Clinical Profile and Risk Factors for Severe COVID-19 in Hospitalized Patients from Rio de Janeiro, Brazil: Comparison between the First and Second Pandemic Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Sample Collection and SARS-CoV-2 Detection
2.3. Statistical Analysis
3. Results
3.1. Patient Cohort, Demographics, and Baseline Clinical Features
3.2. COVID-19 Signs and Symptoms
3.3. Laboratory Data, Management, and Outcomes
3.4. Demographic and Clinical Features of COVID-19 First and Second Waves Compared
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, M.; Zhu, Y.; Guo, F.; Zhang, J.; Liu, W.; Hou, W. [Clinical and laboratory characteristics of 215 cases of coronavirus disease 2019 with different prognosis]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2020, 32, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses 2020, 12, 135. [Google Scholar] [CrossRef] [PubMed][Green Version]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance, 27 May 2020. 2020. Available online: https://apps.who.int/iris/handle/10665/332196 (accessed on 20 December 2022).
- Burki, T. COVID-19 in Latin America. Lancet Infect. Dis. 2020, 20, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Croda, J.; de Oliveira, W.K.; Frutuoso, R.L.; Mandetta, L.H.; Baia-Da-Silva, D.C.; Brito-Sousa, J.D.; Monteiro, W.M.; Lacerda, M.V.G. COVID-19 in Brazil: Advantages of a socialized unified health system and preparation to contain cases. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200167. [Google Scholar] [CrossRef]
- Xavier, D.R.; e Silva, E.L.; Lara, F.A.; e Silva, G.R.; Oliveira, M.F.; Gurgel, H.; Barcellos, C. Involvement of political and socio-economic factors in the spatial and temporal dynamics of COVID-19 outcomes in Brazil: A population-based study. Lancet Reg. Health Am. 2022, 10, 100221. [Google Scholar] [CrossRef]
- Candido, D.S.; Claro, I.M.; De Jesus, J.G.; Souza, W.M.; Moreira, F.R.R.; Dellicour, S.; Mellan, T.A.; Du Plessis, L.; Pereira, R.H.M.; Sales, F.C.S.; et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 2020, 369, 1255–1260. [Google Scholar] [CrossRef]
- Ranzani, O.T.; Bastos, L.S.L.; Gelli, J.G.M.; Marchesi, J.F.; Baião, F.; Hamacher, S.; A Bozza, F. Characterisation of the first 250,000 hospital admissions for COVID-19 in Brazil: A retrospective analysis of nationwide data. Lancet. Respir. Med. 2021, 9, 407–418. [Google Scholar] [CrossRef]
- Bastos, L.S.; Ranzani, O.T.; Souza, T.M.L.; Hamacher, S.; A Bozza, F. COVID-19 hospital admissions: Brazil’s first and second waves compared. Lancet Respir. Med. 2021, 9, e82–e83. [Google Scholar] [CrossRef]
- Zeiser, F.A.; Donida, B.; da Costa, C.A.; Ramos, G.D.O.; Scherer, J.N.; Barcellos, N.T.; Alegretti, A.P.; Ikeda, M.L.R.; Müller, A.P.W.C.; Bohn, H.C.; et al. First and second COVID-19 waves in Brazil: A cross-sectional study of patients’ characteristics related to hospitalization and in-hospital mortality. Lancet Reg. Health Am. 2022, 6, 100107. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef][Green Version]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- NIAID-RML. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 18 January 2023).
- Sharun, K.; Tiwari, R.; Yatoo, M.I.; Natesan, S.; Megawati, D.; Singh, K.P.; Michalak, I.; Dhama, K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. Narra J. 2022, 2, e92–e147. [Google Scholar] [CrossRef]
- Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M.; Hosseinzadeh, H. Review of registered clinical trials for the treatment of COVID-19. Drug Dev. Res. 2021, 82, 474–493. [Google Scholar] [CrossRef]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; López, J.R.A.; Cattelan, A.M.; Viladomiu, A.S.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
- Masyeni, S.; Iqhrammullah, M.; Frediansyah, A.; Nainu, F.; Tallei, T.; Bin Emran, T.; Ophinni, Y.; Dhama, K.; Harapan, H. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review. J. Med. Virol. 2022, 94, 3006–3016. [Google Scholar] [CrossRef]
- Sezen, Y.I.; Senoglu, S.; Karabela, S.N.; Yesilbag, Z.; Borcak, D.; Unlu, E.C.; Korkusuz, R.; Ozdemir, Y.; Yasar, K.K. Risk factors and the impact of vaccination on mortality in COVID-19 patients. Bratisl. Lek. Listy 2022, 123, 440–443. [Google Scholar] [CrossRef]
- Vasileiou, E.; Simpson, C.R.; Shi, T.; Kerr, S.; Agrawal, U.; Akbari, A.; Bedston, S.; Beggs, J.; Bradley, D.; Chuter, A.; et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: A national prospective cohort study. Lancet 2021, 397, 1646–1657. [Google Scholar] [CrossRef]
- Rossman, H.; Shilo, S.; Meir, T.; Gorfine, M.; Shalit, U.; Segal, E. COVID-19 dynamics after a national immunization program in Israel. Nat. Med. 2021, 27, 1055–1061. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Wu, S.; Zhang, Z.; Zhao, Z.; Zhang, J.; Fu, L.; Zai, X.; Wang, Y.; Zhang, G.; et al. Comparative characterization of antibody responses induced by Ad5-vectored spike proteins of emerging SARS-CoV-2 VOCs. Signal Transduct. Target. Ther. 2022, 7, 257. [Google Scholar] [CrossRef] [PubMed]
- Aleem, A.; Akbar Samad, A.B.; Slenker, A.K. Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19); StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Farias, J.P.; Silva, P.D.S.D.; Fogaça, M.M.C.; Santana, I.V.R.; Luiz, W.B.; Birbrair, A.; Amorim, J.H. The COVID-19 Humoral Immunological Status Induced by CoronaVac and AstraZeneca Vaccines Significantly Benefits from a Booster Shot with the Pfizer Vaccine. J. Virol. 2022, 96, e0017722. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q.; Ali, A.; Li, K.; Shao, N.; Zhou, X.; Ye, Z.; Chen, X.; Cao, S.; Cui, J.; et al. Sustainability of SARS-CoV-2 Induced Humoral Immune Responses in COVID-19 Patients from Hospitalization to Convalescence Over Six Months. Virol. Sin. 2021, 36, 869–878. [Google Scholar] [CrossRef]
- Brosh-Nissimov, T.; Orenbuch-Harroch, E.; Chowers, M.; Elbaz, M.; Nesher, L.; Stein, M.; Maor, Y.; Cohen, R.; Hussein, K.; Weinberger, M.; et al. BNT162b2 vaccine breakthrough: Clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Ciabattini, A.; Nardini, C.; Santoro, F.; Garagnani, P.; Franceschi, C.; Medaglini, D. Vaccination in the elderly: The challenge of immune changes with aging. Semin. Immunol. 2018, 40, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Phillips, M.; Lechner, S.C.; Ryan, J.G.; Blomberg, B.B. Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans. Vaccine 2010, 28, 8077–8084. [Google Scholar] [CrossRef][Green Version]
- E McElhaney, J.; Coler, R.N.; Baldwin, S.L. Immunologic correlates of protection and potential role for adjuvants to improve influenza vaccines in older adults. Expert Rev. Vaccines 2013, 12, 759–766. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef][Green Version]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, r.e. The International Classification of Headache Disorders, 3rd edition. Cephalalgia Int. J. Headache 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Nuzzo, J.B.; Gostin, L.O. The First 2 Years of COVID-19: Lessons to Improve Preparedness for the Next Pandemic. JAMA 2022, 327. [Google Scholar] [CrossRef]
- Ebinger, J.E.; Achamallah, N.; Ji, H.; Claggett, B.L.; Sun, N.; Botting, P.; Nguyen, T.-T.; Luong, E.; Kim, E.H.; Park, E.; et al. Pre-existing traits associated with Covid-19 illness severity. PLoS ONE 2020, 15, e0236240. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tian, J.; Yang, F.; Lv, L.; Yu, J.; Sun, G.; Ma, Y.; Yang, X.; Ding, J. Clinical characteristics of 225 patients with COVID-19 in a tertiary Hospital near Wuhan, China. J. Clin. Virol. 2020, 127, 104363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, Y.; Tan, G.; Dong, X.; Wang, B.; Lin, J.; Yan, Y.; Liu, G.; Akdis, M.; Akdis, C.A.; et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2021, 76, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for Covid-19 severity and fatality: A structured literature review. Infection 2021, 49, 15–28. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. 2020, 26, 767–772. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef][Green Version]
- Jin, H.; Hong, C.; Chen, S.; Zhou, Y.; Wang, Y.; Mao, L.; Li, Y.; He, Q.; Li, M.; Su, Y.; et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc. Neurol. 2020, 5, 146–151. [Google Scholar] [CrossRef][Green Version]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef][Green Version]
- Romagnolo, A.; Balestrino, R.; Imbalzano, G.; Ciccone, G.; Riccardini, F.; Artusi, C.A.; Bozzali, M.; Ferrero, B.; Montalenti, E.; Montanaro, E.; et al. Neurological comorbidity and severity of COVID-19. J. Neurol. 2021, 268, 762–769. [Google Scholar] [CrossRef]
- Tahira, A.C.; Verjovski-Almeida, S.; Ferreira, S.T. Dementia is an age-independent risk factor for severity and death in COVID-19 inpatients. Alzheimers Dement. 2021, 17, 1818–1831. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, L.T.d.F.; da Fonseca, G.C.; Leon, L.A.A.; Salvio, A.L.; Brustolini, O.J.; Gerber, A.L.; Guimarães, A.P.D.C.; Marques, C.A.B.; Fernandes, R.A.; Filho, C.H.F.R.; et al. Buffy Coat Transcriptomic Analysis Reveals Alterations in Host Cell Protein Synthesis and Cell Cycle in Severe COVID-19 Patients. Int. J. Mol. Sci. 2022, 23, 13588. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, R.; Loré, N.I.; Finardi, A.; Mandelli, A.; Cirillo, D.M.; Tresoldi, C.; Benedetti, F.; Ciceri, F.; Rovere-Querini, P.; Comi, G.; et al. Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. J. Neurol. 2021, 268, 4436–4442. [Google Scholar] [CrossRef]
- Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F.X.; Chong, M.; Lee, M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA 2020, 323, 1612. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zheng, K.I.; Gao, F.; Wang, X.-B.; Sun, Q.-F.; Pan, K.-H.; Wang, T.-Y.; Ma, H.-L.; Chen, Y.-P.; Liu, W.-Y.; George, J.; et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metab. Clin. Exp. 2020, 108, 154244. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Locke, E.; Green, P.; Berry, K.; O’Hare, A.M.; Shah, J.A.; Crothers, K.; Eastment, M.C.; Dominitz, J.; Fan, V.S. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection. JAMA Netw. Open 2020, 3, 22310. [Google Scholar] [CrossRef] [PubMed]
- Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 2020, 8, e70. [Google Scholar] [CrossRef]
- Westblade, L.F.; Brar, G.; Pinheiro, L.C.; Paidoussis, D.; Rajan, M.; Martin, P.; Goyal, P.; Sepulveda, J.L.; Zhang, L.; George, G.; et al. SARS-CoV-2 Viral Load Predicts Mortality in Patients with and without Cancer Who Are Hospitalized with COVID-19. Cancer Cell 2020, 38, 661–671.e2. [Google Scholar] [CrossRef]
- Magleby, R.; Westblade, L.F.; Trzebucki, A.; Simon, M.S.; Rajan, M.; Park, J.; Goyal, P.; Safford, M.M.; Satlin, M.J. Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load on Risk of Intubation and Mortality Among Hospitalized Patients With Coronavirus Disease 2019. Clin. Infect. Dis. 2021, 73, e4197–e4205. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, L.-M.; Wan, L.; Xiang, T.-X.; Le, A.; Liu, J.-M.; Peiris, M.; Poon, L.L.M.; Zhang, W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. 2020, 20, 656–657. [Google Scholar] [CrossRef][Green Version]
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Jacot, D.; Greub, G.; Jaton, K.; Opota, O. Viral load of SARS-CoV-2 across patients and compared to other respiratory viruses. Microbes Infect. 2020, 22, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020, 75, 1564–1581. [Google Scholar] [CrossRef]
- Hagman, K.; Hedenstierna, M.; Gille-Johnson, P.; Hammas, B.; Grabbe, M.; Dillner, J.; Ursing, J. Severe Acute Respiratory Syndrome Coronavirus 2 RNA in Serum as Predictor of Severe Outcome in Coronavirus Disease 2019: A Retrospective Cohort Study. Clin. Infect. Dis. 2021, 73, e2995–e3001. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mattiuzzi, C.; Lippi, G. Which lessons shall we learn from the 2019 novel coronavirus outbreak? Ann. Transl. Med. 2020, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.-H.; Liu, Y.-X.; Yuan, J.; Wang, F.-X.; Wu, W.-B.; Li, J.-X.; Wang, L.-F.; Gao, H.; Wang, Y.; Dong, C.-F.; et al. First case of COVID-19 complicated with fulminant myocarditis: A case report and insights. Infection 2020, 48, 773–777. [Google Scholar] [CrossRef][Green Version]
- Kermali, M.; Khalsa, R.K.; Pillai, K.; Ismail, Z.; Harky, A. The role of biomarkers in diagnosis of COVID-19—A systematic review. Life Sci. 2020, 254, 117788. [Google Scholar] [CrossRef]
- Singh, S.; Khan, A. Clinical Characteristics and Outcomes of Coronavirus Disease 2019 Among Patients With Preexisting Liver Disease in the United States: A Multicenter Research Network Study. Gastroenterology 2020, 159, 768–771.e3. [Google Scholar] [CrossRef]
- Bousquet, J.; Anto, J.M.; Czarlewski, W.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; Blain, H.; Vidal, A.; Sheikh, A.; Akdis, C.A.; et al. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021, 76, 735–750. [Google Scholar] [CrossRef]
- Esposito, A.J.; Menon, A.A.; Ghosh, A.J.; Putman, R.K.; Fredenburgh, L.E.; El-Chemaly, S.Y.; Goldberg, H.J.; Baron, R.M.; Hunninghake, G.M.; Doyle, T.J. Increased Odds of Death for Patients with Interstitial Lung Disease and COVID-19: A Case-Control Study. Am. J. Respir. Crit. Care Med. 2020, 202, 1710–1713. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur. Radiol. 2020, 30, 4381–4389. [Google Scholar] [CrossRef][Green Version]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Leung, J.M.; Yang, C.X.; Tam, A.; Shaipanich, T.; Hackett, T.-L.; Singhera, G.K.; Dorscheid, D.R.; Sin, D.D. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur. Respir. J. 2020, 55, 2000688. [Google Scholar] [CrossRef][Green Version]
- Huang, H.; Zhang, M.; Chen, C.; Zhang, H.; Wei, Y.; Tian, J.; Shang, J.; Deng, Y.; Du, A.; Dai, H. Clinical characteristics of COVID-19 in patients with preexisting ILD: A retrospective study in a single center in Wuhan, China. J. Med. Virol. 2020, 92, 2742–2750. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Morales, C.M.; Álvarez, E.D.; Castro, C.; Robles, A.L.; Sandoval, T.P. Determinants of COVID-19 disease severity in patients with underlying rheumatic disease. Clin. Rheumatol. 2020, 39, 2789–2796. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Koh, H.Y.; Moon, S.Y.; Yoo, I.K.; Ha, E.K.; You, S.; Kim, S.Y.; Yon, D.K.; Lee, S.W. Allergic disorders and susceptibility to and severity of COVID-19: A nationwide cohort study. J. Allergy Clin. Immunol. 2020, 146, 790–798. [Google Scholar] [CrossRef]
- Faruqui, S.; Okoli, F.C.; Olsen, S.K.; Feldman, D.M.; Kalia, H.S.; Park, J.S.; Stanca, C.M.; Diaz, V.F.; Yuan, S.; Dagher, N.N.; et al. Cholangiopathy After Severe COVID-19: Clinical Features and Prognostic Implications. Am. J. Gastroenterol. 2021, 116, 1414–1425. [Google Scholar] [CrossRef]
- Li, Q.; Cao, Y.; Chen, L.; Wu, D.; Yu, J.; Wang, H.; He, W.; Dong, F.; Chen, W.; Chen, W.; et al. Hematological features of persons with COVID-19. Leukemia 2020, 34, 2163–2172. [Google Scholar] [CrossRef]
- Shang, W.; Dong, J.; Ren, Y.; Tian, M.; Li, W.; Hu, J.; Li, Y. The value of clinical parameters in predicting the severity of COVID-19. J. Med. Virol. 2020, 92, 2188–2192. [Google Scholar] [CrossRef]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, B.; Zhang, Z.; Qin, W.; Zhu, Z.; Zhai, Z.; Davidson, B.L.; Wang, C. D-dimer Triage for COVID-19. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 2020, 27, 612–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J. Thromb. Haemost. JTH 2020, 18, 1324–1329. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ran, J.; Song, Y.; Zhuang, Z.; Han, L.; Zhao, S.; Cao, P.; Geng, Y.; Xu, L.; Qin, J.; He, D.; et al. Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan, China. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2020, 43, 1267–1276. [Google Scholar] [CrossRef]
- Jothimani, D.; Venugopal, R.; Abedin, M.F.; Kaliamoorthy, I.; Rela, M. COVID-19 and the liver. J. Hepatol. 2020, 73, 1231–1240. [Google Scholar] [CrossRef]
- Marjot, T.; Webb, G.J.; Iv, A.S.B.; Moon, A.M.; Stamataki, Z.; Wong, V.W.; Barnes, E. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 348–364. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Muhović, D.; Bojović, J.; Bulatović, A.; Vukčević, B.; Ratković, M.; Lazović, R.; Smolović, B. First case of drug-induced liver injury associated with the use of tocilizumab in a patient with COVID-19. Liver Int. Off. J. Int. Assoc. Study Liver 2020, 40, 1901–1905. [Google Scholar] [CrossRef]
- Mahmud, M.; Safadi, R.; Mader, R. Hepatotoxicity of tocilizumab and anakinra in rheumatoid arthritis: Management decisions. Clin. Pharmacol. Adv. Appl. 2011, 3, 39–43. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; et al. COVID-19: Abnormal liver function tests. J. Hepatol. 2020, 73, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Griesel, M.; Wagner, C.; Mikolajewska, A.; Stegemann, M.; Fichtner, F.; Metzendorf, M.-I.; Nair, A.A.; Daniel, J.; Fischer, A.-L.; Skoetz, N. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst. Rev. 2022, 3, CD015125. [Google Scholar] [CrossRef] [PubMed]
- Salyer, S.J.; Maeda, J.; Sembuche, S.; Kebede, Y.; Tshangela, A.; Moussif, M.; Ihekweazu, C.; Mayet, N.; Abate, E.; Ouma, A.O.; et al. The first and second waves of the COVID-19 pandemic in Africa: A cross-sectional study. Lancet 2021, 397, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Naveca, F.G.; Nascimento, V.; Souza, V.; Corado, A.D.L.; Nascimento, F.; Silva, G.; Mejía, M.C.; Brandão, M.J.; Costa, A.; Duarte, D.; et al. Spread of Gamma (P.1) Sub-Lineages Carrying Spike Mutations Close to the Furin Cleavage Site and Deletions in the N-Terminal Domain Drives Ongoing Transmission of SARS-CoV-2 in Amazonas, Brazil. Microbiology Spectr. 2022, 10, e0236621. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, L.C.J.; Nogueira, E.; Shuab, G.; Tosta, S.; Fristch, H.; Pimentel, V.; Souza-Neto, J.A.; Coutinho, L.L.; Fukumasu, H.; Sampaio, S.C.; et al. SARS-CoV-2 epidemic in Brazil: How the displacement of variants has driven distinct epidemic waves. Virus Res. 2022, 315, 198785. [Google Scholar] [CrossRef]
- Resende, P.C.; Naveca, F.G.; Lins, R.D.; Dezordi, F.Z.; Ferraz, M.V.F.; Moreira, E.G.; Coêlho, D.F.; Motta, F.C.; Paixão, A.C.D.; Appolinario, L.; et al. The ongoing evolution of variants of concern and interest of SARS-CoV-2 in Brazil revealed by convergent indels in the amino (N)-terminal domain of the spike protein. Virus Evol. 2021, 7, veab069. [Google Scholar] [CrossRef]
- Dhama, K.; Nainu, F.; Frediansyah, A.; Yatoo, M.I.; Mohapatra, R.K.; Chakraborty, S.; Zhou, H.; Islam, R.; Mamada, S.S.; Kusuma, H.I.; et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J. Infect. Public Health 2023, 16, 4–14. [Google Scholar] [CrossRef]
- Khandia, R.; Singhal, S.; Alqahtani, T.; Kamal, M.A.; El-Shall, N.A.; Nainu, F.; Desingu, P.A.; Dhama, K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ. Res. 2022, 209, 112816. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.; Gilby, N.B.; Wei, G.-W. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J. Chem. Inf. Model. 2022, 62, 412–422. [Google Scholar] [CrossRef]
- Syed, A.M.; Ciling, A.; Khalid, M.M.; Sreekumar, B.; Chen, P.Y.; Kumar, G.R.; Silva, I.; Milbes, B.; Kojima, N.; Hess, V.; et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Torjesen, I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ (Clin. Res. Ed.) 2021, 375, n2943. [Google Scholar] [CrossRef]
- Shah, M.; Woo, H.G. Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger Binding to ACE2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies. Front. Immunol. 2022, 12, 830527. [Google Scholar] [CrossRef] [PubMed]
Parameter | Total (n = 106) | Non-Severe (n = 67) | Severe (n = 39) | p-Value a |
---|---|---|---|---|
Characteristics | ||||
Age (mean ± SD) | NA | 59.1 ± 17.1 | 69.1 ± 12.5 | 0.001 *,c |
Gender: Female—n(%) | 54 (50.1) | 33 (49.2) | 21 (53.8) | 0.7 |
Male—n(%) | 52 (49.0) | 34 (50.7) | 18 (46.1) | 0.7 |
Smoker b—n(%) | 29 (27.3) | 19 (28.3) | 10 (25.6) | 0.8 |
Comorbidities | ||||
Hypertension—n(%) | 83 (78.3) | 49 (73.1) | 34 (87.2) | 0.1 |
Diabetes—n(%) | 37 (34.9) | 22 (32.8) | 15 (38.5) | 0.7 |
Cardiac or cerebrovascular disease—n(%) | 29 (27.3) | 18 (26.8) | 11 (28.2) | 1.0 |
Chronic kidney disease—n(%) | 23 (21.7) | 14 (20.8) | 9 (23.1) | 0.8 |
Active Malignancy—n(%) | 10 (9.4) | 5 (7.4) | 5 (12.8) | 0.5 |
Cancer—n(%) | 5 (4.7) | 2 (2.9) | 3 (7.7) | 0.3 |
Thrombophilia—n(%) | 5 (4.7) | 3 (4.4) | 2 (5.1) | 1.0 |
Immunodeficiency or immunosuppression—n(%) | 11 (10.3) | 8 (11.9) | 3 (7.7) | 0.7 |
Neurological disease—n(%) | 18 (16.7) | 6 (8.9) | 12 (30.8) | 0.006 * |
Respiratory disease—n(%) | 8 (7.5) | 5 (7.4) | 3 (7.7) | 1.0 |
Autoimmune disease—n(%) | 6 (5.6) | 5 (7.4) | 1 (2.6) | 0.4 |
Obesity—n(%) | 6 (5.6) | 3 (4.4) | 3 (7.7) | 0.7 |
HIV/Aids—n(%) | 2 (1.8) | 2 (2.9) | 0 | 0.5 |
Liver disease—n(%) | 12 (11.3) | 5 (7.4) | 7 (17.9) | 0.1 |
Signs and Symptoms | Total (n = 106) | Non-Severe (n = 67) | Severe (n = 39) | p-Value a |
---|---|---|---|---|
General | ||||
Cough—n(%) | 58 (54.7) | 39 (58.2) | 19 (48.7) | 0.4 |
Fever—n(%) | 48 (45.2) | 30 (44.7) | 18 (46.1) | 1.0 |
Malaise/fatigue—n(%) | 43 (40.5) | 28 (41.8) | 15 (38.5) | 0.8 |
Rhinorrhea—n(%) | 5 (4.7) | 3 (4.5) | 2 (5.1) | 1.0 |
Dyspnea—n(%) | 60 (56.6) | 32 (47.8) | 28 (71.8) | 0.02 * |
Arthralgia—n(%) | 1 (0.9) | 1 (1.5) | 0 | 1.0 |
Inappetence—n(%) | 11 (10.3) | 8 (11.9) | 3 (7.7) | 0.7 |
Diarrhea—n(%) | 13 (12.2) | 10 (14.9) | 3 (7.7) | 0.4 |
Emesis—n(%) | 13 (12.2) | 9 (13.4) | 4 (10.2) | 0.8 |
Sore throat—n(%) | 3 (2.8) | 3 (4.5) | 0 | 0.3 |
Myalgia—n(%) | 15 (14.1) | 10 (14.9) | 5 (12.8) | 1.0 |
Any neurological symptom—n(%) | 35 (33.0) | 23 (34.3) | 12 (30.8) | 0.8 |
Central nervous system (CNS)—n(%) | 30 (28.3) | 20 (29.8) | 10 (25.6) | 0.8 |
Dizziness—n(%) | 4 (3.8) | 3 (4.5) | 1 (2.6) | 1.0 |
Headache—n(%) | 16 (15.1) | 12 (17.9) | 4 (10.2) | 0.4 |
Impaired consciousness—n(%) | 13 (12.2) | 6 (8.9) | 7 (17.9) | 0.2 |
Acute cerebrovascular disease—n(%) | 3 (2.8) | 1 (1.5) | 2 (5.1) | 0.5 |
Ataxia—n(%) | 0 | 0 | 0 | NA |
Seizure—n(%) | 4 (3.8) | 2 (3.0) | 2 (5.1) | 0.6 |
Peripheral nervous system (PNS)—n(%) | 13 (12.2) | 7 (10.4) | 6 (15.4) | 0.5 |
Hypo/Ageusia—n(%) | 9 (8.5) | 5 (7.5) | 4 (10.2) | 0.7 |
Hypo/Anosmia—n(%) | 7 (6.6) | 6 (8.9) | 1 (2.6) | 0.2 |
Vision impairment—n(%) | 1 (0.9) | 0 | 1 (2.6) | 0.4 |
Nerve pain—n(%) | 0 | 0 | 0 | NA |
Peripheral neuropathy—n(%) | 2 (1.9) | 1 (1.5) | 1 (2.6) | 1.0 |
Skeletal muscle injury—n(%) | 1 (0.9) | 0 | 1 (2.6) | 0.4 |
Parameter | Non-Severe (n = 67) | Severe (n = 39) | p-Value a |
---|---|---|---|
Cycle threshold (Ct)—(mean ± SD) | 28.6 ± 5.9 | 24.6 ± 7.6 | 0.01 * |
Total bilirubin—median (range) | 0.4 (0.0–5.0) | 0.5 (0.2–3.1) | 0.07 |
Direct bilirubin—median (range) | 0.1 (0.0–1.3) | 0.2 (0.1–2.1) | 0.02 * |
Indirect bilirubin—median (range) | 0.3 (0.0–4.1) | 0.3 (0.1–1.0) | 0.6 |
C-reactive protein (CRP)—(mean ± SD) | 97.9 ± 93.9 | 158.4 ± 111.2 | 0.005 * |
CRP Peak—median (range) | 140.5 (4.3–393.2) | 294.5 (136.0–7911.0) | 0.08 |
Alkaline phosphatase (ALP)—(mean ± SD) | 106.1 ± 223.6 | 104.1 ± 73.2 | 0.9 |
Alanine aminotransferase (ALT)—median (range) | 25.5 (5.0–249.0) | 24.0 (8.0–181.0) | 0.9 |
Creatinine kinase (CK)—median (range) | 73,000.0 (0.0–387.0) | 910,00.0 (17.0–2404.0) | 0.3 |
Gamma-glutamyl transferase (GGT)—median (range) | 60,500.0 (6.0–376.0) | 104.0 (18.0–746.0) | 0.03 * |
Lactate dehydrogenase (LDH)—(mean ± SD) | 355.2 ± 189.3 | 517.7 ± 323.5 | 0.02 * |
Aspartate aminotransferase (AST)—(mean ± SD) | 43.5 ± 30.2 | 49.2 ± 32.8 | 0.4 |
Blood urea nitrogen (BUN)—(mean ± SD) | 60.7 ± 51.3 | 73.4 ± 40.8 | 0.2 |
Creatinine—median (range) | 1000.0 (0.5–13.1) | 1300.0 (0.5; 7.1) | 0.01 * |
Ferritin—median (range) | 537.0 (39.0–3250.0) | 644.0 (41.0–7189.0) | 0.6 |
Ferritin peak—median (range) | 796.0 (60.0–22,063) | 1450.0 (12.9–70,183.0) | 0.0008 * |
Hemoglobin (Hb)—(mean ± SD) | 11.9 ± 2.6 | 10.99 ± 2.5 | 0.07 |
White blood cells count (WBC)—median (range) | 7400.0 (2200.0–29,390.0) | 8400.0 (468,200–8400.0) | 0.08 |
Basophiles—median (range) | 0.0 (0.0–170.0) | 0.0 (0.0–9364.0) | 0.5 |
Eosinophiles—median (range) | 0.0 (0.0–580.0) | 0.0 (0.0–9364.0) | 0.8 |
BANDS—median (range) | 0.0 (0.0–3250.0) | 0.0 (0.0–117050.0) | 0.3 |
Neutrophiles—median (range) | 5590.0 (3.1–51,255.0) | 7264.0 (3168.0–107,606.0) | 0.02 * |
Lymphocytes—(mean ± SD) | 1013.0 ± 731.2 | 1190.2 ± 954.6 | 0.3 |
Monocytes—median (range) | 416.0 (1.0–1281.0) | 510.0 (78.0–4682.0) | 0.2 |
Platelets—(mean ± SD) | 195,011.0 ± 126,933.0 | 157,103.0 ± 111,728.0 | 0.1 |
D dimer—(mean ± SD) | 4584.8 ± 7186.7 | 2691.8 ± 2526.1 | 0.1 |
D dimer peak—(mean ± SD) | 7004.0 ± 10,312.0 | 9630.0 ± 10,854.0 | 0.4 |
Parameter | Survivors (n = 68) | Non-Survivors (n = 38) | p-Value a |
---|---|---|---|
Cycle threshold (Ct)—(mean ± SD) | 29.0 ± 1.0 (n = 25) | 26.3 ± 1.8 (n = 22) | 0.2 |
Total bilirubin—median (range) | 0.5 (0.0–5.0) | 0.5 (0.2–3.1) | 0.2 |
Direct bilirubin—median (range) | 0.1 (0.0–0.9) | 0.2 (0.1–1.6) | 0.07 |
Indirect bilirubin—median (range) | 0.3 (0.0–4.1) | 0.3 (0.1–1.0) | 0.6 |
C-reactive protein (CRP)—(mean ± SD) | 55.8 (0.9–294.0) | 141.0 (1.2–460.0) | 0.0008 * |
CRP Peak—median (range) | 135.0 (4.3–393.2) | 315.0 (136.0–7911.0) | 0.0001 * |
Alkaline phosphatase (ALP)—(mean ± SD) | 70.0 (11.0–1874.0) | 85.0 (39.0–440.0) | 0.04 * |
Alanine aminotransferase (ALT)—median (range) | 25.0 (5.0–249.0) | 24.0 (8.0–181.0) | 0.9 |
Creatinine kinase (CK)—median (range) | 73.0 (18.0–387.0) | 91.0 (17.0–2404.0) | 0.5 |
Gamma-glutamyl transferase (GGT)—median (range) | 61.0 (6.0–376.0) | 101.5 (18.0–746.0) | 0.04 * |
Lactate dehydrogenase (LDH)—(mean ± SD) | 341.13 ± 155.9 | 514.8 ± 325.7 | 0.003 * |
Aspartate aminotransferase (AST)—(mean ± SD) | 42723.0 ± 30.3 | 50,289.0 ± 32.7 | 0.2 |
Creatinine—median (range) | 1 (0.5–13.1) | 1.2 (0.5–6.9) | 0.03 * |
Ferritin—median (range) | 515 (39.0–3250.0) | 691 (41.0–79,462.0) | 0.3 |
Ferritin peak—median (range) | 866.0 (60.0–3931.0) | 1692.5 (12.9–70,183.0) | 0.002 * |
Hemoglobin (Hb)—(mean ± SD) | 11.8 ± 2.7 | 11.1 ± 2.4 | 0.1 |
White blood cells count (WBC)—median (range) | 7900.0 (2900.0–21,860.0) | 8400.0 (13,200.0–468,200.0) | 0.2 |
Basophiles—median (range) | 0 (0.0–170.0) | 0 (0.0–9364.0) | 0.9 |
Eosinophiles—median (range) | 0 (0.0–580.0) | 0 (0.0–9364.0) | 0.9 |
Neutrophiles—median (range) | 5510.0 (3.1–51,255.0) | 7264.0 (3168.0–107,606.0) | 0.01 * |
Lymphocytes—(mean ± SD) | 770.0 (2.7–4428.0) | 980.0 (231.0–4682.0) | 0.7 |
Monocytes—median (range) | 416.0 (1.0–1920.0) | 488.0 (78.0–4682.0) | 0.6 |
Platelets—(mean ± SD) | 182,000.0 (129.0–482,000.0) | 161,000.0 (129.0–465,000.0) | 0.1 |
D dimer—(mean ± SD) | 1603.0 (1.1–34,507.0) | 1703.0 (14.1–8064.0) | 1.0 |
D dimer peak—(mean ± SD) | 2008.0 (1.6–50,000.0) | 6429.0 (255.0–48,436.0) | 0.01 * |
Parameter | Total (n = 106) | Non-Severe (n = 67) | Severe (n = 39) | p-Value a |
---|---|---|---|---|
COVID-19 wave 1—n(%) | 35 (33) | 22 (33) | 13 (33) | 1.0 |
COVID-19 wave 2—n(%) | 71 (67) | 45 (67) | 26 (66) | 1.0 |
Hospitalization time—(mean ± SD) | 21.8 ± 20.4 | 23.7 ± 23.9 | 18.6 ± 12.1 | 0.1 b |
Respiratory rate at admission—(mean ± SD) | 22.9 ± 5.6 | 21.9 ± 4.8 | 24.6 ± 6.6 | 0.03 *,b |
O2 at admission (%)—(mean ± SD) | 92 ± 0.06 | 90 ± 0.05 | 80 ± 0.08 | 0.03 * b |
Respiratory support days—(mean ± SD) | 10.2 ± 9.0 | 9.7 ± 10.8 | 10.8 ± 6.1 | 0.57 b |
Non-invasive ventilation 1—n(%) | 35 | 35 (52.2) | 0 | 0.0001 * |
Invasive ventilation 2—n(%) | 48 | 9 (13.4) | 39 (100) | 0.0001 * |
Without respiratory support—n(%) | 22 | 22 (32.8) | 0 | 0.0001 * |
Pneumonia (<10%)—n(%) | 1 (0.9) | 1 (1.5) | 0 | 1.0 |
Pneumonia (10–50%)—n(%) | 45 (42.0) | 31 (46.2) | 14 (35.9) | 0.31 |
Pneumonia (>50%)—n(%) | 9 (8.5) | 5 (7.5) | 4 (10.3) | 0.72 |
Hepatitis—n(%) | 24 (22.6) | 10 (14.9) | 14(35.9) | 0.01 * |
Acute renal injury—n(%) | 46 (43.3) | 13 (19.4) | 33 (86.8) | 0.0001 * |
Thrombotic event—n(%) | 11 (10.3) | 6 (8.9) | 5 (12.8) | 0.53 |
Heart failure—n(%) | 40 (37.7) | 2 (2.9) | 38 (97.4) | 0.0001 * |
SOFA (highest of 3)—median (range) | 10.2 (9.0–11.3) | 2.7 (2.2–3.3) | 12.4 (11.6–13.2) | 0.0001 *,b |
Characteristics | First Wave (n = 35) | Second Wave (n = 71) | p-Value | Total (n = 106) |
---|---|---|---|---|
Age—(mean ± SD) | 58.5 ± 18.5 | 64.9 ± 14.7 | 0.08 c | NA |
Cycle threshold (Ct)—(mean ± SD) | 29.21 ± 7.8 | 26.16 ± 6.5 | 0.051 c | NA |
Gender: Male—n(%) | 16 (45.7) | 36 (50.7) | 0.629 a | 52 (49.1) |
Female—n(%) | 19 (54.3) | 35 (49.3) | 54 (50.9) | |
Smoker: Yes—n(%) | 8 (22.9) | 21 (29.6) | 0.465 a | 29 (27.4) |
No—n(%) | 27 (77.1) | 50 (70.4) | 77 (72.6) | |
Pneumonia on chest radiography: None—n(%) | 22 (62.9) | 30 (42.3) | 0.091 a | 52 (49.0) |
10–50%—n(%) | 12 (34.2) | 33 (46.5) | 45 (42.5) | |
>50%—n(%) | 1 (2.9) | 8 (11.3) | 9 (8.5) | |
O2 support: None—n(%) | 12 (34.3) | 10 (14.1) | 0.037 a,* | 22 (20.8) |
Nasal catheter—n(%) | 8 (22.9) | 28 (39.4) | 36 (34.0) | |
Orotracheal intubation—n(%) | 15 (42.9) | 33 (46.5) | 48 (45.3) | |
Outcome: Survivor—n(%) | 22 (62.9) | 45 (63.4) | 0.958 a | 67 (63.2) |
Non-survivor—n(%) | 13 (37.1) | 26 (36.6) | 39 (36.8) | |
SOFA: <9 (mild to moderate)—n(%) | 22 (62.9) | 45 (63.4) | 0.958 a | 67 (63.2) |
>9 (severe)—n(%) | 13 (37.1) | 26 (36.6) | 39 (36.8) | |
Comorbidities | 27 (77.1) | 56 (78.9) | 0.839 a | 83 (78.3) |
Hypertension—n(%) | 27 (77.1) | 56 (78.9) | 0.839 a | 83 (78.3) |
Diabetes—n(%) | 11 (31.4) | 26 (36.6) | 0.598 a | 37 (34.9) |
Cardiovascular disease—n(%) | 10 (28.6) | 19 (26.8) | 0.844 a | 29 (27.4) |
Chronic kidney disease—n(%) | 14 (40.0) | 9 (12.7) | 0.001 a,* | 23 (21.7) |
Chronic pulmonary disease—n(%) | 8 (22.9) | 13 (18.3) | 0.581 a | 21 (19.8) |
Neurological disease—n(%) | 6 (17.1) | 12 (16.9) | 0.975 a | 18 (17.0) |
Liver disease—n(%) | 5 (14.3) | 7 (9.9) | 0.525 b | 12 (11.3) |
Immunodeficiency or immunosuppression—n(%) | 7 (20.0) | 4 (5.6) | 0.038 b,* | 11 (10.4) |
Cancer—n(%) | 4 (11.4) | 6 (8.5) | 0.722 b | 10 (9.4) |
Autoimmune disease—n(%) | 3 (8.6) | 5 (7.0) | 0.999 b | 8 (7.5) |
Obesity—n(%) | 0 | 6 (8.5) | 0.175 b | 6 (5.7) |
Thrombophilia—n(%) | 3 (8.6) | 2 (2.8) | 0.329 b | 5 (4.7) |
HIV/Aids—n(%) | 2 (5.7) | 0 | 0.107 b | 2 (1.9) |
Signs and Symptoms | First Wave (n = 35) | Second Wave (n = 71) | p-Value | Total (n = 106) |
---|---|---|---|---|
General | ||||
Age—(mean ± SD) | 58.5 ± 18.5 | 64.9 ± 14.7 | 0.08 c | NA |
Dyspnea—n(%) | 19 (54.3) | 41 (57.7) | 0.735 a | 60 (56.6) |
Cough—n(%) | 14 (40.0) | 44 (62.0) | 0.033 a,* | 58 (54.7) |
Fever—n(%) | 18 (51.4) | 30 (42.3) | 0.372 a | 48 (45.3) |
Malaise—n(%) | 12 (34.3) | 31 (43.7) | 0.355 a | 43 (40.6) |
Myalgia—n(%) | 5 (14.3) | 10 (14.1) | 0.999 b | 15 (14.2) |
Diarrhea—n(%) | 5 (14.3) | 8 (11.3) | 0.755 b | 13 (12.3) |
Emesis—n(%) | 4 (11.4) | 9 (12.7) | 0.999 b | 13 (12.3) |
Inappetence—n(%) | 3 (8.6) | 8 (11.3) | 0.669 a | 11 (10.4) |
Rhinorrhea—n(%) | 1 (2.9) | 4 (5.6) | 0.526 b | 5 (4.7) |
Sore throat—n(%) | 1 (2.9) | 2 (2.8) | 0.999 b | 3 (2.8) |
Arthralgia—n(%) | 1 (2.9) | 0 | 0.152 a | 1 (0.9) |
Central nervous system (CNS)—n(%) | 9 (25.7) | 21 (29.6) | 0.678 a | 30 (28.3) |
Headache—n(%) | 3 (8.6) | 13 (18.3) | 0.188 a | 16 (15.1) |
Impaired consciousness—n(%) | 6 (17.1) | 7 (9.9) | 0.348 b | 13 (12.3) |
Dizziness—n(%) | 0 | 4 (5.6) | 0.300 b | 4 (3.8) |
Seizure—n(%) | 2 (5.7) | 2 (2.8) | 0.597 b | 4 (3.8) |
Acute cerebrovascular disease—n(%) | 1 (2.9) | 2 (2.8) | 0.999 b | 3 (2.8) |
Peripheral nervous system (PNS)—n(%) | 4 (11.4) | 9 (12.7) | 0.999 b | 13 (12.3) |
Hypo/Ageusia—n(%) | 4 (11.4) | 5 (7.0) | 0.474 b | 9 (8.5) |
Hypo/Anosmia—n(%) | 3 (8.6) | 4 (5.6) | 0.682 b | 7 (6.6) |
Peripheral neuropathy—n(%) | 0 | 2 (2.8) | 0.999 b | 2 (1.9) |
Vision impairment—n(%) | 0 | 1 (1.4) | 0.999 b | 1 (0.9) |
Skeletal muscle injury—n(%) | 0 | 1 (1.4) | 0.999 b | 1 (0.9) |
Parameter | n | Mean ± SD (Median) | % of Exams out of the Normality | p-Value | |
---|---|---|---|---|---|
First Wave | Second Wave | ||||
Total bilirubin | 80 | 0.7 ± 0.74 (0.5) | 6.5 | 10.2 | 0.700 b |
Direct bilirubin | 80 | 0.27 ± 0.35 (0.1) | 64.5 | 81.6 | 0.085 a |
Indirect bilirubin | 80 | 0.43 ± 0.52 (0.3) | 3.2 | 6.1 | 0.999 b |
C-reactive protein (CRP) | 104 | 283.72 ± 766.28 (215.20) | 100 | 100 | NA |
Alkaline phosphatase (ALP) | 105 | 105.36 ± 182.29 (79) | 8.6 | 8.6 | 0.999 b |
Alanine aminotransferase (ALT) | 105 | 34.85 ± 35.41 (24) | 20.0 | 31.4 | 0.217 a |
Aspartate aminotransferase (AST) | 105 | 45.63 ± 31.02 (38) | 40.0 | 61.4 | 0.038 a,* |
Creatinine kinase (CK) | 61 | 167.72 ± 323.71 (82) | 28.6 | 23.1 | 0.639 a |
Gamma-glutamyl transferase (GGT) | 105 | 115.45 ± 121.75 (66) | 48.6 | 42.9 | 0.579 a |
Lactate dehydrogenase (LDH) | 75 | 415.88 ± 258.28 (337) | 66.7 | 75.0 | 0.440 a |
Blood urea nitrogen (BUN) | 106 | 65.35 ± 47.92 (48.50) | 97.1 | 91.5 | 0.421 b |
Creatinine | 106 | 2.04 ± 2.58 (1.0) | 42.9 | 25.4 | 0.067 a |
Ferritin | 101 | 5064.03 ± 13,160.41 (977) | 82.4 | 95.5 | 0.059 b |
Hemoglobin (Hb) | 106 | 11.58 ± 2.61 (11.95) | 68.6 | 46.5 | 0.032 a,* |
Leukocytes | 106 | 13,566.13 ± 44,844.40 (7900) | 28.6 | 36.6 | 0.411 a |
Basophiles | 106 | 96.85 ± 909.00 (0) | 0 | 1.4 | 0.999 b |
Eosinophiles | 106 | 138.62 ± 912.24 (0) | 0 | 2.8 | 0.999 b |
Metamyeolocytes | 105 | 493.30 ± 5025.88 (0) | NA | NA | NA |
Myelocytes | 104 | 1305.56 ± 13,314.12 (0) | NA | NA | NA |
BANDS | 105 | 1290.25 ± 11,415.48 (0) | 22.9 | 16.9 | 0.461 a |
Neutrophiles | 106 | 8701.98 ± 11,426.54 (6332.5) | 31.4 | 40.8 | 0.347 a |
Lymphocytes | 106 | 1148.53 ± 894.78 (952) | 40.0 | 45.1 | 0.620 a |
Monocytes | 106 | 564.76 ± 548.40 (462) | 8.6 | 16.9 | 0.376 b |
Platelets | 106 | 183,287.63 ± 121,222.48 (179,000) | 40.0 | 40.8 | 0.934 a |
D dimer | 60 | 7950.37 ± 10,470.33 (4076) | 92.6 | 97.0 | 0.583 b |
Complication | First Wave % (n) | Second Wave %(n) | p-Value | Total % (n) |
---|---|---|---|---|
Acute kidney injury | 34.3 (12/35) | 48.6 (34/70) | 0.164 a | 43.8 (46/105) |
Acute myocardial infarction | 40.0 (14/35) | 37.1 (26/70) | 0.776 a | 37.7 (40/105) |
Acute hepatitis | 8.6 (3/35) | 29.6 (21/71) | 0.015 a,* | 22.6 (24/106) |
Acute thrombotic event | 5.7 (2/35) | 12.9 (9/70) | 0.329 b | 10.5 (11/105) |
Medicines | First Wave % (n) | Second Wave %(n) | p-Value | Total % (n) |
Corticosteroid | 37.1 (13/35) | 83.1 (59/71) | <0.001 a,* | 67.9 (72/106) |
Anticoagulant | 0 (0/35) | 5.6 (4/71) | 0.300 b | 3.8 (4/106) |
Interferon | 2.9 (1/35) | 0 (0/71) | 0.330 b | 0.9 (1/106) |
Antiviral | 2.9 (1/35) | 0 (0/71) | 0.330 b | 0.9 (1/106) |
Antibiotic | 5.7 (2/35) | 0 (0/71) | 0.107 b | 1.9 (2/106) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amado, L.A.; Coelho, W.L.d.C.N.P.; Alves, A.D.R.; Carneiro, V.C.d.S.; Moreira, O.d.C.; de Paula, V.S.; Lemos, A.S.; Duarte, L.A.; Gutman, E.G.; Fontes-Dantas, F.L.; Gonçalves, J.P.d.C.; Ramos, C.H.F.; Ramos Filho, C.H.F.; Cavalcanti, M.G.; Amaro, M.P.; Kader, R.L.; Medronho, R.d.A.; Sarmento, D.J.d.S.; Alves-Leon, S.V. Clinical Profile and Risk Factors for Severe COVID-19 in Hospitalized Patients from Rio de Janeiro, Brazil: Comparison between the First and Second Pandemic Waves. J. Clin. Med. 2023, 12, 2568. https://doi.org/10.3390/jcm12072568
Amado LA, Coelho WLdCNP, Alves ADR, Carneiro VCdS, Moreira OdC, de Paula VS, Lemos AS, Duarte LA, Gutman EG, Fontes-Dantas FL, Gonçalves JPdC, Ramos CHF, Ramos Filho CHF, Cavalcanti MG, Amaro MP, Kader RL, Medronho RdA, Sarmento DJdS, Alves-Leon SV. Clinical Profile and Risk Factors for Severe COVID-19 in Hospitalized Patients from Rio de Janeiro, Brazil: Comparison between the First and Second Pandemic Waves. Journal of Clinical Medicine. 2023; 12(7):2568. https://doi.org/10.3390/jcm12072568
Chicago/Turabian StyleAmado, Luciane Almeida, Wagner Luis da Costa Nunes Pimentel Coelho, Arthur Daniel Rocha Alves, Vanessa Cristine de Souza Carneiro, Otacilio da Cruz Moreira, Vanessa Salete de Paula, Andreza Salvio Lemos, Larissa Araujo Duarte, Elisa Gouvea Gutman, Fabricia Lima Fontes-Dantas, João Paulo da Costa Gonçalves, Carlos Henrique Ferreira Ramos, Carlos Henrique Ferreira Ramos Filho, Marta Guimarães Cavalcanti, Marisa Pimentel Amaro, Rafael Lopes Kader, Roberto de Andrade Medronho, Dmitry José de Santana Sarmento, and Soniza Vieira Alves-Leon. 2023. "Clinical Profile and Risk Factors for Severe COVID-19 in Hospitalized Patients from Rio de Janeiro, Brazil: Comparison between the First and Second Pandemic Waves" Journal of Clinical Medicine 12, no. 7: 2568. https://doi.org/10.3390/jcm12072568