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Abstract: Acute heart failure and cardiogenic shock are frequently occurring and deadly conditions.
In patients with those conditions, endotoxemia related to gut injury and gut barrier dysfunction
is usually described as a driver of organ dysfunction. Because endotoxemia might reciprocally
alter cardiac function, this phenomenon has been suggested as a potent vicious cycle that worsens
organ perfusion and leading to adverse outcomes. Yet, evidence beyond this phenomenon might
be overlooked, and mechanisms are not fully understood. Subsequently, even though therapeutics
available to reduce endotoxin load, there are no indications to treat endotoxemia during acute heart
failure and cardiogenic shock. In this review, we first explore the evidence regarding endotoxemia in
acute heart failure and cardiogenic shock. Then, we describe the main treatments for endotoxemia in
the acute setting, and we present the challenges that remain before personalized treatments against
endotoxemia can be used in patients with acute heart failure and cardiogenic shock.
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1. Introduction

Acute heart failure with cardiogenic shock is a frequently occurring and severe condi-
tion that combines low cardiac output, altered blood pressure and organ hypoperfusion.
In cardiovascular diseases, the cross-talk that occurs between the gut and the heart is a
subject of interest, and there is growing evidence regarding the link between gut micro-
biome diversity, endotoxemia and systemic inflammation in chronic heart failure (CHF) [1].
During cardiogenic shock, reduced cardiac output results in inadequate oxygen delivery
to tissues and organs, including the digestive tract. Physiologically, the surface of the gut
is an area that absorbs nutrients while acting as a barrier, preventing noxious substances
and bacteria originating from the gastro-intestinal lumen, including lipopolysaccharides
(LPS, endotoxins), from reaching the bloodstream. Gut ischemia-reperfusion is a condition
that promotes endotoxemia (i.e., the presence of LPS in the circulation) through gut barrier
failure [2]. Because endotoxemia reduces cardiac performance [3], it can lead to a vicious
cycle including reduced cardiac output [4,5], gut ischemia/hypoperfusion, translocation of
endotoxins, inflammation and organ failure. However, unlike vascular surgery or mesen-
teric ischemia, there is no complete interruption of the digestive arterial blood flow during
acute heart failure (AHF) [6]. Consequently, the pathogenesis of gut barrier injury and
endotoxemia might differ. In addition, because LPS-induced cardiac dysfunction has been
demonstrated to be dose-dependent in animal models [7], the extrapolation of one disease
to another might not be straightforward.

It is currently accepted that endotoxemia may play a role in the spiral of multiple organ
dysfunction with systemic inflammation and microcirculatory alterations during AHF.
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However, no review has specifically focused on the evidence and the role of endotoxemia
during AHF and cardiogenic shock. Moreover, despite available options, there are no
guidelines for therapy targeting endotoxemia in this indication.

In this work, we review the data supporting endotoxemia as a pathological mechanism
of inflammation and multiple organ failure in humans with AHF and cardiogenic shock.
Our objective is to identify the next steps required before implementing treatment targeted
to endotoxemia in those patients.

2. The Concept: Gut-Derived Lipopolysaccharides Promote Inflammation in AHF
2.1. What Are LPS and How Do We Measure Them?

LPS are a component of the outer membrane of gram-negative bacteria. They are
known to activate host immunity and are probably the most studied pathogen-associated
molecular patterns. LPS exert their noxious effect primarily by triggering inflammation
via the TLR-4 pathway [8], which has been suggested to be one of the triggers of systemic
inflammation and multiple organ failure during critical illness [9]. More specifically,
after TLR-4 activation, LPS activate pro-inflammatory pathways, resulting in endothelial
dysfunction, coagulopathy, and cardiovascular dysfunction [10,11]. In infection settings,
the activation of the immune response represents a host defense against the pathogen.
In parallel, this inflammatory response is balanced by an anti-inflammatory response.
When this host response is dysregulated, patients developed organ dysfunctions that are
defined as sepsis [12]. It is also possible that the dysregulation of the immune response
might be due to a disproportionate pro-inflammatory response, resulting in acute early
multi-organ failure [13], or by exaggerated T-cell dysregulation, which is responsible for
immunosuppression and results in secondary nosocomial infection [14].

In physiology, gram negative bacteria are part of the microbiome contained within
the digestive tract. Depending on the bacterial species, the LPS derived might exert
different levels of pathogenicity [15]. Therefore, it has been hypothesized that a shift in gut
microbiota could have a major influence upon the consequences of LPS translocation [16].

There are two methods that can be used to directly reveal endotoxemia: measuring
endotoxin activity (presence of biologically active LPS in blood) or determining endotoxin
mass (quantification of LPS molecules, active and inactive). Because LPS exist in both active
and inactive forms in the blood, endotoxin activity might be low despite the presence of
genuine endotoxemia (presence of inactive LPS). Thus, a quantitative measurement of LPS
seems mandatory to assess the translocation and elimination process, while a combination
of quantitative and qualitative methods makes it possible to assess an individual’s ability
to neutralize endotoxins [17]. Most, if not all, clinical studies only rely on measurements of
endotoxin activity to assess endotoxemia, which can result in very low or even negative
results. This might explain why endotoxemia is often overlooked in conditions associated
with impaired gut barrier.

2.2. Gut Barrier Function, Heart Failure, Ischemia-Reperfusion and LPS Translocation

In humans, several mechanisms prevent LPS in the gut from reaching the blood
flow [18]. For instance, intra-luminal enzymes, proteins and the mucus layer provide an in
situ protective mechanism against LPS translocation. The intestinal epithelium and tight
junctions also prevent LPS translocation. Nevertheless, despite these mechanisms and even
in the absence of acute gastro-intestinal injury, low grade endotoxemia can occur [19]. In this
situation, because LPS are too large to transit through the paracellular space, a transcellular
pathway is likely. Indeed, LPS from the gut lumen might cross the intestinal epithelial
layer through endocytosis, followed by exocytosis at the basal enterocyte pole by goblet
cell-associated antigen passage [20]. Otherwise, LPS might be absorbed similar to dietary
fatty acid via chylomicron synthesis [21,22]. Once they have entered the portal circulation,
part of LPS are transferred to lipoproteins by the action of the phospholipid transfer protein
(PLTP). LPS bound to lipoproteins are inactivated (it cannot riggers TLR-4 response) [23].
LPS transfer and binding to lipoproteins also promote hepatic LPS elimination. Indeed, the
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liver represents an important barrier to prevent gut-derived LPS entry into the systemic
circulation by exerting a first hepatic pass effect [24].

Acute systemic aggressions might increase paracellular permeability and have been
correlated with endotoxemia [25–27]. Ischemia-reperfusion is a particular kind of aggres-
sion that damages the cells and tissues [28]. Gut mucosa is injured during both the ischemic
phase and after reperfusion [29], and gut barrier function might be impaired, thus pro-
moting translocation of gut content and inflammation [18,29]. In patients with AHF, low
cardiac output, regional vasoconstriction and congestion might alter oxygen delivery (i.e.,
non-occlusive ischemia) [30,31]. Reciprocally, endotoxemia impairs cardiac function [3] and
mucosal gut oxygenation [32], which might create a vicious cycle (Figure 1). Reperfusion
eventually occurs once the patient has been successfully resuscitated. Interestingly, it has
been reported that ischemia-reperfusion of the lower limbs may alter gut structure and
permeability, resulting in potential gut barrier dysfunction even though the primary injury
does not affect the digestive tract [33]. This emphasizes the role of inflammatory mediators
in gut permeability.
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mechanisms are represented in orange. Potential targeted therapeutic interventions are represented
in green. Symptomatic therapeutic interventions are represented in blue. LPS: Lipopolysaccharides.

Visceral ischemia reperfusion caused by damaging gut mucosa and enterocytes [34]
increases permeability, including for large molecules [27], and promotes endotoxemia.
Nevertheless, whether endotoxemia is promoted by increased transcellular transport,
abnormal paracellular permeability or both is not yet elucidated. Indeed, while it has been
observed that regional ischemia and reperfusion of the gut could induce simultaneous
tight junction loss and endotoxemia [35] (strongly suggesting that increased paracellular
permeability is one of the causes of LPS translocation), those simultaneous observations
do not imply causality, and there is no direct proof regarding paracellular transport of
LPS after ischemia-reperfusion in the literature [20]. After translocation, a protective
mechanism occurs: LPS might be transferred to lipoproteins, promoting their inactivation
and elimination [23]. For LPS originating from the splanchnic area, binding to lipoproteins
has been demonstrated to promote a first hepatic pass effect, and part of the LPS burden
might be eliminated by the liver before reaching the systemic circulation [24].
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3. The Evidence: Clinical Findings
3.1. Cardiogenic Shock and Gut Injury

In critically ill patients, the two most studied biomarkers of gut barrier dysfunction
are the intestinal fatty acid binding protein (I-FABP), which is a marker of enterocyte
suffering, and citrulline, which reflects enterocyte mass [36]. A few teams have investigated
I-FABP measurements in the context of cardiogenic shock. During cardiogenic shock,
I-FABP was reported to be higher at ICU admission in non-survivors than in survivors [37].
Although we did not find any comparison between patients with and without cardiogenic
shock, higher I-FABP has been reported in patients with shock and patients requiring
catecholamine [38,39]. Results suggest that I-FABP might not reflect gut barrier permeability.
Indeed, in the context of mild systemic aggression, it was demonstrated that I-FABP could
be dissociated from intestinal permeability in healthy patients with systemic inflammatory
response syndrome (SIRS) induced by experimental endotoxemia, suggesting that gut
barrier dysfunction may occur in the absence of enterocyte necrosis [40]. Similarly, in
patients undergoing cardiac surgery with cardiopulmonary bypass, there was no correlation
between I-FABP and LPS measured by mass spectrometry [41]. On the contrary, in patients
successfully resuscitated from cardiac arrest, higher endotoxin activity was associated
with higher I-FAPB [42], which suggests that the association between I-FABP and LPS
translocation depends on the intensity and/or nature of the injury. No study has specifically
focused on citrulline in AHF or cardiogenic shock. Despite being largely used for research
purposes, those biomarkers are not available at bedside. More available biomarkers, such
as ammonia, have been proposed as markers of abdominal injury in patients with heart
failure [43]. Nevertheless, their implementation into daily practice probably requires
further investigation.

3.2. Acute Heart Failure and Endotoxemia

Several studies focused on endotoxemia during AHF in the absence of shock. AHF is a
clinical entity that regroups different phenotypes (acute on chronic/de novo, ischemic/other
etiology, preserved/altered left ventricular function, congestive/non-congestive) that might
impact endotoxemia. An observational study suggested that myocardial infarction is associ-
ated with increased levels of endotoxins in relation to alterations of intestinal permeability.
Indeed, patients with myocardial infarction had higher serum level of LPS and zonulin (a
protein that regulates intestinal barrier function [44] and could be used to assess gut per-
meability [45]) than healthy centenarians [46]. Zhou et al. provide additional information
by demonstrating that myocardial infarction may promote gut barrier dysfunction and
endotoxemia with LPS activity increased by 2–3 fold on day 1 [47]. Moreover, the authors
reported a link between gut barrier dysfunction, endotoxemia and further cardiovascular
events. Decompensation of chronic heart failure might also promote endotoxemia. Indeed,
endotoxin activity was reported to be higher in patients with decompensated/congestive
heart failure compared to both stable patients with chronic heart failure and healthy pa-
tients [48,49]. In patients with decompensated heart failure, a gradient in endotoxin activity
between the hepatic vein and the left ventricle suggests a splanchnic origin, i.e., the diges-
tive translocation of LPS [49]. Interestingly, decongestion has been associated with lowering
plasma endotoxin activity in patients with congestive heart failure in two studies [48,50].

3.3. Cardiogenic Shock and Endotoxemia

We found four articles studying endotoxemia in cardiogenic shock (Table 1). The first
article, by reporting elevated biomarkers of inflammation (CRP, PCT, cytokines) and pyrexia
in patients without bacteremia provides indirect proof of endotoxemia (as endotoxin was
not directly measured) [51]. In the second report, Ramirez et al. reported low titers of IgM
EndoCAb (also an indirect measurement of endotoxemia) in 22 patients with cardiogenic
shock, leading to a hypothesis of endotoxin exposure. Indeed, endotoxemia is not measured
directly by this method, but is suggested by the drop of endotoxin antibodies in patients’
plasma, and the underlying hypothesis of antibody consumption is due to endotoxin
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exposure. However, the actual endotoxins were not measured, and the antibody titer, which
provides only indirect assessment of endotoxemia, was not associated with mortality [52].
In the third article, endotoxin activity was measured in 16 patients with cardiogenic shock,
but only one of the patients was found to have high endotoxin activity [53]. The fourth study
reported endotoxin activity in 39 patients under venoarterial extracorporeal membrane
oxygenation (VA-ECMO). In these patients (16 cardiac arrest, 17 heart failure, 4 post
cardiotomy and 2 septic shock), the incidence of endotoxemia was only 9% within the first
24 h and 5% between 24 and 48 h. There was no difference in endotoxin activity between
survivors and non-survivors [54].

Table 1. Studies reporting endotoxemia in cardiogenic shock by endotoxin measurement method.

Method Ref Incidence

Quantitative measurement - None -
Activity measurement EAA [53] Low (6%)

EAA [54] Low (9%)

Indirect proof CRP, PCT, Cytokine and negative
blood culture [51] -

IgM EndoCAb [52] -
EAA: Endotoxin activity assay; C-reactive protein, PCT: procalcitonin. EndoCAb: Core antibodies directed
to endotoxin.

Altogether, we found no direct proof of endotoxemia in patients with cardiogenic
shock in the literature, and no study reported quantitative measurement (i.e., mass) of
endotoxins in the circulation. The few studies that assessed endotoxemia activity suggested
a low incidence of endotoxemia in this population, but the correlation between LPS mass
and activity was weak [55]. Thus, low endotoxin activity cannot rule out endotoxemia.

4. Treatment Perspectives for Endotoxemia in Acute Heart Failure
4.1. The Hemodynamic Consequences of Heart Failure

Because the consequences of AHF (ischemia-reperfusion injury and tissue hypoperfu-
sion) are involved in low systemic blood flow and are triggers of SIRS and endotoxemia,
the first therapeutic goal may be to restore blood flow, oxygen delivery and tissue per-
fusion. Once perfusion is restored, treating venous congestion may help to reduce the
endotoxin burden [48]. In patients with ischemic cardiogenic shock/heart failure, early
vascularization of the culprit lesion should be considered [56,57].

4.2. Specific Treatments for Endotoxemia

In patients with cardiogenic shock, the excessive triggering of inflammation by
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) is one of the mechanisms leading to organ failure and other adverse
outcomes8. Because endotoxins can trigger inflammation, it seems logical that reducing
LPS and TLR-4 activation could reduce inflammation and its harmful consequences in the
context of digestive LPS translocation. Although there are no clear indications for any
therapy directly targeting endotoxemia, some strategies have been developed to counter
the consequences of endotoxemia. We have classified these interventions into the four
groups described below (Figure 1).

The first type of intervention aims to reduce endotoxin load and/or promote gut bar-
rier integrity directly in the digestive tract. Selective digestive decontamination, prebiotic,
probiotic administration and fecal transplantation have been described as means of mod-
ulating the gut microbiota [58,59] Gut microbiota has been associated with inflammation
in patients with heart failure [60]. Because there are several type of LPS exerting several
pathogeneses, modulating the gut microbiota might be an interesting strategy that could
potentially reduce the intra-luminal load of LPS but also modify LPS type. Nevertheless,
the effects of selective decontamination on endotoxemia in cardiac surgical patients are
controversial [61,62]. One explanation might be given by the GutHeart trial that reports, in
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the context of chronic heart failure, that two microbiome-based interventions (probiotics
and antibiotics) were inefficient to change the microbiota diversity [63]. Enteral nutrition
might also prevent endotoxemia by promoting gut integrity. For instance, in critically
ill patients, enteral nutrition might prevent mucosa atrophy and help restore enterocyte
mass [64]. Enteral nutrition has also been described as a way to maintain the intestinal
alkaline phosphatase activity that is able to phosphorylate LPS [65].

Another type of intervention is extracorporeal LPS removal. Many extracorporeal
adsorption devices have been developed over the years [66]. Usually, the membranes are
functionalized with a molecule that allows charge interactions, thereby adsorbing LPS.
Among them, Polymyxin B is the most studied and has been demonstrated to eliminate LPS
in vitro [67]. Nevertheless, when polymyxin B was tested in large randomized controlled
trials in the context of septic shock, including in populations with high endotoxin activity,
it failed to improve outcomes [68–70]. Membrane functionalized with acrylonitrile and
methanesulfonate have also been demonstrated to adsorb LPS [67]. Nevertheless, there are
no large randomized control trials (RCT) evaluating LPS adsorption with such a device. In
a small-sample study upon patients with shock septic and endotoxemia, this device was
reported to reduce endotoxin activity at early time points [71]. Nevertheless, extracorporeal
adsorption in the context of cardiogenic shock and septic shock are different. Indeed,
during sepsis, inflammation is a key factor for fighting the pathogen, so the removal of
cytokines is more likely to be deleterious. Indeed, two RCTs that focused on plasma
filtration and adsorption of cytokines in septic shock patients were interrupted prematurely
due to possible harmful effects [72,73]. Furthermore, the endotoxin load in the context
of cardiogenic shock is probably much lower than in gram-negative sepsis, and LPS is
probably not the main trigger of inflammation. The utility of LPS extracorporeal removal
in this indication is currently under investigation [74].

It is also possible to directly target the LPS-TLR-4axis by anti-LPS [75,76] treatment,
TLR-blockade [77,78] or anti-cytokine treatment [79,80]. To date, large clinical trials have
failed to demonstrate any benefit for those molecules in acute settings. The main en-
dogenous pathway for LPS elimination is reverse lipopolysaccharide transport (RLT).
This pathway involves the transfer of LPS by the phospholipid transfer protein (PLTP) to
lipoproteins (LDL, HDL) that neutralize LPS and promote their elimination through the
hepatobiliary route [81]. The fourth type of intervention aims to enhance this pathway, and
several strategies are under investigation. Firstly, the administration of recombinant HDL
is one way to increase the pool of lipoproteins involved in LPS inactivation and transport
to the liver. This strategy has been demonstrated to improve survival in animal models
of sepsis [82], and to decrease inflammation in healthy volunteers [83]. Secondly, since
LDL are also involved in LPS binding and transport, they might be an interesting target for
enhancing RLT. On the same topic, two studies demonstrated the relevance of inhibiting
PCSK9 to promote the clearance of LDL-bound LPS (by increasing the expression of the
LDL receptor) [84,85]. Thirdly, intravenous administration of a phospholipid emulsion
with the aim of enhancing the ability of lipoproteins to bind to LPS has also been proposed.
However, this strategy has failed to demonstrate any benefit in patients with gram-negative
sepsis [86]. Fourthly, increasing plasma phospholipid transfer protein (PLTP) activity might
also enhance the binding of LPS to circulating lipoproteins. Accordingly, the administration
of recombinant PLTP has been demonstrated to improve survival in animals models of
endotoxemia [87]. Because of the particular vascularization of the gut, LPS undergo a
first hepatic elimination before reaching the systemic compartment [24], and these ther-
apies might provide early LPS inactivation and clearance in the context of gut-derived
endotoxemia (Figure 1). Nevertheless, these strategies have not been validated in human
patients, and because lipoprotein metabolism and lipid transfer activity are modified dur-
ing critical illness [88], tailoring these interventions to the peculiar lipoprotein profiles
might be necessary.
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5. Future Directions and Therapeutic Options

During cardiogenic shock, several challenges must be overcome before strategies can
be implemented to treat endotoxemia (Table 2).

Table 2. Main research needed before implementing therapy targeted to endotoxemia in patients
with acute heart failure and/or cardiogenic shock according to the authors.

Thematic Objective Type of Research

Mechanism of translocation

Determining the route for
endotoxin translocation in
patients with
ischemia-reperfusion injury

Experimental

Patient selection
Determining a phenotype/group
of patients that would benefit
from endotoxin removal

Observational cohort

Detoxification

Evaluating the different
therapeutic targeted to
endotoxemia available (in the
population of interest).

Randomized controlled trial

First, because multiple mechanisms are responsible for adverse disease progres-
sion [5,89], endotoxemia might only be a significant trigger of inflammation in selected
patients with cardiogenic shock. In addition, the equilibrium between the pro- and anti-
inflammatory response is a major concern in critically ill patients, and the immunological
response to aggression is highly variable between individuals [13]. Therefore, the “one-size-
fits-all” concept applies poorly to immunology, and personalizing treatments will probably
be necessary [90]. Altogether, identifying patients with significant endotoxemia and a
dysregulated pro-inflammatory immune response would be an important prerequisite to
implement those treatments. Second, our understanding of the pathological mechanisms
underlying LPS translocation in the injured gut is still incomplete. The precise and ex-
haustive identification of the protective mechanisms of the epithelial barrier must enable
the development of strategies directly aiming to reduce LPS translocation at very early
time points, i.e., before LPS reaches the portal blood flow. Finally, the different strategies
for LPS detoxification presented above should be tailored and evaluated by randomized
controlled trials.

6. Conclusions

The role of endotoxemia in the genesis of cardiogenic shock has not yet been fully
explored. While in heart failure, endotoxin activity seems to increase with disease progres-
sion and congestion, in the few studies that directly explored endotoxemia in cardiogenic
shock, the incidence of endotoxemia was low. However, because only endotoxin activity
(and not quantity) is reported, the LPS burden in patients with cardiogenic shock might
be underestimated.

While therapeutics directed to endotoxemia are already available, this work underlines
that further research is needed before implementing such treatment. In particular, identify-
ing patients with associated cardiogenic shock and significant endotoxemia seems to be the
first important step. The development of biomarkers validated against quantitative LPS
measurements might be an efficient way to identify this population.

Contribution to the Field Statement: In cardiogenic shock, endotoxemia is described
as a driver of organ failure. Treatments targeted to endotoxemia are available. Here, we
review the evidence beyond endotoxemia in cardiogenic shock with the aim to implement
such treatment. We found that, despite the admitted paradigm of gut-derived endotoxemia,
the reported incidence of endotoxemia in cardiogenic shock appeared to be low. Thus,
it is unlikely that targeting endotoxemia in unselected patients with cardiogenic shock
would improve outcome. In consequence, a personalized medicine approach seems more
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appropriate, and future research should focus on identifying patients with cardiogenic
shock and significant endotoxemia.
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AHF Acute heart failure
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LDL Low density lipoprotein
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