Inadequate Physical Activity Is Associated with Worse Physical Function in a Sample of COVID-19 Survivors with Post-Acute Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Data Collection
2.3. Physical Activity Levels
2.4. Hematological Parameters
2.5. Assessment of Muscle Strength and Physical Performance
2.6. Self-Rated Health
2.7. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- -
- Gastroenterology team: Porcari Serena, Settanni Carlo Romano
- -
- Geriatric team: Benvenuto Francesca, Bramato Giulia, Brandi Vincenzo, Carfì Angelo, Ciciarello Francesca, Fabrizi Sofia, Galluzzo Vincenzo, Lo Monaco Maria Rita, Martone Anna Maria, Marzetti Emanuele, Napolitano Carmen, Pagano Francesco Cosimo, Pais Cristina, Rocchi Sara, Rota Elisabetta, Salerno Andrea, Tosato Matteo, Tritto Marcello, Zazzara Maria Beatrice, Calvani Riccardo, Catalano Lucio, Picca Anna, Savera Giulia, Damiano Francesco Paolo, Rocconi Alessandra, Galliani Alessandro, Spaziani Giovanni, Tupputi Salvatore, Cocchi Camilla, Pirone Flavia, D’Ignazio Federica, Cacciatore Stefano, Recupero Carla, Massaro Claudia, Elmi Daniele, Simoni Sofia, Ambrosio Fiorella, Gava Giordana, Tagliacozzi Elena, Ragozzino Rosa, Notari Maria Vittoria, Labriola Rosangela, Bulla Modestina, Giordano Giulia, Agostino Clara
- -
- Infectious disease team: Cauda Roberto, Tamburrini Enrica, Borghetti A, Di Giambenedetto Simona, Murri Rita, Cingolani Antonella, Ventura Giulio, Taddei E, Moschese D, Ciccullo A, Dusina A, Seguiti C
- -
- Internal Medicine team: Stella Leonardo, Addolorato Giovanni, Franceschi Francesco, Mingrone Gertrude, Zocco MA
- -
- Microbiology team: Sanguinetti Maurizio, Cattani Paola, Marchetti Simona, Posteraro Brunella, Sali M
- -
- Neurology team: Bizzarro Alessandra, Lauria Alessandra
- -
- Ophthalmology team: Rizzo Stanislao, Savastano Maria Cristina, Gambini G, Cozzupoli GM, Culiersi C
- -
- Otolaryngology team: Passali Giulio Cesare, Paludetti Gaetano, Galli Jacopo, Crudo F, Di Cintio G, Longobardi Y, Tricarico L, Santantonio M
- -
- Pediatric team: Buonsenso Danilo, Valentini P, Pata D, Sinatti D, De Rose C
- -
- Pneumology team: Richeldi Luca, Lombardi Francesco, Calabrese A, Leone Paolo Maria, Calvello Maria Rosaria, Intini Enrica, Montemurro Giuliano
- -
- Psychiatric team: Sani Gabriele, Janiri Delfina, Simonetti Alessio, Giuseppin G, Molinaro M, Modica M
- -
- Radiology team: Natale Luigi, Larici Anna Rita, Marano Riccardo
- -
- Rheumatology team: Paglionico Annamaria, Petricca Luca, Varriano V, Gigante Luca, Natalello G, Fedele AL, Lizzio MM, Tolusso B, Di Mario Clara, Alivernini S
- -
- Vascular team: Santoliquido Angelo, Santoro Luca, Di Giorgio Angela, Nesci Antonio, Popolla V
References
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wahid, A.; Manek, N.; Nichols, M.; Kelly, P.; Foster, C.; Webster, P.; Kaur, A.; Smith, C.F.; Wilkins, E.; Rayner, M.; et al. Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e002495. [Google Scholar] [CrossRef] [PubMed][Green Version]
- National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP). Physical Activity Prevents Chronic Disease; National Center for Chronic Disease Prevention and Health Promotion: Atlanta, GA, USA, 2020.
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, l4570. [Google Scholar] [CrossRef][Green Version]
- Bayer, M.L.; Hoegberget-Kalisz, M.; Jensen, M.H.; Olesen, J.L.; Svensson, R.B.; Couppé, C.; Boesen, M.; Nybing, J.D.; Kurt, E.Y.; Magnusson, S.P.; et al. Role of tissue perfusion, muscle strength recovery, and pain in rehabilitation after acute muscle strain injury: A randomized controlled trial comparing early and delayed rehabilitation. Scand. J. Med. Sci. Sport. 2018, 28, 2579–2591. [Google Scholar] [CrossRef]
- Jonsson, M.; Hurtig-Wennlöf, A.; Ahlsson, A.; Vidlund, M.; Cao, Y.; Westerdahl, E. In-hospital physiotherapy improves physical activity level after lung cancer surgery: A randomized controlled trial. Physiotherapy 2019, 105, 434–441. [Google Scholar] [CrossRef][Green Version]
- McNarry, M.A.; Berg, R.M.; Shelley, J.; Hudson, J.; Saynor, Z.L.; Duckers, J.; Lewis, K.; Davies, G.A.; Mackintosh, K.A. Inspiratory muscle training enhances recovery post-COVID-19: A randomised controlled trial. Eur. Respir. J. 2022, 60, 2103101. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Li, G.; Xiao, J. Exercise Regulates the Immune System. Adv. Exp. Med. Biol. 2020, 1228, 395–408. [Google Scholar] [PubMed]
- Chastin, S.F.M.; Abaraogu, U.; Bourgois, J.G.; Dall, P.M.; Darnborough, J.; Duncan, E.; Dumortier, J.; Pavón, D.J.; McParland, J.; Roberts, N.J.; et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sport. Med. 2021, 51, 1673–1686. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; Austin, M.D.; Sha, W. Upper respiratory tract infection is reduced in physically fit and active adults. Br. J. Sport. Med. 2011, 45, 987–992. [Google Scholar] [CrossRef][Green Version]
- Wong, C.-M.; Lai, H.-K.; Ou, C.-Q.; Ho, S.-Y.; Chan, K.-P.; Thach, T.-Q.; Yang, L.; Chau, Y.-K.; Lam, T.-H.; Hedley, A.J.; et al. Is exercise protective against influenza-associated mortality? PLoS ONE 2008, 3, e2108. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef]
- Pérez-Gisbert, L.; Torres-Sánchez, I.; Ortiz-Rubio, A.; Calvache-Mateo, A.; López-López, L.; Cabrera-Martos, I.; Valenza, M.C. Effects of the COVID-19 Pandemic on Physical Activity in Chronic Diseases: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 12278. [Google Scholar] [CrossRef] [PubMed]
- Zaccagni, L.; Toselli, S.; Barbieri, D. Physical Activity during COVID-19 Lockdown in Italy: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6416. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Catelan, D.; Pellegrini-Giampietro, D.E.; Petri, C.; Scaletti, C.; Gulisano, M. Changes in physical activity levels, eating habits and psychological well-being during the Italian COVID-19 pandemic lockdown: Impact of socio-demographic factors on the Florentine academic population. PLoS ONE 2021, 16, e0252395. [Google Scholar] [CrossRef]
- Sallis, R.; Young, D.R.; Tartof, S.Y.; Sallis, J.F.; Sall, J.; Li, Q.; Smith, G.N.; A Cohen, D. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: A study in 48 440 adult patients. Br. J. Sport. Med. 2021, 55, 1099–1105. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, J.; Moon, S.Y.; Jin, H.Y.; Yang, J.M.; Ogino, S.; Song, M.; Hong, S.H.; Ghayda, R.A.; Kronbichler, A.; et al. Physical activity and the risk of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related mortality in South Korea: A nationwide cohort study. Br. J. Sport. Med. 2022, 56, 901–912. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alawna, M. The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: A randomized control trial. J. Bodyw. Mov. Ther. 2021, 28, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Carfì, A.; Bernabei, R.; Landi, F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Delbressine, J.; Machado, F.; Goërtz, Y.; Van Herck, M.; Meys, R.; Houben-Wilke, S.; Burtin, C.; Franssen, F.; Spies, Y.; Vijlbrief, H.; et al. The Impact of Post-COVID-19 Syndrome on Self-Reported Physical Activity. Int. J. Environ. Res. Public Health 2021, 18, 6017. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran. J. Med. Sci. 2021, 46, 428–436. [Google Scholar] [PubMed]
- Ahmed, H.; Patel, K.; Greenwood, D.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00063. [Google Scholar] [CrossRef]
- Gemelli Against COVID-19 Post-Acute Care Study Group. Post-COVID-19 global health strategies: The need for an interdisciplinary approach. Aging Clin. Exp. Res. 2020, 32, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Criteria for Releasing COVID-19 Patients from Isolation. 2020. Available online: https://www.who.int/news-room/commentaries/detail/criteria-for-releasing-covid-19-patients-from-isolation (accessed on 17 June 2020).
- Tajbakhsh, A.; Gheibi Hayat, S.M.; Taghizadeh, H.; Akbari, A.; Inabadi, M.; Savardashtaki, A.; Johnston, T.P.; Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev. Anti. Infect. Ther. 2021, 19, 345–357. [Google Scholar] [CrossRef]
- Wang, F.; Kream, R.M.; Stefano, G.B. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med. Sci. Monit. 2020, 26, e928996-1. [Google Scholar] [CrossRef] [PubMed]
- Aghagoli, G.; Gallo Marin, B.; Katchur, N.J.; Chaves-Sell, F.; Asaad, W.F.; Murphy, S.A. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review. Neurocrit. Care 2021, 34, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Amin, M. COVID-19 and the liver: Overview. Eur. J. Gastroenterol. Hepatol. 2020, 33, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Galluzzo, V.; Ciciarello, F.; Tosato, M.; Zazzara, M.B.; Pais, C.; Savera, G.; Calvani, R.; Picca, A.; Marzetti, E.; Landi, F. Association between vitamin D status and physical performance in COVID-19 survivors: Results from the Gemelli against COVID-19 post-acute care project. Mech. Ageing Dev. 2022, 205, 111684. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; US Department of Health and Human Services: Washington, DC, USA, 2018.
- Landi, F.; Calvani, R.; Martone, A.M.; Salini, S.; Zazzara, M.B.; Candeloro, M.; Coelho-Junior, H.J.; Tosato, M.; Picca, A.; Marzetti, E. Normative values of muscle strength across ages in a “real world” population: Results from the longevity check-up 7+ project. J. Cachexia Sarcopenia Muscle 2020, 11, 1562–1569. [Google Scholar] [CrossRef]
- Briand, J.; Behal, H.; Chenivesse, C.; Wémeau-Stervinou, L.; Wallaert, B. The 1-minute sit-to-stand test to detect exercise-induced oxygen desaturation in patients with interstitial lung disease. Ther. Adv. Respir. Dis. 2018, 12, 1753466618793028. [Google Scholar] [CrossRef]
- Zanini, A.; Aiello, M.; Cherubino, F.; Zampogna, E.; Chetta, A.; Azzola, A.; Spanevello, A. The one repetition maximum test and the sit-to-stand test in the assessment of a specific pulmonary rehabilitation program on peripheral muscle strength in COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2423–2430. [Google Scholar] [CrossRef][Green Version]
- Guyatt, G.H.; Sullivan, M.J.; Thompson, P.J.; Fallen, E.L.; Pugsley, S.O.; Taylor, D.W.; Berman, L.B. The 6-minute walk: A new measure of exercise capacity in patients with chronic heart failure. Can. Med. Assoc. J. 1985, 132, 919–923. [Google Scholar] [PubMed]
- de Boer, A.G.; van Lanschot, J.J.; Stalmeier, P.F.; van Sandick, J.W.; Hulscher, J.B.; de Haes, J.C.; Sprangers, M.A. Is a single-item visual analogue scale as valid, reliable and responsive as multi-item scales in measuring quality of life? Qual. Life Res. 2004, 13, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Prete, M.; Luzzetti, A.; Augustin, L.S.A.; Porciello, G.; Montagnese, C.; Calabrese, I.; Ballarin, G.; Coluccia, S.; Patel, L.; Vitale, S.; et al. Changes in Lifestyle and Dietary Habits during COVID-19 Lockdown in Italy: Results of an Online Survey. Nutrients 2021, 13, 1923. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef] [PubMed]
- Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Shaar, B.A.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha, R.M.; et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 657–666. [Google Scholar] [CrossRef]
- Sandler, C.X.; Wyller, V.B.B.; Moss-Morris, R.; Buchwald, D.; Crawley, E.; Hautvast, J.; Katz, B.Z.; Knoop, H.; Little, P.; Taylor, R.; et al. Long COVID and Post-infective Fatigue Syndrome: A Review. Open Forum Infect. Dis. 2021, 8, ofab440. [Google Scholar] [CrossRef]
- Stengel, A.; Malek, N.; Zipfel, S.; Goepel, S. Long Haulers—What Is the Evidence for Post-COVID Fatigue? Front. Psychiatry 2022, 12, 677934. [Google Scholar] [CrossRef]
- Tosato, M.; Calvani, R.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Júnior, H.J.; Di Giorgio, A.; Di Mario, C.; Gervasoni, J.; Gremese, E.; et al. Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14, 4984. [Google Scholar] [CrossRef]
- Galluzzo, V.; Zazzara, M.B.; Ciciarello, F.; Savera, G.; Pais, C.; Calvani, R.; Picca, A.; Marzetti, E.; Landi, F.; Tosato, M.; et al. Fatigue in Covid-19 survivors: The potential impact of a nutritional supplement on muscle strength and function. Clin. Nutr. ESPEN 2022, 51, 215–221. [Google Scholar] [CrossRef]
- Landi, F.; Martone, A.M.; Ciciarello, F.; Galluzzo, V.; Savera, G.; Calvani, R.; Picca, A.; Marzetti, E.; Tosato, M.; On behalf of Gemelli Against COVID-19 Post-Acute Care Team. Effects of a New Multicomponent Nutritional Supplement on Muscle Mass and Physical Performance in Adult and Old Patients Recovered from COVID-19: A Pilot Observational Case–Control Study. Nutrients 2022, 14, 2316. [Google Scholar] [CrossRef]
- Wright, J.; Astill, S.L.; Sivan, M. The Relationship between Physical Activity and Long COVID: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 5093. [Google Scholar] [CrossRef]
- Lombardo, M.D.M.; Foppiani, A.; Peretti, G.M.; Mangiavini, L.; Battezzati, A.; Bertoli, S.; Boneschi, F.M.; Zuccotti, G.V. Long-Term Coronavirus Disease 2019 Complications in Inpatients and Outpatients: A One-Year Follow-up Cohort Study. Open Forum Infect. Dis. 2021, 8, ofab384. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; vanDellen, M.R.; Cooper, J.A. Longitudinal Weight Gain and Related Risk Behaviors during the COVID-19 Pandemic in Adults in the US. Nutrients 2021, 13, 671. [Google Scholar] [CrossRef] [PubMed]
- Sardeli, A.V.; Tomeleri, C.M.; Cyrino, E.S.; Fernhall, B.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Effect of resistance training on inflammatory markers of older adults: A meta-analysis. Exp. Gerontol. 2018, 111, 188–196. [Google Scholar] [CrossRef]
- Tir, A.M.D.; Labor, M.; Plavec, D. The effects of physical activity on chronic subclinical systemic inflammation. Arch. Ind. Hyg. Toxicol. 2017, 68, 276–286. [Google Scholar] [CrossRef][Green Version]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar]
- Schipper, H.S.; Prakken, B.; Kalkhoven, E.; Boes, M. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends Endocrinol. Metab. 2012, 23, 407–415. [Google Scholar] [CrossRef]
- Hansen, A.L.; Ambroziak, G.; Thornton, D.M.; Mundt, J.C.; Kahn, R.E.; Dahl, L.; Waage, L.; Kattenbraker, D.; Grung, B. Vitamin D Status and Physical Activity during Wintertime in Forensic Inpatients-A Randomized Clinical Trial. Nutrients 2021, 13, 3510. [Google Scholar] [CrossRef]
- Levis, S.; Gómez-Marín, O. Vitamin D and Physical Function in Sedentary Older Men. J. Am. Geriatr. Soc. 2017, 65, 323–331. [Google Scholar] [CrossRef]
- Bislev, L.S.; Langagergaard Rødbro, L.; Rolighed, L.; Sikjaer, T.; Rejnmark, L. Effects of Vitamin D3 Supplementation on Muscle Strength, Mass, and Physical Performance in Women with Vitamin D Insufficiency: A Randomized Placebo-Controlled Trial. Calcif. Tissue Int. 2018, 103, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Polly, P.; Tan, T.C. The role of vitamin D in skeletal and cardiac muscle function. Front. Physiol. 2014, 5, 145. [Google Scholar] [CrossRef][Green Version]
- Samefors, M.; Tengblad, A.; Östgren, C.J. Sunlight Exposure and Vitamin D Levels in Older People—An Intervention Study in Swedish Nursing Homes. J. Nutr. Health Aging 2020, 24, 1047–1052. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; McCluskey, P.; O’Brien, K.; Dowds, J.; Laird, E.; Bannan, C.; Bourke, N.M.; Cheallaigh, C.N.; Byrne, D.G.; et al. Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection. Nutrients 2021, 13, 2430. [Google Scholar] [CrossRef]
- Bohannon, R.W. Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: A systematic review. J. Eval. Clin. Pract. 2017, 23, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Falck, R.S.; Davis, J.C.; Best, J.R.; Crockett, R.A.; Liu-Ambrose, T. Impact of exercise training on physical and cognitive function among older adults: A systematic review and meta-analysis. Neurobiol. Aging 2019, 79, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle Strength and Physical Performance in Patients Without Previous Disabilities Recovering From COVID-19 Pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef]
- Martone, A.M.; Tosato, M.; Ciciarello, F.; Galluzzo, V.; Zazzara, M.B.; Pais, C.; Savera, G.; Calvani, R.; Marzetti, E.; Robles, M.C.; et al. Sarcopenia as potential biological substrate of long COVID-19 syndrome: Prevalence, clinical features, and risk factors. J. Cachexia Sarcopenia Muscle 2022, 13, 1974–1982. [Google Scholar] [CrossRef]
- Awick, E.A.; Ehlers, D.K.; Aguiñaga, S.; Daugherty, A.M.; Kramer, A.F.; McAuley, E. Effects of a randomized exercise trial on physical activity, psychological distress and quality of life in older adults. Gen. Hosp. Psychiatry 2017, 49, 44–50. [Google Scholar] [CrossRef]
- Groessl, E.J.; Kaplan, R.M.; Rejeski, W.J.; Katula, J.A.; Glynn, N.W.; King, A.C.; Anton, S.D.; Walkup, M.; Lu, C.-J.; Reid, K.; et al. Physical Activity and Performance Impact Long-term Quality of Life in Older Adults at Risk for Major Mobility Disability. Am. J. Prev. Med. 2019, 56, 141–146. [Google Scholar] [CrossRef]
- Tosato, M.; Ciciarello, F.; Zazzara, M.B.; Janiri, D.; Pais, C.; Cacciatore, S.; Montenero, R.; Leone, M.S.; Chisci, E.; Picca, A.; et al. Lifestyle Changes and Psychological Well-Being in Older Adults During COVID-19 Pandemic. Clin. Geriatr. Med. 2022, 38, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Notarte, K.I.; Peligro, P.J.; Velasco, J.V.; Ocampo, M.J.; Henry, B.M.; Arendt-Nielsen, L.; Torres-Macho, J.; Plaza-Manzano, G. Long-COVID Symptoms in Individuals Infected with Different SARS-CoV-2 Variants of Concern: A Systematic Review of the Literature. Viruses 2022, 14, 2629. [Google Scholar] [CrossRef] [PubMed]
Physical Activity Level | |||||
---|---|---|---|---|---|
Total Sample (n = 1846) | Inactive (n = 873) | Formerly Active (n = 458) | Active (n = 515) | p for Trend | |
General and clinical characteristics | |||||
Age (years) | 55.2 ± 14.4 | 56.3 ± 14.4 | 53.6 ± 14.6 | 54.6 ± 14.0 | 0.02 |
Gender | <0.001 | ||||
Male | 987 (53) | 449 (51) | 217 (47) | 321 (62) | |
Female | 859 (47) | 424 (49) | 241 (53) | 194 (38) | |
Education (years) | 13.9 ± 4.4 | 13.6 ± 5.2 | 12.5 ± 3.4 | 14.8 ± 3.8 | 0.65 |
Marital status | 0.02 | ||||
Married | 1095 (59) | 539 (62) | 247 (54) | 309 (60) | |
In other type of relationship | 104 (6) | 51 (6) | 32 (7) | 21 (4) | |
Divorced/Separated | 239 (13) | 103 (11.5) | 64 (14) | 72 (14) | |
Widowed | 119 (6) | 60 (7) | 28 (6) | 31 (6) | |
Single | 289 (16) | 120 (13.5) | 87 (19) | 82 (16) | |
Cohabitation status | 0.01 | ||||
Alone | 256 (13.5) | 96 (11) | 78 (17) | 82 (16) | |
With partner and sons | 788 (42.5) | 384 (44) | 192 (42) | 212 (41) | |
With only the partner | 517 (28) | 244 (28) | 124 (27) | 149 (29) | |
With only the sons | 142 (8) | 79 (9) | 27 (6) | 36 (7) | |
With parents | 93 (5) | 35 (4) | 32 (7) | 26 (5) | |
With brothers | 9 (0.5) | 9 (1) | 0 | 0 | |
With other relatives | 14 (1) | 9 (1) | 0 | 5 (1) | |
With others (not relatives) | 27 (1.5) | 17 (2) | 5 (1) | 5 (1) | |
Number of kids | 1.55 ± 1.06 | 1.63 ± 1.04 | 1.48 ± 1.08 | 1.47 ± 1.10 | 0.05 |
Occupational status | <0.001 | ||||
Employed | 1263 (68) | 585 (67) | 312 (68) | 366 (71) | |
Unemployed | 198 (11) | 83 (9.5) | 41 (9) | 74 (14) | |
Retired | 336 (18) | 183 (21) | 87 (19) | 66 (13) | |
Other | 49 (3) | 22 (2.5) | 18 (4) | 9 (2) | |
Housewife | 99 (5.5) | 65 (7.5) | 16 (3.5) | 18 (3.5) | |
Hypertension | 612 (33) | 332 (38) | 142 (23) | 138 (23) | <0.001 |
Heart failure | 39 (2) | 28 (3) | 6 (1) | 5 (1) | 0.008 |
Diabetes | 180 (10) | 104 (12) | 34 (7) | 42 (8) | 0.01 |
Renal failure | 42 (2) | 28 (3) | 9 (2) | 5 (1) | 0.02 |
COPD | 126 (7) | 86 (10) | 15 (4) | 24 (5) | <0.001 |
Cancer | 29 (2) | 13 (2) | 6 (1) | 10 (2) | 0.70 |
BMI (kg/m2) | 26.5 ± 4.8 | 27.5 ± 5.2 | 25.9 ± 4.5 | 25.5 ± 3.9 | <0.001 |
Severity of COVID-19 during acute phase | |||||
Home | 786 (43) | 347 (40) | 224 (49) | 215 (42) | 0.01 |
Hospital—no O2 support | 203 (11) | 97 (11) | 49 (11) | 57 (11) | |
Hospital—O2 support | 394 (21) | 179 (21) | 90 (20) | 125 (24) | |
Hospital—NIV, CPAP | 355 (19) | 186 (21) | 75 (16) | 94 (19) | |
Hospital—Invasive Ventilation | 108 (6) | 64 (7) | 20 (4) | 24 (4) | |
Length of hospital stay | 19.2 ± 12.3 | 19.8 ± 12.3 | 18.4 ± 12.4 | 18.7 ± 12.3 | 0.30 |
Persistent symptoms after COVID-19 | |||||
Fatigue | 1164 (63) | 567 (65) | 298 (65) | 299 (58) | <0.001 |
Arthralgia | 645 (35) | 297 (34) | 188 (41) | 160 (31) | <0.001 |
Myalgia | 649 (35) | 306 (35) | 188 (41) | 155 (30) | <0.001 |
Dyspnea | 1205 (65) | 585 (67) | 321 (70) | 299 (58) | <0.001 |
Hematological parameters | |||||
Albumin | 42.6 ± 3.0 | 42.2 ± 3.1 | 42.8 ± 3.1 | 43.0 ± 2.8 | <0.001 |
Hemoglobin | 14.1 ± 1.4 | 14.1 ± 1.5 | 14.0 ± 1.4 | 14.3 ± 1.4 | <0.01 |
Vitamin D | 24.6 ± 11.7 | 22.5 ± 11.1 | 25.7 ± 12.0 | 27.1 ± 11.9 | <0.001 |
C-reactive protein | 2.9 ± 6.0 | 3.5 ± 6.6 | 2.8 ± 5.7 | 2.1 ± 5.3 | <0.001 |
Unadjusted | Adjusted * | |||||
---|---|---|---|---|---|---|
Inactive (n = 873) | Formerly Active (n = 458) | Active (n = 515) | Inactive (n = 873) | Formerly Active (n = 458) | Active (n = 515) | |
Physical performance measures | ||||||
Male | ||||||
Six-minute walking test (m) | 516.8 (6.48) | 543.2 (7.51) | 555.4 (7.14) # | 532.5 (5.61) | 534.3 (7.47) | 549.7 (6.52) ^ |
Chair stand test | 25.1 (0.41) | 25.4 (0.65) | 27.6 (0.54) # | 25.6 (0.42) | 25.3 (0.59) | 27.2 (0.49) § |
Female | ||||||
Six-minute walking test (m) | 490.3 (7.22) | 519.5 (6.33) | 526.4 (7.91) # | 506.5 (5.40) | 511.9 (6.19) | 524.3 (7.95) ^ |
Chair stand test | 23.4 (0.46) | 25.3 (0.58) | 26.1 (0.79) # | 24.0 (0.51) | 24.7 (0.64) | 25.8 (0.70) ^ |
Muscle strength measure | ||||||
Male | ||||||
Handgrip Strength (kg) | 35.1 (0.55) | 35.6 (0.71) | 37.5 (0.70) § | 35.6 (0.55) | 35.7 (0.75) | 37.4 (0.64) ^ |
Female | ||||||
Handgrip Strength (kg) | 20.6 (0.34) | 21.1 (0.41) | 23.5 (0.59) # | 20.9 (0.39) | 21.7 (0.46) | 23.0 (0.54) # |
Self-rated health | ||||||
Male | ||||||
Visual Analogue Scale | 82.7 (0.58) | 85.3 (0.79) | 87.4 (0.59) # | 83.0 (0.59) | 84.9 (0.81) | 86.5 (0.71) # |
Female | ||||||
Visual Analogue Scale | 79.6 (0.76) | 84.0 (0.83) | 84.5 (0.49) # | 80.1 (0.78) | 83.5 (0.98) | 84.1 (1.12) # |
Unadjusted | Adjusted * | |||||
---|---|---|---|---|---|---|
Inactive (n = 873) | Formerly Active (n = 458) | Active (n = 515) | Inactive (n = 873) | Formerly Active (n = 458) | Active (n = 515) | |
Physical performance measures | ||||||
<65 years | ||||||
Six-minute walking test (m) | 529.9 (4.19) | 549.1 (4.28) | 563.1 (5.59) # | 541.7 (3.90) | 542.8 (4.77) | 560.2 (5.02) # |
Chair stand test | 25.5 (0.33) | 26.4 (0.45) | 28.1 (0.51) # | 26.0 (0.36) | 26.1 (0.48) | 27.6 (0.45) # |
≥65 years | ||||||
Six-minute walking test (m) | 394.3 (12.9) | 443.7 (13.2) | 479.7 (11.1) # | 425.0 (12.1) | 428.8 (16.1) | 457.1 (15.4) ^ |
Chair stand test | 19.7 (0.66) | 21.1 (1.06) | 23.1 (0.84) § | 20.3 (0.76) | 21.4 (1.07) | 23.1 (0.92) ^ |
Muscle strength measure | ||||||
<65 years | ||||||
Handgrip Strength (kg) | 29.1 (0.49) | 28.6 (0.64) | 33.8 (0.69) # | 29.4 (0.49) | 29.2 (0.64) | 33.3 (0.63) # |
≥65 years | ||||||
Handgrip Strength (kg) | 23.8 (0.72) | 25.6 (0.87) | 26.6 (0.85) ^ | 24.9 (0.72) | 25.2 (0.95) | 25.4 (0.88) ° |
Self-rated health | ||||||
<65 years | ||||||
Visual Analogue Scale | 82.1 (0.54) | 85.6 (0.62) | 87.1 (0.56) # | 82.5 (0.54) | 85.2 (0.70) | 85.9 (0.70) # |
≥65 years | ||||||
Visual Analogue Scale | 78.5 (0.98) | 81.2 (1.36) | 83.5 (1.07) # | 78.4 (1.07) | 81.2 (1.47) | 84.1 (1.38) # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzo, V.; Zazzara, M.B.; Ciciarello, F.; Tosato, M.; Martone, A.M.; Pais, C.; Savera, G.; Calvani, R.; Picca, A.; Marzetti, E.; Landi, F.; on behalf of Gemelli Against COVID-19 Post-Acute Care Team. Inadequate Physical Activity Is Associated with Worse Physical Function in a Sample of COVID-19 Survivors with Post-Acute Symptoms. J. Clin. Med. 2023, 12, 2517. https://doi.org/10.3390/jcm12072517
Galluzzo V, Zazzara MB, Ciciarello F, Tosato M, Martone AM, Pais C, Savera G, Calvani R, Picca A, Marzetti E, Landi F, on behalf of Gemelli Against COVID-19 Post-Acute Care Team. Inadequate Physical Activity Is Associated with Worse Physical Function in a Sample of COVID-19 Survivors with Post-Acute Symptoms. Journal of Clinical Medicine. 2023; 12(7):2517. https://doi.org/10.3390/jcm12072517
Chicago/Turabian StyleGalluzzo, Vincenzo, Maria Beatrice Zazzara, Francesca Ciciarello, Matteo Tosato, Anna Maria Martone, Cristina Pais, Giulia Savera, Riccardo Calvani, Anna Picca, Emanuele Marzetti, Francesco Landi, and on behalf of Gemelli Against COVID-19 Post-Acute Care Team. 2023. "Inadequate Physical Activity Is Associated with Worse Physical Function in a Sample of COVID-19 Survivors with Post-Acute Symptoms" Journal of Clinical Medicine 12, no. 7: 2517. https://doi.org/10.3390/jcm12072517