreases with age [30,31]. Healthy neonates
can experience transient hypoglycaemia as a part of the normal adaption to extrauterine
life in the first 24–48 h after birth [32]; glucose levels gradually increase to reach adult
values (>70 mg/dL) within the first 72–96 h (transitive-adaptive hypoglycaemia) [33,34].
Severe and prolonged lowering of blood glycaemia can instead promote acute neurological
symptoms and require urgent treatment. Neonatal hypoglycaemia can depend on inade-
quate glycogen stores or transient secondary hyperinsulinism at birth [35]. The deficiency
of glycogen stores occurs through excessive anaerobic glycolysis in prematurity, because
of placental insufficiency, and perinatal asphyxia [36]. Hyperinsulinism-related hypogly-
caemia can be observed in children of diabetic mothers due to intrauterine exposure to
elevated blood glucose levels [23,35,37,38]. In metabolic disorders, seizures can be precip-
itated by incidental hypoglycaemia, yet low blood sugar levels and seizures can also be
different and co-occurring phenotypical expressions [39].

Neonatal hypoglycaemia can be immediately followed by acute seizures [40] or lead
to long-term epilepsy due to structural brain damage [41–43]. Predictors of neurological
sequelae (i.e., epilepsy, intellectual disability, and focal neurological deficits) are somatic
comorbidities (i.e., fever and cardiac/respiratory failure), prolonged acute seizures, and
brain lesions on neuroimaging, regardless of the aetiology of the hypoglycaemia [40].

Neuroglycopenic symptoms in newborns can be nonspecific and include feeding
difficulties, irritability, and hypotonia. The semiology of seizures in this age range is often
very subtle. Although neonatal seizures can be classified as motor (automatisms, clonic,
epileptic spasms, myoclonic, and tonic) and nonmotor (autonomic seizures and behavioural
arrest), their features may not be overt and overlap with nonepileptic clinical phenomena,
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especially in the intensive care setting (e.g., jittery, tremors, and movement disorders).
Many newborns will have mostly electrographic-only seizures, detectable exclusively by
polygraphic video-EEG or amplitude-integrated EEG (aEEG) [44]. Hypoglycaemia-induced
seizures cannot be distinguished from those provoked by other aetiologies.

Neuroimaging can disclose structural brain abnormalities, define their extent, and
help to define the prognosis. Neonatal transcranial ultrasound has low sensitivity [45].
Conversely, magnetic resonance imaging (MRI) can accurately identify acute lesions that
typically affect the parietal and occipital lobes, with a predilection for the white mat-
ter [42,46,47]. Diffusion restriction in these areas can be acutely identified from the first days
of life, either unilaterally or bilaterally [48]. The involvement of basal ganglia/thalamus,
peri-rolandic regions or pyramidal tracts and middle cerebral artery infarctions can also
be seen [47,49]; hippocampal sclerosis can be identified in the long term [50]. The early
detection of brain structural damage predicts an unfavourable neurodevelopmental out-
come [51]. The affected regions will evolve in cystic encephalomalacia, atrophy, and gliosis,
in turn promoting the development of chronic epilepsy. The reason for the frequent in-
volvement of the parietal and occipital lobes is not exactly known [52,53]. Some authors
have hypothesized that those regions are targeted due to their abundance in neuronal mi-
gration/proliferation, synaptogenesis, excitatory neurotransmission, and intense metabolic
activity during the neonatal period [42,54–58]. Accordingly, basal ganglia and peri-rolandic
regions could also be targeted in view of their high metabolic demand.

An example of brain damage associated with neonatal hypoglycaemia and resulting
in symptomatic epilepsy is provided in Figure 2 (personal observation).
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ing occipital cortical areas. 

Figure 2. Evolving brain injury in brain MRI from perinatal hypoglycaemia. Symptomatic hypo-
glycaemia was detected on day 4, postnatally. A posterior brain lesion pattern is reported here,
with predominant parietal and occipital lobe involvement. From the left to the right side of the
images, brain MR axial images of the same patient are shown at 6, 40 days, and 12 months of age.
In detail, (a) DWI (left) and T2W (right) images showing abnormal signal intensities and oedema in
the parietal and occipital regions; (b) T1W (left) and T2W (right) images showing the evolution of
hypoglycaemia-related abnormalities to brain poromalacia in the same parietal and occipital regions;
(c) T2W (left) and T1W (right) images depict chronic brain abnormalities with parietal and occipital
white and grey matter volume reduction and local signal tissue abnormalities, in particular involving
occipital cortical areas.

The characteristics of hypoglycaemia-provoked epilepsy have been especially de-
scribed in low-income countries, wherein hypoglycaemia is not rare due to the limited
availably of routine blood glucose monitoring at birth [30,59]. Kapoor at al. [60] retrospec-
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tively described a cohort of children with chronic epilepsy and severe neurologic deficits
(global developmental delay in 91.2%) after neonatal hypoglycaemia, showing that the
most common were epileptic spasms (76.4%) and focal seizures with visual aura (11.2%),
respectively, prevailing in younger and older children. Parieto–occipital brain lesions
were observed in the entire cohort, including those with epileptic spasms only. Drug-
resistance was observed in about 70% of cases. Those with epileptic spasms commonly
developed hypsarrhythmia and a full-blown West syndrome; Lennox–Gastaut syndrome
(LGS) (2.4%) and continuous spikes and waves during sleep (CSWS) (1.2%) were also
described [60]. Other studies have confirmed the possible late development of LGS and
CSWS, either arising from earlier West syndrome or independently [42,54,56,60]. The fre-
quent occurrence of epileptic spasms and focal parieto–occipital seizures has been widely
confirmed [42,46,50,54,56,60,61].

Table 1 summarizes epilepsy, EEG, and MRI features in published studies on children
with seizures/epilepsy associated with neonatal hypoglycaemia.

It has been proposed that basal ganglia damage and leukomalacia would promote
epileptic spasms, whilst isolated parieto–occipital damage would mostly be associated
with focal seizures [64–67]. The electro-clinical features of the latter can mimic self-limited
epilepsy with autonomic symptoms (impaired awareness with paroxysmal eye phenomena
such as blinking, clonic movements, tonic deviations, and eyelid fluttering), yet ictal vom-
iting is rare [46,54,66,68,69] (personal observation in Figure 3). These patients often also
exhibit visual loss/agnosia with abnormal visual-evoked potentials to compose a complex
neurological phenotype defined by Karimzadeh et al. as ‘Hypoglycaemia–Occipital Syn-
drome’. Patients may need rehabilitation in order to improve their visual impairment [46].
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Figure 3. Brain MRI and EEG in focal symptomatic epilepsy in perinatal hypoglycaemia. Axial
FLAIR 1.5T brain MRI (left) depicts bilateral symmetrical hyperintensity of the occipital white matter
in a 12-year-old child who suffered recurrent convulsive seizures during neonatal hypoglycaemia
and still exhibits drug-resistant focal impaired awareness seizures with staring, sialorrhea and left
eye/head deviation. EEG recording (10–20 International System) (right) display sharp waves in a
burst over the posterior brain areas, predominating on the left parieto–occipital region (arrow).

Myoclonic seizures have also been sporadically reported in patients with peri-rolandic
brain lesions [40].

Epileptic spasms tend to be more drug-resistant than focal seizures with visual aura,
possibly confirming a more severe underlying pathology [42,54]. The severity of epilepsy
would also depend on the patient’s age. Episodes of status epilepticus have been mostly
described in younger children, whilst epilepsy can wane in older patients [34,50].
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Table 1. Studies on children with seizures/epilepsy resulting from neonatal hypoglycaemia.

Reference Epilepsy Onset Epilepsy Type Seizure Type Interictal EEG Brain MRI Epilepsy Course

Norden et al., 2001 [61] - Symptomatic occipital lobe
epilepsy: 4 Pts FIAS - O/PO lesions Drug-resistant

Caraballo et al., 2004 [54] Age range: 5 m–10 y
Occipital lobe epilepsy (n = 12)

FAS and FIAS with visual
symptoms, FMS, and
bilaterally convulsive

Occipital ED (n = 12/12)
and slow waves (n = 3/12)

O/PO
Lesions (n = 10/12) and

normal (n = 2/10)
Variable

Epileptic encephalopathy
(n = 2)

Epileptic spasms, FMS,
atonic, and tonic seizures

Hypsarrhythmia and
multifocal spikes (n = 2/2) PO lesions (n = 2/2) Drug-resistant

Montassir et al., 2009 [50] Median age: 2 y and 8 m Occipital lobe epilepsy (n = 6) FAS and FIAS with
visual symptoms Parieto–occipital ED

O/PO lesions (n = 4/6),
hippocampal atrophy
(n = 1/6), and normal

(n = 1/6)

Drug-resistant in infancy,
improvement in older age

Karimzadeh et al., 2010
[46] Mean age: 20 m Occipital lobe epilepsy (n = 19)

FIAS with visual symptoms,
infantile spasms, and

secondary GTC seizures

Posterior ED (n = 14/19)
and hypsarrhythmia

(n = 2/19). Multifocal ED
(n = 1/19) and normal

(n = 1/19)

O/PO lesions (n = 15/19),
brain atrophy (n = 3/19),

and normal (n = 1/19)

Drug-resistant: (n = 8/19);
seizure-free or sporadic

seizures (n = 11/18)

Kumaran et al., 2010 [62] Mean age: 6.6 m Symptomatic infantile Spasms Spasms in clusters Classical hypsarrhythmia i
(n = 3/5)

Right PO cystic lesion
(n = 1/5)

Seizure-free (n = 3/5),
drug-resistant (n = 1/5),

unknown (n = 1/5)

Fong et al., 2014 [42] Range: 4 m–5 y

Occipital lobe epilepsy (n = 9)

FAS and FIAS with visual
symptoms (n = 9).

Infantile spasms (n = 1/9) in
1/9 then followed by

occipital seizures

Posterior ED (n = 8/9) and
normal (n = 1/9) O/PO lesions (n = 9/9)

Drug-resistant (n = 3/9),
seizure-free, or sporadic

seizures (n = 6/9)

Symptomatic generalized
epilepsy: Lennox–Gastaut

syndrome (n = 2)

Infantile spasms atonic,
tonic, atypical

absences, and GTCS

Hypsarrhythmia, multifocal
ED, PFA, and

slow background
PO lesions (n = 2/2) Drug-resistant (n = 2/2)

Gataullina et al., 2014
(on patients with IEM) [40]

Range: 1–9 y Occipital lobe epilepsy 18/21

FAS and FIAS with visual
symptoms (n = 13/18), FMS

(n = 6/8), atypical
absences/drop attacks

(n = 5/18), tonic seizures
(n = 4/18)

myoclonic seizures
(n = 3/18), and epileptic

spasms (n = 2/18)

-

O/PO lesions (n = 15/18),
basal ganglia (n = 3/18),

and hippocampal atrophy
(n = 1/18)

Drug-resistant (n = 8/18),
seizure-free, or sporadic

seizures (n = 10/18)

Range: 2–5 y Idiopathic epilepsy (n = 3) FMS, absence seizures, and
convulsive seizures

Centrotemporal ED and
generalized ED Normal Seizure-free
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Table 1. Cont.

Reference Epilepsy Onset Epilepsy Type Seizure Type Interictal EEG Brain MRI Epilepsy Course

Yang et al., 2016 [63] Range: 2–10 m West syndrome (n = 18)/ Infantile Spasms (n = 18/18) Hypsarrhythmia
(n = 18/18)

O/PO lesions 10/18
(n = 10/18) Follow-up not available

Arhan et al., 2017 [56] Range: 6 m–15 y

Occipital lobe epilepsy
(n = 19/36).

West syndrome (n = 8/23) and
unclassified epilepsy (n = 9/36)

FAS and FIAS with visual
symptoms (n = 19/36),

infantile spasms (n = 8/36),
and

variable (n = 9/36)

Posterior ED (n = 23/36),
multifocal ED (n = 10/36),
partially overlapping with
hypsarrhythmia (n = 8/36),

and normal (n = 3/36)

O/PO lesions Seizure-free (n = 13/36) and
drug-resistant (n = 23/36)

Kapoor et al., 2020 [60] Mean age:
10.3 m

Occipital lobe epilepsy (n = 34),
West syndrome (n = 130),

LGS (n = 4), and
CSWS (n = 2)

FAS and FIAS with visual
symptoms (n = 19/170),

epileptic spasms
(n = 130/170), bilateral

convulsive (n = 12/170),
myoclonic (n = 6/170), and

atonic (n = 3/170)

Hypsarrhythmia
(n = 130/170), focal O or TO

spikes (n = 18/170),
multifocal discharges

(n = 8/170), slow spike and
wave with bursts of fast

rhythm (n = 4/170), CSWS
(n = 2/170), and normal

(n = 8/170)

O/PO lesions (n = 170/170)
and Pulvinar scarring

(n = 1/170)

Seizure-free or sporadic
seizures (n = 54/170) and

drug-resistant (n = 116/170)

m: month/months. y: year/years. CSWS: continuous spikes and waves during sleep. ED: epileptiform discharges; FAS: focal aware seizures; FIAS: focal impaired awareness seizures.
FMS: focal motor seizures; GTCS: generalized tonic–clonic seizures. IEM: inborn errors of metabolism. LGS: Lennox–Gastaut syndrome. PFA: paroxysmal fast activity. P: parietal.
O: occipital. PO: parieto–occipital. TO: temporo–occipital WM: white matter.
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Some children with neonatal hypoglycaemia should be specially monitored for episodes
of severe recurrent hypoglycaemia that can relapse several times from birth to childhood in
specific syndromes driven by hyperinsulinism (e.g., congenital hyperinsulinism, Beckwith–
Wiedmann syndrome, Soto syndrome), insufficient energy supply (i.e., inborn errors of
metabolism that result in deficiencies in glycogen, amino acids, or free fatty acids), or defi-
ciency in cortisol or growth hormone (e.g., Costello syndrome, hypopituitarism, congenital
adrenal hyperplasia) [23,40,70]. Focusing on children with inborn errors of metabolism,
Gataullina et al. [40] reported that only half of the patients who suffer seizures during
the first hypoglycaemic event (n = 90/170; 53%) can experience further seizures later on
(n = 23/90; 23%). The first hypoglycaemic seizure could either be self-limited (68%) or
very prolonged to establish an overt status epilepticus (32%). Children with status epilep-
ticus at the onset would be at risk of further prolonged episodes, especially triggered
by fever. In this series, most children had symptomatic epilepsy with brain lesions on
MRI (86%), whose pattern depended on age at the onset of hypoglycaemia: posterior white
matter (0–6 months), basal ganglia (6–22 months), parieto–temporal cortex (>22 months).
A minority of patients (14%) developed recurrent hypoglycaemic seizures followed by
non-hypoglycaemic seizures despite normal neuroimaging [40].

3.1.2. Hypoglycaemia in Older Children

Although hypoglycaemia decreases in frequency as one moves away from the neonatal
period, a brisk lowering of glucose levels can also occur and promote seizures in older
patients. We have already mentioned children may still develop severe recurrent hypogly-
caemia. Hypoglycaemic events may also arise de novo in childhood [25,71]. The spectrum of
underlying causes is broad, including primitive or secondary hyperinsulinism, metabolic
disorders, and iatrogenic hypoglycaemia.

Seizures have been especially described in preschoolers with T1DM who experience
hypoglycaemia due to excessive insulin intake [72]. On the other hand, hypoglycaemia
has been found in 0.5% of nondiabetic children with seizures [73]; this figure is likely
an underestimation as hypoglycaemia might be overshadowed by postictal glucose in-
creases induced by endogenous corticosteroid release [74]. The pathophysiology of seizures
induced by hypoglycaemia is unclear. In animal models, acute hypoglycaemia triggers
epileptiform discharges in the amygdala and hippocampus [75]. In humans, most reported
seizures in hypoglycaemia are convulsive. Nevertheless, Lapenta et al. [76] described a
61-year-old diabetic patient in whom insulin-induced transient hypoglycaemia triggered
an EEG-documented temporal lobe seizure, yet with a semiology different from typi-
cal temporal lobe epilepsy—nocturnal convulsions rather than focal impaired awareness
seizures with epigastric aura and oromotor automatisms. In children, most studies report
a predominance of nocturnal convulsions alike [72]. The predilection for the nighttime
depends on low blood sugar levels that may pass un-noticed and persist for more than 2–4 h
during sleep [77]. Children may also exhibit hemiclonic, tonic, and myoclonic seizures,
especially those with inborn errors of metabolism [40]. We may hypothesize that hypogly-
caemia targets both the mesial temporal lobe and the peri-rolandic cortex, which has a high
metabolic demand and possibly favours a motor presentation of seizures. Hypoglycaemia
in childhood per se would not favour the development of epilepsy in the long term unless
it provokes structural brain damage—especially after status epilepticus—or belongs to
wider epileptogenic phenotypes such as inborn errors of metabolism [40,78]. This rarely
happens outside of the neonatal phase.

On the other hand, persistent hypoglycaemia in children with malformations of
cortical development should alert physicians to suspect pathogenic variants in the PI3K-
AKT-mTOR pathway. These individuals may exhibit segmental overgrowth, drug-resistant
seizures, and a continuum of brain malformations spanning from megalencephaly to focal
cortical dysplasia. The PI3K-AKT-mTOR pathway hyperactivation leads to increased in-
tracellular glucose uptake and reduced hepatic gluconeogenesis, with net hypoglycaemia
in the absence of serum insulin. The resulting hypoinsulinaemic, hypoketotic hypogly-
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caemia can be rescued by glucose infusion [79,80]. It is still unknown whether avoiding
hypoglycaemia in these patients may ameliorate the seizure frequency.

In the developing brain, a low blood sugar level modifies the brain’s electrical activity.
In school-aged children, glycaemia below 41.4 mg/dL (2.3 mmol/L) shifts the EEG back-
ground activity from the alpha to theta band, whilst restoring normoglycaemia reverses to
the alpha band [81]. Recurrent severe hypoglycaemias in children would not change the EEG
background activity in the long term [82] but instead promote permanent focal abnormalities
(focal/generalized slowing or epileptiform discharges) [83]. It is unknown whether these
children might develop recurring unprovoked seizures (i.e., epilepsy) in adulthood.

Of note, patients with inborn errors of metabolism who suffer episodes of neonatal-
infantile hypoglycaemia can also develop features of idiopathic generalized epilepsy in
childhood. The few reported cases all exhibit primary hyperinsulinaemic hypoglycaemia
(i.e., excessive insulin production due to known or presumed genetic defects). Gataul-
lina et al. [40] reported three patients with episodes of severe recurrent hypoglycaemia
during the first 2 years of life who later developed features of self-limited epilepsy with
centrotemporal spikes or early-onset absence epilepsy, successfully treated by valproate.
Two of these patients harboured mutations in SUR1, encoding a potassium channel [84].
On the other hand, Descamps et al. reported a case of hyperinsulinaemic hypoglycaemia
arising at 15 years of age in a boy with a former diagnosis of idiopathic generalized epilepsy;
remarkably, tonic–clonic seizures were flanked by unusual ‘red flags’ such as the absence
of status epilepticus with vegetative symptoms and facial myoclonia. Diazoxide treatment
allowed the resolution of both glycogenic symptoms and seizures, resulting in a complete
withdrawal of antiepileptic medications [85]. Another case of hyperinsulinaemic hypo-
glycaemia with apparently generalised epilepsy has been reported in a 2-year-old girl
harbouring a mutation of GCK—a gene encoding glucokinase. In this case, antiseizure
medications, octreotide, and diazoxide had no positive effects, whereas starting a ketogenic
diet resulted in the resolution of neuroglycopenic signs and seizure freedom [86].

3.1.3. Cerebral Hypoglycaemia

An inadequate supply of glucose to neurons may also occur in patients with normal
glycaemia. As previously mentioned, the central nervous system relies on specific trans-
porters that facilitate glucose diffusion from systemic to brain circulation. Mutations of
the gene encoding for the GLUT1 transporter (SLC2A1) hamper the passive diffusion of
glucose through the blood–brain barrier and result in a fully neurological phenotype named
De Vivo/GLUT1 deficiency syndrome (Glut1DS) [87]. The phenotype derives from the
overlap of a continual progressive dysfunction (microcephaly/deceleration of head growth,
intellectual disability, and ataxia) and paroxysmal symptoms (eye–head movement abnor-
malities, seizures, and movement disorders). Expressivity is variable. Patients may develop
only a part of these symptoms, which indeed tend to occur at different ages: paroxysmal
eye–head movements and seizures in early infancy, developmental impairment, ataxia,
paroxysmal exertion-induced dystonia, and further movement disorders later on until
adolescent/adult age. Young children may exhibit isolated early-onset absence seizures
(<4 years of age), to be considered a Glut1DS red flag [88,89]. The diagnosis can be obtained
by the combination of clinical signs, findings form lumbar puncture analysis performed af-
ter a four- to six-hour fast (hypoglycorrhachia) and molecular analysis (pathogenic SLC2A1
variants) [88]. To suspect and obtain an expedite diagnosis is of paramount importance.
In Glut1DS, a ketogenic diet is the first-line treatment and should be initiated as early as
possible to provide a prompt supplemental supply of metabolic fuel from ketone bodies
to the developing brain. The ketogenic diet can also be beneficial for other patients with
drug-resistant epilepsy, irrespective of the underlying cause, especially in the paediatric
age. It can be continued indefinitely but might be poorly tolerated by adolescents and
adults. The low glycaemic index treatment (LGIT) and the modified Atkins diet (MAD)
are diets recently introduced for refractory epilepsy. MAD and LGIT have antiepileptic
efficacy with fewer side effects compared to ketogenic diets. The MAD uses high fat, low
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carbohydrate, moderate protein diet to induce ketosis [88,90]. The LGIT stabilizes blood
glucose instead of increasing ketone bodies, allowing the intake of a limited amount of
carbohydrates (40–60 g/day); the percentage of calories from fat is about 60%, compared
with up to 90% in the ketogenic diet [91].

3.1.4. Differential Diagnosis between Hypoglycaemic Events and Seizures

Distinguishing hypoglycaemic and epileptic events may not be straightforward. Neu-
roglycopenic symptoms (e.g., confusional state, erratic behaviour, and autonomic distur-
bances) may overlap with features of focal impaired awareness seizures. Hypoglycaemia
can also show up with motor phenomena such as eye twitching or limb jerks [92–98]. As
mentioned previously, acute symptomatic convulsive seizures may arise during hypogly-
caemia, sometimes leading to an inappropriate diagnosis of epilepsy.

A common misdiagnosis regards patients with insulinoma, whose EEG can show fo-
cal/diffuse slowing during the event but also focal spikes and sharp waves can be de-
tected [96,99]. This tumour is very rare in paediatric age and must be considered when
apparently refractory seizures relapse in children with macrosomy relative to the familial
constitution [100]. Interestingly, Jaladyan and Darbinyan [98] have described a 13-year-old girl
treated with multiple antiseizure medications for myoclonia and convulsions on awakening;
she was initially misdiagnosed with juvenile myoclonic epilepsy before an insulinoma was
detected. As generally happens in hypoglycaemic crises provoked by insulinoma, this girl
experienced symptoms after fasting, especially in the morning or in the late afternoon [101].

Such diagnostic misinterpretations can lead to enduring pseudoresistance, continu-
ously switching ASMs that are completely ineffective, for seizure mimics such as hypogly-
caemic events.

A challenging differential diagnosis regards nonconvulsive status epilepticus. When
neuroglycopenic symptoms are prolonged, the EEG can show slow rhythmic abnormalities
that can be remitted after benzodiazepine administration, partially fulfilling the diagnostic
criteria for nonconvulsive status epilepticus. A diagnostic clue is a dissociation between
an improved EEG and the persistence of altered vigilance as long as glycaemia is not
restored [102,103]. Eventually, gathering valuable clinical information at the onset, duration,
and type of clinical manifestations is fundamental. If the episodes are prolonged, occur
mainly in fasting situations or in connection with antidiabetic oral therapy intake, and
improve after food, one should preferentially lean towards a diagnosis of hypoglycaemic
crisis [99,102].

3.2. Hyperglycaemia

Hyperglycaemia can affect different age groups and be sustained by variable aetiolo-
gies. The mechanisms by which it induces seizures are largely unknown. Lowering the
seizure threshold due to increased GABA metabolism, cerebrovascular dysfunction, neu-
ronal hyperosmolarity, and dehydration can all play a role in provoking acute symptomatic
seizures [74,104–106].

3.2.1. Neonatal Hyperglycaemia

Hyperglycaemia is rarer than hypoglycaemia among newborns, yet an expedite identi-
fication is fundamental to limit the high mortality and morbidity it brings in this age group.
Neonatal hyperglycaemia is defined by a serum glucose level higher than 150 mg/dL
(8.3 mmol/L) or whole blood glucose above 125 mg/dL (6.9 mmol/L), regardless of gesta-
tional or postmenstrual age. The safe range is usually considered to be 70–150 mg/dL [107].
The causes of neonatal hyperglycaemia span from iatrogenic factors (maternal use of dia-
zoxide, neonatal intake of caffeine, steroids, phenytoin, or inappropriate parenteral glucose
treatment), the inability to metabolize glucose (prematurity, intrauterine growth restriction,
diabetic mother), to stressful events that increase endogenous glucocorticoids (sepsis, pain,
hypoxia, and respiratory distress) [107]. Seizures would especially occur after brisk glucose
elevation in predisposed individuals, such as preterm infants who have a decreased ability
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to suppress endogenous glucose production, immature insulin response to glucose, and
limited glycogen and fat stores. Bruns et al. [108] described a cohort of newborns and
children with severe iatrogenic hyperglycaemia; in their study, the occurrence of seizure
was inevitably associated with coma and unfavourable neurological outcome. The seizure
semiology in these children has not been systematically addressed. Nevertheless, as dis-
cussed beforehand, neonatal seizures are often subtle, independently from the underlying
aetiology, with motor and nonmotor features. Hyperglycaemia peaks also negatively affect
seizure control in neonates with established epileptic encephalopathies, who are, per se,
exposed to a brittle glucose homeostasis [109].

3.2.2. Hyperglycaemia in Older Children

After the neonatal period, diabetes mellitus largely plays a major role. Sudden gly-
caemia elevation can especially result in diabetic ketoacidosis (DKA) and a hyperosmolar
hyperglycaemic state (HHS). These conditions are alarming complications that can arise
abruptly at diabetes onset or during the disease course, triggered by a brisk imbalance
between the effects of insulin and that of counterregulatory hormones (i.e., glucagon,
catecholamines, cortisol, and growth hormone), often due to intercurrent disorders. In
DKA, absolute or relative insulin deficiency prevents cellular glucose intake, promotes
gluconeogenesis, activates lipolysis to release glycerol and free fatty acid, increases ke-
tone bodies production, and leads to metabolic acidosis. In HHS, insulin deficiency is
milder and metabolic derangement is progressive with the development of hyperglycaemia
(plasma glucose level > 33.3 mmol/L or 600 mg/dL), dehydration, and plasma hyperosmo-
lality (serum osmolality > 320 mmol/kg) over several days in the absence of appreciable
metabolic acidosis and ketonemia [110]. The term nonketotic hyperglycaemia (NKH) is
often used to include situations in which an HHS state is not strictly fulfilled.

In adults, HHS may provoke a generalized brain dysfunction leading to a state of
coma and also focal neurological signs such as hemichorea/hemiballism or acute symp-
tomatic seizures [110,111]. Seizures occur mostly as epilepsia partialis continua (EPC), i.e.,
recurrent and unrelenting hemiclonic seizures originated by the peri-rolandic cortex. Vi-
sual/imperceptive and prolonged aphasic seizures have also been reported in decreasing
order of frequency [112–117]. Diabetic children may similarly develop HHS, even though
more rarely than adults, and suffer unilateral focal motor seizures and EPC [118–122]. This
type of recurring seizure mandates glycaemia to be restored in order to obtain seizure freedom.
Chronic epilepsy may residue in some cases [123,124]. Like adults, children may also exhibit
hemichorea/hemiballismus, in most cases mutually exclusive with seizures [125,126]. The
outcome of seizures in children with HHS is usually favourable when an expedite metabolic
treatment is established and brain lesions are prevented, even though there are exceptions.
A worsening epilepsy trajectory has been described in a 3-year-old child, who developed
continuous spike and waves in sleep two years later than diabetes-related EPC [123].

The role of DKA in seizure development is conflicting and not completely clear. In
general, DKA is deemed to promote seizures less often than HHS. Ketone bodies, indeed,
exert an antiepileptogenic effect, which is exploited by the ketogenic diet in some forms of
epilepsy (e.g., GLUT1 deficiency) [115,127]. However, in HHS, seizures can be provoked
by ketosis-induced hyperventilation/hypocapnia or cerebral venous thrombosis due to
coagulation derangement. The treatment of ketosis itself can result in side effects that
promote seizures: life-threatening brain oedema, electrolyte imbalances, and excessive
glycaemia lowering [128,129]. Focal motor seizures have been anecdotally described in
newborns [130] and more often in school-aged children and adolescents with DKA as an
expression of diabetes decompensation. It is self-intuitive that patients who develop acute
brain damage are exposed to chronic epilepsy. From the neurophysiological standpoint, the
EEG background activity slows in children with DKA irrespective of seizure occurrence,
according to the levels of serum glucose and ketone bodies but independently of the
pH [131]. Shober et al. [132] also reported that children with epilepsy and T1DM are
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especially prone to develop DKA, suggesting a bidirectional association between seizures
and ketoacidosis whose underlying pathophysiology is still obscure.

Neuroimaging plays a pivotal role to diagnose and monitor the outcome of seizures
both in HHS and DKA. In adults with HHS, the following brain MRI hallmarks have been
reported over the brain regions from which seizures originate: cortical T2W hyperintensity,
restricted diffusion and faint enhancement, and subcortical T2W hypointensity with a
‘negative shine-through’ effect [114]. No specific early radiological signs of DKA have
been described. Hippocampal vasogenic oedema followed by hippocampal sclerosis and
epilepsy in the long term has been described in single cases of HHS and DKA in the long
term [124,133]. Brain MRI can reliably identify severe complications of both conditions such
as cerebral oedema, especially using diffusion-weighted imaging [134], focal infarctions
typically occurring in the basal ganglia, thalamus and brainstem’s grey matter [135–137],
cerebral herniations [137,138], and extrapontine myelinolysis [139]. Cerebral oedema would
be more common in DKA compared to HHS, likely due to the absence of hypocapnia in
the latter [140], whilst the risk of thrombosis would be greater in HHS in view of the
pronounced hypertonicity [141,142].

3.2.3. Diabetes Mellitus and Epilepsy Comorbidity

Seizures may occur in people with diabetes as a comorbid condition rather than a
consequence of acute hyperglycaemia. Such comorbidity is bidirectional, irrespective of
diabetes and epilepsy subtype [143]. Diabetes mellitus can be defined by fasting plasma
glycaemia above 125 mg/dl but also by additional criteria such as random plasma glucose
of ≥200 mg/dL in patients with symptoms of hyperglycaemia or hyperglycaemic crisis
(Supplementary Material). Epileptogenic microscopic/macroscopic brain lesions can be
induced by glycaemia fluctuations, and diabetes may be affected by the metabolic side
effects of antiseizure medications. Autoimmune factors and genetic background are also
involved [28,144–147].

Several studies have demonstrated a particular T1DM/epilepsy association. T1DM is
considered to be due to autoimmune pancreatic β-cell destruction. The resulting absolute
insulin deficiency usually shows up in childhood and youngsters, and may also arise
in senior patients as slowly progressive insulin-dependent diabetes mellitus (SPIDDM)
and latent autoimmune diabetes of adulthood (LADA). Autoimmune markers of T1DM
include islet cell autoantibodies and autoantibodies to GAD (GAD65), insulin, the tyrosine
phosphatases IA-2 and IA-2β, and zinc transporter 8 (ZnT8) [148].

Diabetic children develop epilepsy 2-3 times more commonly than normoglycaemic
controls [144,145,149,150]. Younger age at diabetes onset is the main risk factor [144]. A
clear association of T1DM with incident idiopathic generalised epilepsy has been reported
in children and young adults [151,152]. A direct role of autoimmunity has been proposed to
drive the comorbidity T1DM-epilepsy. Anti-glutamic acid decarboxylase antibodies (GAD-
Ab) are known to trigger T1DM, especially those targeting the 65 kDa isoform (GAD65-Ab).
These are especially linked to the subtypes of insulin-dependent diabetes mellitus (SPIDDM)
and latent autoimmune diabetes in adults (LADA), often misdiagnosed as T2DM. High
GAD65-Ab levels (at least 100-fold) have been found in autoimmune neurological disorders
(e.g., stiff-person syndrome, cerebellar ataxia, and limbic encephalitis), sporadic drug-
resistant temporal lobe epilepsy in children and adults, and in the subgroup of patients
with T1DM who develop seizures. Low levels might promote both T1DM and seizures,
even though further studies are needed to support this hypothesis [153–155].

In adults, T2DM is acquiring a growing prevalence in diabetic patients and the co-
morbidity with epilepsy is weaker, even though still consistent. T2DM has not an autoim-
mune trigger but results from the progressive loss of adequate β-cell insulin secretion
frequently on the background of insulin resistance [148]. Amongst senior adults, those with
drug-resistant epilepsy exhibit a two-fold increased prevalence of diabetes—both the less
prevalent T1DM and the more common T2DM, mostly linked to cryptogenic/unknown
and symptomatic epilepsy especially due to atherothrombosis damage. As in children, the
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onset of diabetes mostly precedes the development of epilepsy (80%). Adults with diabetes,
including those with T1DM, tend to develop focal epilepsies commonly arising from the
temporal lobe [156].

Epilepsy and diabetes can also share a common molecular background [156]. A com-
plex genetic landscape is likely implicated in most cases. However, unique shared genetic
defects can be responsible for the comorbidity in monogenic diabetic syndromes that escape
the dichotomy T1DM/T2DM [148]. Syndromes characterized by neonatal-onset diabetes
and early-onset epilepsy are described (mutations in GCK, INS, KCNJ11, and ABCC8) [157].
In our experience, we observed an interesting case of comorbidity between epilepsy and
maturity-onset diabetes of the young (MODY). The MODY phenotype encompasses a
group of autosomal-dominant monogenic disorders with the non-insulin-dependent form
of diabetes, classically presenting in adolescence or young adults before the age of 25 years.
In Figure 4, we show how long-term video-EEG revealed typical absence seizures in a
young patient with MODY due to a pathogenic mutation of the glucokinase gene (GCK),
also carrying GAD autoantibodies. Mutations of GCK promote the MODY2 subtype,
which is characterized by mild stable fasting hyperglycaemia [158]. A minority of patients
(about 1%) with MODY may exhibit positive GAD antibodies, whose role is unclear [159].
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Figure 4. Example of comorbidity between young-onset diabetes mellitus and idiopathic generalized
epilepsy. EEG recording (10–20 International System) of a 10-year-old boy affected by MODY
(inherited CGK mutation) referred for recurrent episodes of unresponsiveness. The exam displays
diffuse rhythmic 3.5 Hz spike-and-wave discharges, compatible with childhood absence epilepsy.

This anecdotal observation, never reported beforehand, suggests genetic background
and autoimmunity might affect the propensity to those seizures usually regarded as genetic-
driven, such as idiopathic genetic epilepsy (namely childhood absence epilepsy) (Figure 4).

It should also be mentioned that stress hyperglycaemia (transient high blood glucose
levels with spontaneous resolution after the acute illness regresses) [160] has a high preva-
lence in children with febrile convulsions, especially after prolonged febrile convulsions,
and predicts further episodes [161].

The interplay between DM and epilepsy is further confirmed by recent evidence about
the effects of antidiabetic drugs on seizures. Metformin has shown promising results
as an antiepileptic agent in many experimental studies. In vivo, it has been successfully
employed to reduce seizures in people with tuberous sclerosis complex and Lafora disease
(reviewed in [162]). Rosiglitazone can suppress seizures in vitro, hampering the presynaptic
glutamate release in hippocampal slices [163]. These preliminary data may pave the way
to the repositioning of antidiabetic drugs for epilepsy treatment.

4. Conclusions

Brain excitability and systemic metabolic balance are strictly intermingled. The en-
ergy supply to the neurons critically depends on glucose, whose fluctuations can promote
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immediate hyperexcitability resulting in acute symptomatic seizures. Hypoglycaemia is
particularly epileptogenic, especially in newborns who have high metabolic demands, in
children with neurometabolic disorders, and in those with brittle glucose homeostasis due
to diabetes mellitus. An expedite recognition of hypoglycaemic symptoms prompt the
investigation of the underlying cause and prevents brain damage, which in turn yield
chronic epilepsy. Hyperglycaemia provokes acute symptomatic seizures less often, mostly
when acute complications of diabetes mellitus ensue. Instead, diabetes mellitus is remark-
ably linked to chronic epilepsy and such comorbidity should be carefully investigated.
Defining homogenous cut-offs in children for hypoglycaemia/hyperglycaemia-induced
brain damage is complicated, and clinical observation is strikingly important. The complex
interplay between glycaemia and seizure susceptibility must always be considered in the
developing age, in order to optimize the care of children and prevent the development of
chronic neurological conditions in young patients.
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