Coordination and Cognition in Pure Nutritional Wernicke’s Encephalopathy with Cerebellar Degeneration after COVID-19 Infection: A Unique Case Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient
2.2. Neuropsychological Assessment
2.3. Standardized Observations
2.4. Neurological Assessment
2.5. Imaging
2.6. Laboratory Investigations
3. Results
3.1. Clinical Course
3.2. Neuropsychological Assessment
3.3. Standardized Observations
3.4. Neurological Examination
3.5. Imaging
3.6. Laboratory Investigations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cognitive Domain | Test Name | Abbreviation |
Intelligence | Screener for Intelligence and Learning Disability | SCIL 18+ |
Intelligence | Wechsler Adult Intelligence Scale—Fourth Edition | WAIS-IV |
Performance validity | Test of Memory Malingering | TOMM |
Performance validity | Visual Association Test—Extended | VAT-E |
Orientation | Cognitive Screening Test | CST-20 |
Episodic memory | Location Learning Test—Revised | LLT-R |
Episodic memory | Rey Auditory Verbal Learning Test | RAVLT |
Episodic memory | Story Recall | Story Recall (RBMT) |
Episodic memory | Visual Association Test—Extended | VAT-E |
Working memory | Corsi Block-Tapping Test | - |
Executive function | Color Trails Test | CTT (D-KEFS) |
Executive function | Brixton Spatial Anticipation Test | - |
Executive function | Zoo Map Test | Zoo Map (BADS) |
Executive function | Key Search Test | Key Search (BADS) |
Executive function | Twenty Questions Test | TQT (D-KEFS) |
Executive function | Stroop Color Word Test | SCWT |
Attention | d2 Test | - |
Language | Controlled Oral Word Association Test | COWAT |
Visuo-construction | Rey Complex Figure Test—Copy trial | RCFT |
Social cognition | Theory of Mind test—Revised | ToM-R |
Social cognition | Emotion Recognition Test | ERT |
References
- Galvin, R.; Bråthen, G.; Ivashynka, A.; Hillbom, M.; Tanasescu, R.; Leone, M.A. EFNS guidelines for diagnosis, therapy and prevention of Wernicke-encephalopathy. Eur. J. Neurol. 2010, 17, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Torvik, A.; Lindboe, C.F.; Rodge, S. Brain lesions in alcoholics: A neuropathological study with clinical correlations. J. Neurol. Sci. 1982, 56, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Victor, M.; Adams, R.D.; Collins, G. The Wernicke-Korsakoff Syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp. Neurol. Ser. 1971, 7, 1–206. [Google Scholar]
- Victor, M.; Adams, R.D.; Collins, G. The Wernicke-Korsakoff Syndrome and Related Neurologic Disorders Due to Alcoholism and Malnutrition, 2nd ed.; F.A. Davis Company: Philadelphia, PA, USA, 1989. [Google Scholar]
- Arts, N.J.M.; Pitel, A.L.; Kessels, R.P.C. The contribution of mamillary body damage to Wernicke’s encephalopathy and Korsakoff’s syndrome. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 180, pp. 455–475. [Google Scholar]
- Wernicke, C. Lehrbuch der Gehirnkrankheiten Für Aerzte Und Studirende; Band II; Fischer: Kassel, Germany, 1881. [Google Scholar]
- Harper, C.; Giles, M.; Finlay-Jones, R. Clinical signs in the Wernicke-Korsakoff complex: A retrospective analysis of 131 cases diagnosed at necropsy. J. Neurol. Neurosurg. Psychiatry 1986, 49, 341–345. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Arts, N.J.M.; Walvoort, S.J.W.; Kessels, R.P.C. Korsakoff’s syndrome: A critical review. Neuropsychiatr. Dis. Treat. 2017, 13, 2875–2890. [Google Scholar] [CrossRef][Green Version]
- Pitel, A.L.; Zahr, N.M.; Jackson, K.; Sassoon, S.A.; Rosenbloom, M.J.; Pfefferbaum, A.; Sullican, E.V. Signs of preclinical Wernicke’s encephalopathy and thiamine levels as predictors of neuropsychological deficits in alcoholism without Korsakoff’s syndrome. Neuropsychopharmacology 2011, 36, 580–588. [Google Scholar] [CrossRef][Green Version]
- Fama, R.; Le Berre, A.P.; Hardcastle, C.; Sassoon, S.A.; Pfefferbaum, A.; Sullivan, E.V.; Zahr, N.M. Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism. Addict. Biol. 2019, 24, 290–302. [Google Scholar] [CrossRef]
- Lin, S.; Leppla, I.E.; Yan, H.; Probert, J.M.; Randhawa, P.A.; Leoutsakos, J.M.S.; Probasco, M.D.; Neufeld, K.J. Prevalence and improvement of Caine-positive Wernicke-Korsakoff syndrome in psychiatric inpatient admissions. Psychosomatics 2020, 61, 31–38. [Google Scholar] [CrossRef]
- Nunes, P.T.; Kipp, B.T.; Reitz, N.L.; Savage, L.M. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. Int. Rev. Neurobiol. 2019, 148, 101–168. [Google Scholar]
- Aasheim, E.T. Wernicke encephalopathy after bariatric surgery: A systematic review. Ann. Surg. 2008, 248, 714–720. [Google Scholar] [CrossRef]
- Onishi, H.; Ishida, M.; Tanahashi, I.; Takahashi, T.; Taji, Y.; Ikebuchi, K.; Furuya, D.; Akechi, T. Wernicke encephalopathy without delirium in patients with cancer. Palliat. Support. Care 2018, 16, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Oudman, E.; Wijnia, J.W.; Oey, M.J.; van Dam, M.J.; Postma, A. Preventing Wernicke’s encephalopathy in anorexia nervosa: A systematic review. Psychiatry Clin. Neurosci. 2018, 72, 774–779. [Google Scholar] [CrossRef][Green Version]
- Divya, M.B.; Kubera, N.S.; Jha, N.; Jha, A.K.; Thabah, M.M. Atypical neurological manifestations in Wernicke’s encephalopathy due to hyperemesis gravidarum. Nutr. Neurosci. 2022, 25, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- Caine, D.; Halliday, G.M.; Kril, J.J.; Harper, C.G. Operational criteria for the classification of chronic alcoholics: Identification of Wernicke’s encephalopathy. J. Neurol. Neurosurg. Psychiatry 1997, 62, 51–60. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Romano, J.; Michael, M.; Merritt, M.H. Alcoholic cerebellar degeneration. Arch. Neurol. Psychiatry 1940, 44, 1230–1236. [Google Scholar] [CrossRef]
- Victor, M.; Adams, R.D.; Mancall, E.L. Alcoholic cerebellar degeneration. Trans. Am. Neurol. Assoc. 1958, 83, 95–99. [Google Scholar]
- Victor, M.; Adams, R.D.; Mancall, E.L. A restricted form of cerebellar degeneration occurring in alcoholic patients. Arch. Neurol. 1959, 1, 579–688. [Google Scholar] [CrossRef]
- Mulholland, P.J. Susceptibility of the cerebellum to thiamine deficiency. Cerebellum 2006, 5, 55–63. [Google Scholar] [CrossRef]
- Zahr, N.M.; Pitel, A.L.; Chanraud, S.; Sullivan, E.V. Contributions of studies on alcohol use disorders to understanding cerebellar function. Neuropsychol. Rev. 2010, 20, 280–289. [Google Scholar] [CrossRef][Green Version]
- Sullivan, E.V.; Pfefferbaum, A. Neuroimaging of the Wernicke-Korsakoff syndrome. Alcohol Alcohol. 2009, 44, 155–165. [Google Scholar] [CrossRef][Green Version]
- Klockgether, T. Ataxias. Park. Relat. Disord. 2007, 13, S391–S394. [Google Scholar] [CrossRef] [PubMed]
- Shanmugarajah, P.D.; Hoggard, N.; Currie, S.; Aeschlimann, D.P.; Aeschlimann, P.C.; Gleeson, D.C.; Karajeh, M.; Woodroofe, N.; Grünewald, R.A.; Hadjivassiliou, M. Alcohol-related cerebellar degeneration: Not all down to toxicity? Cerebellum Ataxias 2016, 3, 17. [Google Scholar] [CrossRef][Green Version]
- Lindboe, C.F.; Loberg, E.M. The frequency of brain lesions in alcoholics: Comparison between the 5-year periods 1975–1979 and 1983–1987. J. Neurol. Sci. 1988, 88, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Torvik, A.; Torp, S. The prevalence of alcoholic cerebellar atrophy: A morphometric and histological study of an autopsy material. J. Neurol. Sci. 1986, 75, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Nishihara, Y.; Horie, A. Clinico-pathological studies on 62 autopsy cases of chronic alcoholics. Seishin Igaku 1980, 22, 639–646. [Google Scholar]
- Yokota, O.; Tsuchiya, K.; Terada, S.; Oshima, K.; Ishizu, H.; Matsushita, M.; Kuroda, S.; Akiyama, H. Frequency and clinicopathological characteristics of alcoholic cerebellar degeneration in Japan: A cross-sectional study of 1509 postmortems. Acta Neuropathol. 2006, 112, 43–51. [Google Scholar] [CrossRef]
- Laureno, R. Nutritional cerebellar degeneration, with comments on its relationship to Wernicke disease and alcoholism. Handb. Clin. Neurol. 2011, 103, 175–187. [Google Scholar]
- Allsop, J.; Turner, B.J. Cerebellar degeneration associated with chronic alcoholism. Neurol. Sci. 1966, 3, 238–258. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.D. Nutritional cerebellar degeneration. In Handbook of Neurology; Vinken, P.J., Bruyn, G.W., Eds.; North Holland Publishing Company: Amsterdam, The Netherlands, 1976; Volume 28, pp. 271–284. [Google Scholar]
- Jaatinen, P.; Rintala, J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. Cerebellum 2008, 7, 32–47. [Google Scholar] [CrossRef]
- Mitoma, H.; Manto, M.; Shaikh, A.G. Mechanisms of ethanol-induced cerebellar ataxia: Underpinnings of neuronal death in the cerebellum. Int. J. Environ. Res. Public Health 2021, 18, 8678. [Google Scholar] [CrossRef]
- Vetreno, R.P.; Ramos, R.L.; Anzalone, S.; Savage, L.M. Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff syndrome. Brain Res. 2012, 1436, 178–192. [Google Scholar] [CrossRef][Green Version]
- Witt, E.D. Neuroanatomical consequences of thiamine deficiency: A comparative analysis. Alcohol Alcohol. 1985, 20, 201–221. [Google Scholar] [PubMed]
- Laureno, R.; Lamotte, G. The midline cerebellar lesion in experimental Wernicke disease. Neurol. India 2021, 69, 1624. [Google Scholar]
- Andersen, B.B. Reduction of Purkinje cell volume in cerebellum of alcoholics. Brain Res. 2004, 1007, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Luo, J. Effects of ethanol on the cerebellum: Advances and prospects. Cerebellum 2015, 14, 383–385. [Google Scholar] [CrossRef]
- Fei, G.Q.; Zhong, C.; Jin, L.; Wang, J.; Zhang, Y.; Zheng, X.; Zhang, Y.; Hong, Z. Clinical characteristics and MR imaging features of nonalcoholic Wernicke encephalopathy. Am. J. Neuroradiol. 2008, 29, 164–169. [Google Scholar] [CrossRef][Green Version]
- Zuccoli, G.; Santa Cruz, D.; Bertolini, M.; Rovira, A.; Gallucci, M.; Carollo, C.; Pipitone, N. MR imaging findings in 56 patients with Wernicke encephalopathy: Nonalcoholics may differ from alcoholics. Am. J. Neuroradiol. 2009, 30, 171–176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chamorro, A.-J.; Rosón-Hernández, B.; Medina-García, J.-A.; Muga-Bustamante, R.; Fernández-Solá, J.; Martín-González, M.-C.; Seco-Hernández, E.; Novo-Veleiro, I.; Suárez-Cuervo, C.; Mateos-Díaz, A.M.; et al. Differences between alcoholic and nonalcoholic patients with Wernicke encephalopathy: A multicenter observational study. Mayo Clin. Proc. 2017, 92, 899–907. [Google Scholar] [CrossRef]
- Mancall, E.L.; McEntee, W.J. Alterations of the cerebellar cortex in nutritional encephalopathy. Neurology 1965, 15, 303–313. [Google Scholar] [CrossRef]
- Vortmeyer, A.O.; Hagel, C.; Laas, R. Haemorrhagic thiamine deficient encephalopathy following prolonged parenteral nutrition. J. Neurol. Neurosurg. Psychiatry 1992, 55, 826–829. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schmahmann, J.D. The cerebellum and cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, H.; Faber, J.; Timmann, D.; Klockgether, T.J. Update cerebellum and cognition. J. Neurol. 2021, 268, 3921–3925. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. The cerebellar cognitive affective syndrome and the neuropsychiatry of the cerebellum. In Handbook of the Cerebellum and Cerebellar Disorders, 2nd ed.; Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1955–1993. [Google Scholar]
- Ahmadian, N.; van Baarsen, K.; van Zandvoort, M.; Robe, P.A. The cerebellar cognitive affective syndrome-a meta-analysis. Cerebellum 2019, 18, 941–950. [Google Scholar] [CrossRef][Green Version]
- Argyropoulos, G.P.D.; van Dun, K.; Adamaszek, M.; Leggio, M.; Manto, M.; Masciullo, M.; Molinari, M.; Stoodley, C.J.; van Overwalle, F.; Ivry, R.B.; et al. The cerebellar cognitive affective/Schmahmann syndrome: A task force paper. Cerebellum 2020, 19, 102–125. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Manto, M. The underpinnings of cerebellar ataxias. Clin. Neurophysiol. Pract. 2022, 17, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Pomares, M.; Carmen Terol-Cantero, M.; Sánchez-Pérez, A.; Peral-Gómez, P.; Valera-Gran, D.; Navarrete-Muñoz, E.M. The frontal assessment battery in clinical practice: A systematic review. Int. J. Geriatr. Psychiatry 2018, 33, 237–251. [Google Scholar] [CrossRef]
- Hoche, F.; Guell, X.; Vangel, M.G.; Sherman, J.C.; Schmahmann, J.D. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018, 141, 248–270. [Google Scholar] [CrossRef][Green Version]
- Lezak, M.D.; Howieson, D.B.; Bigler, E.D.; Tranel, D. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Guilmette, T.J.; Sweet, J.J.; Hebben, N.; Koltai, D.; Mahone, E.M.; Spiegler, B.J.; Stucky, K.; Westerveld, M.; Conference Participants. American Academy of Clinical Neuropsychology consensus conference statement on uniform labeling of performance test scores. Clin. Neuropsychol. 2020, 34, 437–453. [Google Scholar] [CrossRef][Green Version]
- Klar, V.S.; Ang, Y.S.; Lockwood, P.; Attaallah, B.; Dickson, S.; Drew, D.; Kienast, A.; Maio, M.R.; Plant, O.; Slavkova, E.; et al. Assessment of apathy in neurological patients using the Apathy Motivation Index caregiver version. J. Neuropsychol. 2022, 16, 236–258. [Google Scholar] [CrossRef]
- Roth, R.M.; Isquith, P.K.; Goia, G.A. Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A); Psychological Assessment Resources: Lutz, FL, USA, 2005. [Google Scholar]
- Persoon, A.; Banningh, L.J.W.; van de Vrie, W.; Rikkert, M.G.; van Achterberg, T. Development of the Nurses’ Observation Scale for Cognitive Abilities (NOSCA). Int. Sch. Res. Not. 2011, 2011, 895082. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rensen, Y.C.M.; Oudman, E.; Oosterman, J.M.; Kessels, R.P.C. Confabulations in Alcoholic Korsakoff’s Syndrome: A Factor Analysis of the Nijmegen-Venray Confabulation List. Assessment 2021, 28, 1545–1555. [Google Scholar] [CrossRef] [PubMed][Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, TX, USA, 2022. [Google Scholar]
- Kopelman, M.D. The Korsakoff syndrome. Br. J. Psychiatry 1995, 166, 154–173. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef]
- Gowers, W.R. A Manual of Diseases of the Nervous System; Churchill: London, UK, 1886–1888; Reprint: Arts & Boeve: Nijmegen, The Netherlands, 1995; Volume 2. [Google Scholar]
- Beaton, A.; Mariën, P. Language, cognition and the cerebellum: Grappling with an enigma. Cortex 2010, 46, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Sherman, J.C. Cerebellar cognitive affective syndrome. Int. Rev. Neurobiol. 1997, 41, 433–440. [Google Scholar]
- Strick, P.L.; Dum, R.P.; Fiez, J.A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 2009, 32, 413–434. [Google Scholar] [CrossRef][Green Version]
- Glickstein, M.; Sultan, F.; Voogd, J. Functional localization in the cerebellum. Cortex 2011, 47, 59–80. [Google Scholar] [CrossRef]
- Bodranghien, F.; Bastian, A.; Casali, C.; Hallett, M.; Louis, E.D.; Manto, M.; Mariën, P.; Nowak, D.A.; Schmahmann, J.D.; Serrao, M.; et al. Consensus paper: Revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016, 15, 369–391. [Google Scholar] [CrossRef][Green Version]
- Molinari, M.; Masciullo, M.; Bulgheroni, S.; D’Arrigo, S.; Riva, D. Cognitive aspects: Sequencing, behavior, and executive functions. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 154, pp. 167–180. [Google Scholar]
- Naeije, G.; Rai, M.; Allaerts, N.; Sjogard, M.; De Tiège, X.; Pandolfo, M. Cerebellar cognitive disorder parallels cerebellar motor symptoms in Friedreich ataxia. Ann. Clin. Transl. Neurol. 2020, 7, 1050–1054. [Google Scholar] [CrossRef]
- Chirino-Pérez, A.; Marrufo-Meléndez, O.R.; Muñoz-López, J.I.; Hernandez-Castillo, C.R.; Ramirez-Garcia, G.; Díaz, R.; Nuñez-Orozco, L.; Fernandez-Ruiz, J. Mapping the cerebellar cognitive affective syndrome in patients with chronic cerebellar strokes. Cerebellum 2022, 21, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.H.; Kessels, R.P.C.; Azmin, S.; van de Warrenburg, B.; Mohamed Ibrahim, N. Neurocognitive changes in spinocerebellar ataxia type 3: A systematic review with a narrative design. Cerebellum 2022, 21, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, L.E.; Crowe, S.F. Cognitive and emotional deficits in chronic alcoholics: A role for the cerebellum? Cerebellum 2013, 12, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.; Halliday, G.; Caine, D.; Kril, J. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 2000, 123, 141–154. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus paper: Cerebellum and emotion. Cerebellum 2017, 16, 552–576. [Google Scholar] [CrossRef]
- Fitzpatrick, L.E.; Jackson, M.; Crowe, S.F. The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neurosci. Biobehav. Rev. 2008, 32, 466–485. [Google Scholar] [CrossRef]
- Wijnia, J.W.; Goossensen, A. Cerebellar neurocognition and Korsakoff’s syndrome: An hypothesis. Med. Hypotheses 2010, 75, 266–268. [Google Scholar] [CrossRef]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef]
- Ahmad, S.J.; Feigen, C.M.; Vazquez, J.P.; Kobets, A.J.; Altschul, D.J. Neurological sequelae of COVID-19. J. Integr. Neurosci. 2022, 21, 77. [Google Scholar] [CrossRef]
- Pavel, B.; Moroti, R.; Spataru, A.; Popescu, M.R.; Panaitescu, A.M.; Zagrean, A.M. Neurological manifestations of SARS-CoV2 infection: A narrative review. Brain Sci. 2022, 12, 1531. [Google Scholar] [CrossRef]
- Maury, A.; Lyoubi, A.; Peiffer-Smadja, N.; de Broucker, T.; Meppiel, E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev. Neurol. 2021, 177, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ghosh, R.; Dubey, S.; Dubey, M.J.; Benito-León, J.; Kanti Ray, B. Neurological and neuropsychiatric impacts of COVID-19 pandemic. Can. J. Neurol. Sci. 2021, 48, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Kho, J.; Mandal, A.K.J.; Geraldes, R.; Tuzlali, H.; Boyd, E.; Nortley, R.; Missouris, C.G. COVID-19 encephalitis and Wernicke’s encephalopathy. J. Med. Virol. 2021, 93, 5248–5251. [Google Scholar] [CrossRef]
- Shepherd, E.; Smyth, D.; Sterenstein, A.; Dorsch, A.; Mizen, T. Post-COVID Wernicke’s presenting as bilateral vision loss. Am. J. Ophthalmol. Case Rep. 2022, 25, 101271. [Google Scholar] [CrossRef]
- Landzberg, D.R.; Bery, E.; Chico, S.; Koh, S.; Weissman, B. Wernicke encephalopathy from olfactory dysfunction after COVID-19 infection. Neurologist 2021, 26, 274–275. [Google Scholar] [CrossRef]
- Skok, H.; Jabour, J.; Betcher, J. Wernicke Korsakoff syndrome in a teenage female as a complication of COVID-19. J. Am. Coll. Emerg. Physicians Open 2022, 3, e12735. [Google Scholar] [CrossRef] [PubMed]
- Branco de Oliveira, M.V.; Bernabé, D.G.; Irikura, S.; Irikura, R.B.; Fontanelli, A.M.; Gonçalves, M.V.M. Wernicke encephalopathy in COVID-19 patients: Report of three cases. Front. Neurol. 2021, 26, 629273. [Google Scholar] [CrossRef]
- Branco de Oliveira, M.V.; Irikura, S.; Lourenço, F.H.B.; Shinsato, M.; Irikura, T.C.D.B.; Irikura, R.B.; Albuquerque, T.V.C.; Shinsato, V.N.; Orsatti, V.N.; Fontanelli, A.M.; et al. Encephalopathy responsive to thiamine in severe COVID-19 patients. Brain Behav. Immun. Health 2021, 14, 100252. [Google Scholar] [CrossRef]
- Alexandri, M.; Reynolds, B.Z.; Smith, H.; Golden, B.M.; Gross, H.; Switzer, J.A. Wernicke’s encephalopathy and cranial nerve VII palsy in a 24-year-old patient with COVID-19. Int. J. Emerg. Med. 2022, 28, 6. [Google Scholar] [CrossRef]
- Pascual-Goñi, E.; Fortea, J.; Martínez-Domeño, A.; Rabella, N.; Tecame, M.; Gómez-Oliva, C.; Querol, L.; Gómez-Ansón, B. COVID-19-associated ophthalmoparesis and hypothalamic involvement. Neurol. Neuroimmunol. Neuroinflamm. 2020, 25, e823. [Google Scholar] [CrossRef]
- Kessels, R.P.C.; de Vent, N.R.; Bruijnen, C.J.W.H.; Jansen, M.G.; de Jonghe, J.F.M.; Dijkstra, B.A.G.; Oosterman, J.M. Regression-based normative data for the Montreal Cognitive Assessment (MoCA) and its Memory Index Score (MoCA-MIS) for individuals aged 18–91. J. Clin. Med. 2022, 13, 4059. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.P.P.W.M.; Killaars, S.; van de Warrenburg, B.P.C.; Schutter, D.J.L.G. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J. Neurol. 2021, 268, 3456–3466. [Google Scholar] [CrossRef] [PubMed]
- Blatt, G.J.; Oblak, A.L.; Schmahmann, J.D. Cerebellar connections with limbic circuits: Anatomy and functional implications. In Handbook of the Cerebellum and Cerebellar Disorders; Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
Cognitive Domain | T-Score Range 1 | Classification 2 |
---|---|---|
Intelligence | 34–40 | Mild intellectual disability |
Orientation | - | Unimpaired |
Episodic memory | 28–73 | Average |
Working memory | 52–61 | (High) average |
Executive function | 20–67 | (Below) average |
Attention | 30–48 | Below average |
Language | 39–50 | Average |
Visuo-construction | 26 | Exceptionally low |
Social cognition | 29–37 | Below average |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arts, N.J.M.; van Dorst, M.E.G.; Vos, S.H.; Kessels, R.P.C. Coordination and Cognition in Pure Nutritional Wernicke’s Encephalopathy with Cerebellar Degeneration after COVID-19 Infection: A Unique Case Report. J. Clin. Med. 2023, 12, 2511. https://doi.org/10.3390/jcm12072511
Arts NJM, van Dorst MEG, Vos SH, Kessels RPC. Coordination and Cognition in Pure Nutritional Wernicke’s Encephalopathy with Cerebellar Degeneration after COVID-19 Infection: A Unique Case Report. Journal of Clinical Medicine. 2023; 12(7):2511. https://doi.org/10.3390/jcm12072511
Chicago/Turabian StyleArts, Nicolaas J. M., Maud E. G. van Dorst, Sandra H. Vos, and Roy P. C. Kessels. 2023. "Coordination and Cognition in Pure Nutritional Wernicke’s Encephalopathy with Cerebellar Degeneration after COVID-19 Infection: A Unique Case Report" Journal of Clinical Medicine 12, no. 7: 2511. https://doi.org/10.3390/jcm12072511