Management of Non-Culprit Lesions in STEMI Patients with Multivessel Disease
Abstract
:1. Introduction
2. Angiography-Guided Complete Revascularization
3. Function-Guided Complete Revascularization
3.1. FFR-Guided Complete Revascularization
3.2. Angiography-Guided vs. FFR-Guided Revascularization
4. Imaging-Guided Complete Revascularization
Imaging Guidance for Percutaneous Coronary Intervention
5. Complete Revascularization in Cardiogenic Shock
6. Treatment Algorithm
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | American College of Cardiology |
ACS | acute coronary syndrome |
AHA | American Heart Association |
AKI | acute kidney injury |
CABG | coronary bypass artery grafting |
CI | confidence interval |
CR | complete revascularization |
CS | cardiogenic shock |
CV | cardiovascular |
ESC | European Society of Cardiology |
FFR | fractional flow reserve |
FU | follow-up |
HR | hazard ratio |
IDR | ischemia-driven revascularization |
IRA | non-infarct related artery |
IVUS | intravascular ultrasound |
MACE | major adverse cardiac events |
MI | myocardial infarction |
MLA | minimal lumen Area |
NIRS | near-infrared spectroscopy |
OCT | optical coherence tomography |
PCI | percutaneous coronary intervention |
QCA | quantitative coronary angiography |
RR | repeat revascularizations |
SCAI | Society for Cardiovascular Angiography & Interventions |
SR | stent restenosis |
STEMI | ST-segment elevation myocardial infarction |
TCFA | thin cap fibroatheroma |
VH | virtual histology |
References
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: Executive Summary A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 127, 529–555. [Google Scholar] [CrossRef][Green Version]
- Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg, S.M.; et al. 2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients with ST-Elevation Myocardial Infarction An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2016, 133, 1135–1147. [Google Scholar] [PubMed][Green Version]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [PubMed][Green Version]
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Comparison of Primary and Facilitated Percutaneous Coronary Interventions for ST-Elevation Myocardial Infarction: Quantitative Review of Randomised Trials. Lancet 2006, 367, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Park, D.W.; Clare, R.M.; Schulte, P.J.; Pieper, K.S.; Shaw, L.K.; Califf, R.M.; Ohman, E.M.; van de Werf, F.; Hirji, S.; Harrington, R.A.; et al. Extent, Location, and Clinical Significance of Non-Infarct-Related Coronary Artery Disease among Patients with ST-Elevation Myocardial Infarction. JAMA 2014, 312, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.; Yeh, R.W.; Bavishi, C.P.; Sardar, P.; Atti, V.; Mukherjee, D.; Bashir, R.; Abbott, J.D.; Giri, J.; Chatterjee, S. Etiologies, Trends, and Predictors of Readmission in ST-Elevation Myocardial Infarction Patients Undergoing Multivessel Percutaneous Coronary Intervention. Catheter. Cardiovasc. Interv. 2019, 94, 905–914. [Google Scholar] [CrossRef]
- Sorajja, P.; Gersh, B.J.; Cox, D.A.; McLaughlin, M.G.; Zimetbaum, P.; Costantini, C.; Stuckey, T.; Tcheng, J.E.; Mehran, R.; Lansky, A.J.; et al. Impact of Multivessel Disease on Reperfusion Success and Clinical Outcomes in Patients Undergoing Primary Percutaneous Coronary Intervention for Acute Myocardial Infarction. Eur. Heart J. 2007, 28, 1709–1716. [Google Scholar] [CrossRef][Green Version]
- Parodi, G.; Memisha, G.; Valenti, R.; Trapani, M.; Migliorini, A.; Santoro, G.M.; Antoniucci, D. Five Year Outcome after Primary Coronary Intervention for Acute ST Elevation Myocardial Infarction: Results from a Single Centre Experience. Heart 2005, 91, 1541–1544. [Google Scholar] [CrossRef][Green Version]
- Toutouzas, K.; Drakopoulou, M.; Mitropoulos, J.; Tsiamis, E.; Vaina, S.; Vavuranakis, M.; Markou, V.; Bosinakou, E.; Stefanadis, C. Elevated Plaque Temperature in Non-Culprit de Novo Atheromatous Lesions of Patients with Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2006, 47, 301–306. [Google Scholar] [CrossRef][Green Version]
- Rioufol, G.; Finet, G.; Ginon, I.; André-Fouët, X.; Rossi, R.; Vialle, E.; Desjoyaux, E.; Convert, G.; Huret, J.F.; Tabib, A. Multiple Atherosclerotic Plaque Rupture in Acute Coronary Syndrome: A Three-Vessel Intravascular Ultrasound Study. Circulation 2002, 106, 804–808. [Google Scholar] [CrossRef][Green Version]
- Pilgrim, T.; Piccolo, R.; Heg, D.; Roffi, M.; Tüller, D.; Vuilliomenet, A.; Muller, O.; Cook, S.; Weilenmann, D.; Kaiser, C.; et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction. EuroIntervention 2016, 12, e1343–e1354. [Google Scholar] [CrossRef][Green Version]
- Piccolo, R.; Pilgrim, T.; Heg, D.; Franzone, A.; Rat-Wirtzler, J.; Räber, L.; Silber, S.; Serruys, P.W.; Jüni, P.; Windecker, S. Comparative Effectiveness and Safety of New-Generation Versus Early-Generation Drug-Eluting Stents According to Complexity of Coronary Artery Disease: A Patient-Level Pooled Analysis of 6,081 Patients. JACC Cardiovasc. Interv. 2015, 8, 1657–1666. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Piscione, F.; Piccolo, R.; Cassese, S.; Galasso, G.; De Rosa, R.; D’Andrea, C.; Chiariello, M. Effect of drug-eluting stents in patients with acute ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention: A meta-analysis of randomised trials and an adjusted indirect comparison. EuroIntervention 2010, 5, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, R.; Galasso, G.; Capuano, E.; De Luca, S.; Esposito, G.; Trimarco, B.; Piscione, F. Trans radial versus transfemoral approach in patients undergoing percutaneous coronary intervention for acute coronary syndrome. A meta-analysis and trial sequential analysis of randomized controlled trials. PLoS ONE 2014, 9, e96127. [Google Scholar] [CrossRef][Green Version]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e21–e129. [Google Scholar] [CrossRef]
- Hanratty, C.G.; Koyama, Y.; Rasmussen, H.H.; Nelson, G.I.C.; Hansen, P.S.; Ward, M.R. Exaggeration of Nonculprit Stenosis Severity During Acute Myocardial Infarction: Implications for Immediate Multivessel Revascularization. J. Am. Coll. Cardiol. 2002, 40, 911–916. [Google Scholar] [CrossRef][Green Version]
- van der Hoeven, N.W.; Janssens, G.N.; de Waard, G.A.; Everaars, H.; Broyd, C.J.; Beijnink, C.W.H.; van de Ven, P.M.; Nijveldt, R.; Cook, C.M.; Petraco, R.; et al. Temporal Changes in Coronary Hyperemic and Resting Hemodynamic Indices in Non culprit Vessels of Patients with ST-Segment Elevation Myocardial Infarction. JAMA Cardiol. 2019, 4, 736–744. [Google Scholar] [CrossRef]
- de Waard, G.A.; Hollander, M.R.; Teunissen, P.F.A.; Jansen, M.F.; Eerenberg, E.S.; Beek, A.M.; Marques, K.M.; van de Ven, P.M.; Garrelds, I.M.; Danser, A.H.J.; et al. Changes in Coronary Blood Flow After Acute Myocardial Infarction Insights From a Patient Study and an Experimental Porcine Model. JACC Cardiovasc. Interv. 2016, 9, 602–613. [Google Scholar] [CrossRef] [PubMed]
- di Mario, C.; Sansa, M.; Airoldi, F.; Sheiban, I.; Manari, A.; Petronio, A.; Piccaluga, E.; de Servi, S.; Ramondo, A.; Colusso, S.; et al. Single vs Multivessel Treatment during Primary Angioplasty: Results of the Multicentre Randomised HEpacoatTM for CuLPrit or Multivessel Stenting for Acute Myocardial Infarction (HELP AMI) Study. Int. J. Cardiovasc. Intervent. 2004, 6, 128–133. [Google Scholar]
- Politi, L.; Sgura, F.; Rossi, R.; Monopoli, D.; Guerri, E.; Leuzzi, C.; Bursi, F.; Sangiorgi, G.M.; Modena, M.G. A Randomised Trial of Target-Vessel versus Multi-Vessel Revascularisation in ST-Elevation Myocardial Infarction: Major Adverse Cardiac Events during Long-Term Follow-Up. Heart 2010, 96, 662–667. [Google Scholar] [CrossRef]
- Wald, D.S.; Morris, J.K.; Wald, N.J.; Chase, A.J.; Edwards, R.J.; Hughes, L.O.; Berry, C.; Oldroyd, K.G. Randomized Trial of Preventive Angioplasty in Myocardial Infarction. N. Engl. J. Med. 2013, 369, 1115–1123. [Google Scholar] [CrossRef][Green Version]
- Gershlick, A.H.; Khan, J.N.; Chb, M.B.; Kelly, D.J.; Greenwood, J.P.; Sasikaran, T.; Curzen, N.; Blackman, D.J.; Dalby, M.; Fairbrother, K.L.; et al. Randomized Trial of Complete Versus Lesion-Only Revascularization in Patients Undergoing Primary Percutaneous Coronary Intervention for STEMI and Multivessel Disease The CvLPRIT Trial. J. Am. Coll. Cardiol. 2015, 65, 963–972. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mehta, S.R.; Wood, D.A.; Storey, R.F.; Mehran, R.; Bainey, K.R.; Nguyen, H.; Meeks, B.; di Pasquale, G.; López-Sendón, J.; Faxon, D.P.; et al. Complete Revascularization with Multivessel PCI for Myocardial Infarction. N. Engl. J. Med. 2019, 381, 1411–1421. [Google Scholar] [CrossRef][Green Version]
- Wood, D.A.; Cairns, J.A.; Wang, J.; Mehran, R.; Storey, R.F.; Nguyen, H.; Meeks, B.; Kunadian, V.; Tanguay, J.F.; Kim, H.H.; et al. Timing of Staged Non culprit Artery Revascularization in Patients with ST-Segment Elevation Myocardial Infarction: COMPLETE Trial. J. Am. Coll. Cardiol. 2019, 74, 2713–2723. [Google Scholar] [CrossRef]
- Sheth, T.; Pinilla-Echeverri, N.; Moreno, R.; Wang, J.; Wood, D.A.; Storey, R.F.; Mehran, R.; Bainey, K.R.; Bossard, M.; Bangalore, S.; et al. Non culprit Lesion Severity and Outcome of Revascularization in Patients With STEMI and Multivessel Coronary Disease. J. Am. Coll. Cardiol. 2020, 76, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Ntalianis, A.; Sels, J.-W.; Davidavicius, G.; Tanaka, N.; Muller, O.; Trana, C.; Barbato, E.; Hamilos, M.; Mangiacapra, F.; Heyndrickx, G.R.; et al. Fractional Flow Reserve for the Assessment of Nonculprit Coronary Artery Stenoses in Patients with Acute Myocardial Infarction. JACC Cardiovasc. Interv. 2010, 3, 1274–1281. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Høfsten, D.E.; Kløvgaard, L.; Holmvang, L.; Jørgensen, E.; Pedersen, F.; Saunamäki, K.; Clemmensen, P.; et al. Complete Revascularisation versus Treatment of the Culprit Lesion Only in Patients with ST-Segment Elevation Myocardial Infarction and Multivessel Disease (DANAMI-3-PRIMULTI): An Open-Label, Randomised Controlled Trial. Lancet 2015, 386, 665–671. [Google Scholar] [CrossRef]
- Lønborg, J.; Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Kløvgaard, L.; Holmvang, L.; Pedersen, F.; Jørgensen, E.; Saunamäki, K.; Clemmensen, P.; et al. Fractional Flow Reserve-Guided Complete Revascularization Improves the Prognosis in Patients with ST-Segment-Elevation Myocardial Infarction and Severe Non culprit Disease. Circ. Cardiovasc. Interv. 2017, 10, e004460. [Google Scholar] [CrossRef]
- Smits, P.C.; Abdel-Wahab, M.; Neumann, F.-J.; Boxma-de Klerk, B.M.; Lunde, K.; Schotborgh, C.E.; Piroth, Z.; Horak, D.; Wlodarczak, A.; Ong, P.J.; et al. Fractional Flow Reserve–Guided Multivessel Angioplasty in Myocardial Infarction. N. Engl. J. Med. 2017, 376, 1234–1244. [Google Scholar] [CrossRef]
- Gupta, A.; Bajaj, N.S.; Arora, P.; Arora, G.; Qamar, A.; Bhatt, D.L. FFR-Guided Multivessel Stenting Reduces Urgent Revascularization Compared with Infarct-Related Artery Only Stenting in ST-Elevation Myocardial Infarction: A Meta-Analysis of Randomized Controlled Trials. Int. J. Cardiol. 2018, 252, 63–67. [Google Scholar] [CrossRef]
- Bainey, K.R.; Engstrøm, T.; Smits, P.C.; Gershlick, A.H.; James, S.K.; Storey, R.F.; Wood, D.A.; Mehran, R.; Cairns, J.A.; Mehta, S.R. Complete vs Culprit-Lesion-Only Revascularization for ST-Segment Elevation Myocardial Infarction: A Systematic Review and Meta-Analysis. JAMA Cardiol. 2020, 5, 881–888. [Google Scholar] [CrossRef]
- Puymirat, E.; Cayla, G.; Simon, T.; Steg, P.G.; Montalescot, G.; Durand-Zaleski, I.; le Bras, A.; Gallet, R.; Khalife, K.; Morelle, J.-F.; et al. Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction. N. Engl. J. Med. 2021, 385, 297–308. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, H.K.; Park, K.H.; Choo, E.H.; Kim, C.J.; Lee, S.H.; Kim, M.C.; Hong, Y.J.; Ahn, S.G.; Doh, J.-H.; et al. Fractional Flow Reserve versus Angiography-Guided Strategy in Acute Myocardial Infarction with Multivessel Disease: A Randomized Trial. Eur. Heart J. 2023, 44, 473–484. [Google Scholar] [CrossRef]
- Ames, J.; Oldstein, A.G.; Emetriou, E.D.; Rines, I.L.G.; Azen, M.; Houkfeh, S.; O’n Eill, W. Multiple Complex Coronary Plaques in Patients with Acute Myocardial Infarction. N. Engl. J Med. 2000, 343, 915–922. [Google Scholar]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef]
- Waksman, R.; di Mario, C.; Torguson, R.; Ali, Z.A.; Singh, V.; Skinner, W.H.; Artis, A.K.; ten Cate, T.; Powers, E.; Kim, C.; et al. Identification of Patients and Plaques Vulnerable to Future Coronary Events with Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: A Prospective, Cohort Study. Lancet 2019, 394, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Oemrawsingh, R.M.; Cheng, J.M.; García-García, H.M.; van Geuns, R.-J.; de Boer, S.P.M.; Simsek, C.; Kardys, I.; Lenzen, M.J.; van Domburg, R.T.; Regar, E.; et al. Near-Infrared Spectroscopy Predicts Cardiovascular Outcome in Patients with Coronary Artery Disease. J. Am. Coll. Cardiol. 2014, 64, 2510–2518. [Google Scholar] [CrossRef]
- Xing, L.; Higuma, T.; Wang, Z.; Aguirre, A.D.; Mizuno, K.; Takano, M.; Dauerman, H.L.; Park, S.-J.; Jang, Y.; Kim, C.-J.; et al. Clinical Significance of Lipid-Rich Plaque Detected by Optical Coherence Tomography A 4-Year Follow-Up Study. J. Am. Coll. Cardiol. 2017, 69, 2502–2513. [Google Scholar] [CrossRef] [PubMed]
- Prati, F.; Romagnoli, E.; Gatto, L.; la Manna, A.; Burzotta, F.; Ozaki, Y.; Marco, V.; Boi, A.; Fineschi, M.; Fabbiocchi, F.; et al. Relationship Between coronary Plaque morphology of the Left Anterior Descending artery and 12months Clinical Outcome: The CLIMA Study. Eur. Heart J. 2020, 41, 383–391. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pinilla-Echeverri, N.; Mehta, S.R.; Wang, J.; Lavi, S.; Schampaert, E.; Cantor, W.J.; Bainey, K.R.; Welsh, R.C.; Kassam, S.; Mehran, R.; et al. Nonculprit Lesion Plaque Morphology in Patients with ST-Segment-Elevation Myocardial Infarction: Results from the COMPLETE Trial Optical Coherence Tomography Substudys. Circ. Cardiovasc. Interv. 2020, 13, e008768. [Google Scholar] [CrossRef]
- Stone, G.W.; Maehara, A.; Ali, Z.A.; Held, C.; Matsumura, M.; Kjøller-Hansen, L.; Bøtker, H.E.; Maeng, M.; Engstrøm, T.; Wiseth, R.; et al. Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque. J. Am. Coll. Cardiol. 2020, 76, 2289–2301. [Google Scholar] [CrossRef]
- Tian, J.; Dauerman, H.; Toma, C.; Samady, H.; Itoh, T.; Kuramitsu, S.; Domei, T.; Jia, H.; Vergallo, R.; Soeda, T.; et al. Prevalence and Characteristics of TCFA and Degree of Coronary Artery Stenosis An OCT, IVUS, and Angiographic Study. J. Am. Coll. Cardiol. 2014, 64, 672–680. [Google Scholar] [CrossRef][Green Version]
- Burzotta, F.; Leone, A.M.; Aurigemma, C.; Zambrano, A.; Zimbardo, G.; Arioti, M.; Vergallo, R.; de Maria, G.L.; Cerracchio, E.; Romagnoli, E.; et al. Fractional Flow Reserve or Optical Coherence Tomography to Guide Management of Angiographically Intermediate Coronary Stenosis: A Single-Center Trial. JACC Cardiovasc. Interv. 2020, 13, 49–58. [Google Scholar] [CrossRef]
- Shlofmitz, E.; Jeremias, A.; Parviz, Y.; Galougahi, K.K.; Redfors, B.; Petrossian, G.; Edens, M.; Matsumura, M.; Maehara, A.; Mintz, G.S.; et al. External Elastic Lamina vs. Luminal Diameter Measurement for Determining Stent Diameter by Optical Coherence Tomography: An ILUMIEN III Substudy. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 753–759. [Google Scholar] [CrossRef]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.W.; Holm, N.R.; Onuma, Y.; Radu, M.D.; Joner, M.; Yu, B.; Jia, H.; et al. Clinical Use of Intracoronary Imaging. Part 1: Guidance and Optimization of Coronary Interventions. An Expert Consensus Document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2018, 39, 3281–3300. [Google Scholar] [CrossRef][Green Version]
- Tanaka, A.; Imanishi, T.; Kitabata, H.; Kubo, T.; Takarada, S.; Tanimoto, T.; Kuroi, A.; Tsujioka, H.; Ikejima, H.; Komukai, K.; et al. Lipid-Rich Plaque and Myocardial Perfusion after Successful Stenting in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome: An Optical Coherence Tomography Study. Eur. Heart J. 2009, 30, 1348–1355. [Google Scholar] [CrossRef][Green Version]
- Osman, M.; Syed, M.; Patibandla, S.; Sulaiman, S.; Kheiri, B.; Shah, M.K.; Bianco, C.; Balla, S.; Patel, B. Fifteen-Year Trends in Incidence of Cardiogenic Shock Hospitalization and in-Hospital Mortality in the United States. J. Am. Heart Assoc. 2021, 10, e021061. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.G.; Lowe, A.M.; Sanborn, T.A.; White, H.D.; Sleeper, L.A.; Carere, R.G.; Buller, C.E.; Wong, S.C.; Boland, J.; Dzavik, V.; et al. Percutaneous Coronary Intervention for Cardiogenic Shock in the SHOCK Trial. J. Am. Coll. Cardiol. 2003, 42, 1380–1386. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sousa-Uva, M.; Neumann, F.J.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on Myocardial Revascularization. Eur. Heart J. 2019, 55, 4–90. [Google Scholar] [CrossRef][Green Version]
- Udith, J.; Ochman, S.H.; Leeper, Y.A.S.; Ohn, J.; Ebb, G.W.; Anborn, I.A.S.; Hite, A.D.W.; Avid, J.D.; Alley, T.; Hristopher, C.; et al. Early Revascularization in Acute Myocardial Infarction Complicated by Cardiogenic Shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar]
- White, H.D.; Assmann, S.F.; Sanborn, T.A.; Jacobs, A.K.; Webb, J.G.; Sleeper, L.A.; Wong, C.K.; Stewart, J.T.; Aylward, P.E.G.; Wong, S.C.; et al. Comparison of Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting after Acute Myocardial Infarction Complicated by Cardiogenic Shock: Results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) Trial. Circulation 2005, 112, 1992–2001. [Google Scholar]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; de Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef][Green Version]
- Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Riaz, H.; Khan, A.R.; Murad, M.H.; Kalra, A.; Figueredo, V.M.; Bhatt, D.L. Meta-Analysis Comparing Culprit Vessel Only Versus Multivessel Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction and Cardiogenic Shock. Am. J. Cardiol. 2019, 123, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Farhan, S.; Vogel, B.; Montalescot, G.; Barthelemy, O.; Zeymer, U.; Desch, S.; de Waha-Thiele, S.; Maier, L.S.; Sandri, M.; Akin, I.; et al. Association of Culprit Lesion Location with Outcomes of Culprit-Lesion-Only vs. Immediate Multivessel Percutaneous Coronary Intervention in Cardiogenic Shock: A Post Hoc Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Rasoul, S.; Ottervanger, J.P.; de Boer, M.J.; Dambrink, J.H.E.; Hoorntje, J.C.A.; Marcel Gosselink, A.T.; Zijlstra, F.; Suryapranata, H.; van ’t Hof, A.W.J. Predictors of 30-Day and 1-Year Mortality after Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Coron. Artery Dis. 2009, 20, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, G.; Peix, A.; Devasenapathy, N.; Jimenez-Heffernan, A.; Haque, S.U.; Rodella, C.; Giubbini, R.; Rosas, E.A.; Ozkan, E.; Keng, Y.J.F.; et al. Ischemia-Guided vs Routine Non-Culprit Vessel Angioplasty for Patients with ST Segment Elevation Myocardial Infarction and Multi-Vessel Disease: The IAEA SPECT STEMI Trial. J. Nucl. Cardiol. 2022, 1–12. [Google Scholar] [CrossRef]
- Ong, P.; Martínez Pereyra, V.; Sechtem, U.; Bekeredjian, R. Management of Patients with ST-Segment Myocardial Infarction and Multivessel Disease: What Are the Options in 2022? Coron. Artery Dis. 2022, 33, 485–489. [Google Scholar] [CrossRef]
Study | Population (n), Randomization Ratio | Intervention Group | Control Group | Assessment of NCL | Primary Endpoint | Results |
---|---|---|---|---|---|---|
PRAMI | n = 465, 1:1 | 234 patients with CR during index procedure | 231 patients with culprit-only revascularization | Angiography > 50% | MACE: Cardiovascular death, non-fatal MI, refractory angina at 23 months FU. | 9% vs. 23% (p < 0.001) |
CvLPRIT | n = 296, 1:1 | 150 patients with CR during index procedure or index admission | 146 patients with culprit-only revascularization | Angiography > 70% (1 view) or >50% (2 views) | MACE: Death, MI, any repeat revascularization, HF at 1-year FU. | 10% vs. 21.2% (p = 0.009) |
COMPLETE | n = 4041, 1:1 | 2016 patients with CR during staged procedure in index admission or post-discharge | 2025 patients with culprit-only revascularization | Angiography > 70% or angiography between 50%–69% and FFR < 0.80 | (1) Composite of cardiovascular death and MI. (2) Composite of cardiovascular death, MI, and ischemia driven revascularization (IDR) at 3-year FU. | (1) 7.8% vs. 10.5% (p = 0.004) (2) 8.9% vs. 16.7% (p < 0.001) |
DANAMI-3-PRIMULTI | n = 627. 1:1 | 314 patients with CR during staged procedure in index admission | 313 patients with culprit-only revascularization | Angiography > 90% or angiography > 50% and FFR < 0.80 | MACE: Death, re-infarction, ischemia driven revascularization at 27-month FU. | 13% vs. 22% (p = 0.004) |
COMPARE-ACUTE | n = 885, 2:1 | 295 patients with CR during index procedure or index admission | 590 patients with culprit-only revascularization | Angiography > 50% and FFR < 0.80 | MACE: Death, non-fatal MI, revascularization, cerebrovascular events at 1-year FU. | 8% vs. 21% (p < 0.001) |
FLOWER-MI | n = 1163, 1:1 | 586 patients with CR FFR-guided during index procedure or index admission | 577 patients with CR angio-guided during index procedure or index admission | Angiography > 50% in the control group and angiography > 50% and FFR < 0.80 in the intervention group | Composite of death for any cause, non-fatal MI, and unplanned hospitalization leading to urgent revascularization at 1-year FU. | 5.5% vs. 4.2% (p = 0.31) |
FRAME AMI | n = 562, 1:1 | 284 patients with CR FFR-guided PCI | 278 patients with CR angio-guided PCI | Angiography > 50% in the control group Angiography > 50% and FFR < 0.80 in the intervention group | Composite of time to death, MI or RR at 3.5-year FU. | 7.4% vs. 19.7% (p = 0.003) |
CULPRIT-SHOCK | n = 706, 1:1 | 344 patients with CS in culprit lesion-only PCI | 342 patients with CS in immediate multivessel PCI | Angiography > 70% | Composite of death or severe renal failure leading to renal replacement therapy at 30-day FU. | 45.9% vs. 55.4 (p = 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccolo, R.; Manzi, L.; Simonetti, F.; Leone, A.; Angellotti, D.; Immobile Molaro, M.; Verde, N.; Cirillo, P.; Di Serafino, L.; Franzone, A.; Spaccarotella, C.A.M.; Esposito, G. Management of Non-Culprit Lesions in STEMI Patients with Multivessel Disease. J. Clin. Med. 2023, 12, 2572. https://doi.org/10.3390/jcm12072572
Piccolo R, Manzi L, Simonetti F, Leone A, Angellotti D, Immobile Molaro M, Verde N, Cirillo P, Di Serafino L, Franzone A, Spaccarotella CAM, Esposito G. Management of Non-Culprit Lesions in STEMI Patients with Multivessel Disease. Journal of Clinical Medicine. 2023; 12(7):2572. https://doi.org/10.3390/jcm12072572
Chicago/Turabian StylePiccolo, Raffaele, Lina Manzi, Fiorenzo Simonetti, Attilio Leone, Domenico Angellotti, Maddalena Immobile Molaro, Nicola Verde, Plinio Cirillo, Luigi Di Serafino, Anna Franzone, Carmen Anna Maria Spaccarotella, and Giovanni Esposito. 2023. "Management of Non-Culprit Lesions in STEMI Patients with Multivessel Disease" Journal of Clinical Medicine 12, no. 7: 2572. https://doi.org/10.3390/jcm12072572