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Abstract: Artificial intelligence (AI) and in particular radiomics has opened new horizons by extract-
ing data from medical imaging that could be used not only to improve diagnostic accuracy, but also
to be included in predictive models contributing to treatment stratification of cancer. Head and neck
cancers (HNC) are associated with higher recurrence rates, especially in advanced stages of disease.
It is considered that approximately 50% of cases will evolve with loco-regional recurrence, even
if they will benefit from a current standard treatment consisting of definitive chemo-radiotherapy.
Radiotherapy, the cornerstone treatment in locally advanced HNC, could be delivered either by the
simultaneous integrated boost (SIB) technique or by the sequential boost technique, the decision
often being a subjective one. The principles of radiobiology could be the basis of an optimal decision
between the two methods of radiation dose delivery, but the heterogeneity of HNC radio-sensitivity
makes this approach difficult. Radiomics has demonstrated the ability to non-invasively predict
radio-sensitivity and the risk of relapse in HNC. Tumor heterogeneity evaluated with radiomics, the
inclusion of coarseness, entropy and other first order features extracted from gross tumor volume
(GTV) in multivariate models could identify pre-treatment cases that will benefit from one of the
approaches (SIB or sequential boost radio-chemotherapy) considered the current standard of care
for locally advanced HNC. Computer tomography (CT) simulation and daily cone beam CT (CBCT)
could be chosen as imaging source for radiomic analysis.

Keywords: radiomics; artificial intelligence; radiotherapy; radio-chemotherapy head and neck
cancers; SIB; VMAT; IMRT

1. Introduction

The simultaneous integrated boost (SIB) and the sequential boost technique are dose
delivery strategies both for step and shot intensity-modulated radiation therapy (IMRT)
and for volumetric modulated arc therapy (VMAT). Both strategies are used in daily clinical
practice and the criteria for choosing one or other method are generally subjective, without
clear recommendations for patient selection, although the biological effects of irradiation
may be favorable for one technique or another, determined case by case. Head and neck
cancers (HNC) are associated with higher recurrence rates, especially in advanced stages.
It is considered that approximately 50% of cases will evolve with loco-regional recurrence
even if they benefit from a standard treatment consisting of definitive chemo-radiotherapy.
Although the subtype of HNC associated with human papilloma virus (HPV) infection
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has a more favorable prognosis and response to treatment compared to HNC associated
with a long history of smoking, the “in field” recurrence rate remains higher for both
subtypes. A total of 45% of loco-regional failures is identified in areas that received a
median radiation dose of 67 Gy. The identification of parameters that could contribute to
improving the results of multimodal treatment by increasing the rates of tumor control
and also by reducing the treatment related toxicities in currently a topic of interest in HNC
research. Radiomics, a method that uses artificial intelligence (AI) algorithms to extract
data from high-resolution medical imaging with potential of diagnostic, predictive and
prognostic value could also be implemented for modulating the treatment of HNC. We
propose to argue the possibility of using radiomics for choosing the “sequential boost”
technique or SIB IMRT/VMAT as the optimal technique for HNC radiotherapy [1–4].

2. SIB vs. Sequential Boost IMRT/VMAT in HNC—From “In Silico” Treatment
Planning to Clinical Results

The sequential boost technique consists in the delivery of a single 2 Gy fraction per
day, 5 days a week, 7 weeks typically, treating different target volumes with different
dose levels. The “shrinking-field” procedure involves the initial irradiation of the entire
planned volume including the elective one followed by the subsequent irradiation of only
higher risk of recurrence target volumes. The SIB technique involves the irradiation of all
target volumes during the entire treatment period, different dose levels being delivered
simultaneously in different target volumes. Radiotherapy planning is based on CT sim-
ulation and delineation of the gross tumor volume (GTV) using the acquired images as
support, but also adding clinical and imaging information supplemented and completed
by other diagnostic methods. Macroscopically involved lymph nodes are recommended to
be included in the GTV. The delineation of the clinical target volume (CTV) involves the
rationale of including the specific risk regions of the microscopic disease invasion, taking
into account the anatomical barriers of tumor invasion. It is generally accepted that an
expansion of 1–1.5 cm is created around the GTV in order to obtain the CTV. The guidelines
of the Radiation Therapy Oncology Group (RTOG) provide a consensus for the delineation
of lymph node levels considered with higher and respectively lower risk of tumor involve-
ment. Most often, lymph node level II-IV bilaterally are included in higher risk target
volume. Typically, regionally node-negative target volumes are irradiated prophylactically
with different dose levels depending on the risk of tumor metastases [5,6].

The standard fractionation regimen includes dose levels of 66–70 Gy to gross disease
and doses of 45–60 Gy to non-involved lymph nodes, a fractionation regimen derived
from older 3D-conformal (3D-CRT) technique being a feasible alternative. A standard
regime consists in a three-phase sequence within total dose of 70 Gy in 35 daily fractions
delivered on the target volume of gross disease, a total dose of 60–66 Gy in 30–33 daily
fractions delivered to lymph nodes with a high risk of tumor invasion and a 50–56 Gy in
25–28 daily fractions for lower risk target volumes. Initially, the SIB technique was tested
in clinical practice more than 15 years ago and was based on the RTOG protocol H-0022.
The proposed fractionation schemes used fractional doses of 2 Gy, 2.2 Gy and 2.11 Gy up
to 60–70 Gy, 66–68.2 Gy and, respectively, 69 Gy. Delivering a lower radiation dose in
the same number of fractions to the elective target volume, the dose per fraction could
decrease to 1.6–1.8 Gy per fraction. Recently, the results of NRG/RTOG 0022, the first
trial that evaluated the possible benefits of IMRT in a multicenter study, highlighted high
survival rates at 10 years (2/3 of the cases), the rate of grade 3–4 toxicities being reduced
(from 1 to 7%). Overall survival (OS), disease-free survival (DFS) and local-regional failure
(LRF) ratio was 67%, 50% and 15%, respectively. It should be mentioned that at the time
of initiation of the study, the IMRT technique was mainly focused on optimizing the dose
to the parotid glands. It is estimated that by identifying other critical structures and due
to the implementation of some radiobiological models that also involve other toxicities
with the exception of xerostomia, the treatment results will bring long-term benefits in
relation to tardive toxicity [7]. More than 20 years ago, Mohan et al. demonstrated superior
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dose coverage of target volumes in SIB-IMRT plans for HNC. It should also be mentioned
that the superior conformity in SIB-IMRT is also justified by the fact that the sequential
IMRT technique involves the generation of a second plan for the boost volume, this plan
having a dose distribution independent of the initial plan that includes the irradiation of
elective volumes. Taking into account the lag time before the onset of accelerated tumor
repopulation evaluated between 9 and 30 days, the SIB technique does not negatively
influence the outcome of the treatment, its duration being considered sufficient to not
require an addition of 0.5–0.7 Gy compensatory dose for each day of accelerated tumor
repopulation. Considering values of at least 15 Gy for α/β for the tumor, the dose variation
per fraction between 1.6 Gy and 3.0 Gy is not an important factor influencing the treatment
result. However, at that time, the authors expressed their concern for the late effects
for bone and muscle considering α/β values 0.85 and 3.1. The high values of α/β for
the mucosa do not justify a significant influence of the dose per fraction, but the overall
treatment time can be a factor that affects acute and late mucosal toxicity as a consistent
effect [8]. Pharyngeal constrictor muscles, supra-glottic larynx and glottic larynx were
identified as structures involved in dysphagia in a study that included 26 patients treated
with radiotherapy concurrent with gemcitabine. The functioning of these anatomical
structures was evaluated using swallowing with video-fluoroscopy, direct endoscopy and
computer tomography (CT). Comparing the irradiation techniques, the standard IMRT
technique offered a moderate protection of the structures involved in dysphagia in relation
to the 3D-conformal (3D-CRT) technique, a superior result being obtained if the IMRT
plans are optimized to reduce dysphagia. In the case of pharyngeal constrictors, the IMRT
technique reduces the volume, receiving at least 50 Gy (V50) by 10%, and the optimization
adds another 10% reduction in V50 compared to the 3D-CRT technique. In the case of
the supra-glottic and glottic larynx, the optimization of IMRT plans generated an average
benefit of 18% compared to the 3D-CRT technique in reducing the V50 value. Comparing
the irradiation techniques, the standard IMRT technique offered a moderate protection
of the structures involved in dysphagia in relation to the 3D-CRT technique, a superior
result being obtained if the IMRT plans are optimized in order to reduce dysphagia. In the
case of pharyngeal constrictors, the IMRT technique reduces by 10% and the optimization
adds an additional 10% reduction in V50 compared to the 3D-CRT technique. In the case of
the larynx (supra-glottic and glottic), the optimization of IMRT plans brought an average
benefit of 18% compared to the 3D-CRT technique [9]. Ever since 2006, an early period
of SIB-IMRT in HNC, Studer et al. reported, in a study that includes 115 cases, tumor
control rates similar to the historical ones and a favorable toxicity profile in relation to the
3D-CRT technique [10]. The study could not perform an objective comparison between SIB
and sequential boost IMRT from the point of view of toxicities and especially of parotid
gland sparing, an already recognized advantage of the sequential IMRT technique at
that moment. The authors recommended caution when a 2.2 Gy per fraction is used to
irradiate larger volumes involving laryngeal structures. The study by Wu and collaborators
had already demonstrated the ability of the SIB-IMRT technique to obtain a satisfying
dosimetric coverage of target volumes and the possibility of avoiding at least one of the
parotid glands [11]. Four dosimetric parameters were assessed: biologically equivalent
uniform dose (EUD), dose to specified percent (X) of volumes (Dx), homogeneity index,
defined as the ratio D2–D98/prescription dose, and PITV, a compliance index defined
as the volume covered by the prescribed isodose/target volume. The SIB technique also
demonstrated the ability to deliver the radiation dose with increased homogeneity in the
boost target volume, but delivered a relatively heterogeneous radiation dose in the elective
treated volume. SIB is also considered feasible by the ability to limit the dose to the spinal
cord to <38 Gy in the equivalent dose to 2 Gy standard regimen. The parotid glands could
be spared, but the ability of the SIB to reduce the dose received by them depends on their
degree of inclusion of parotid glands in the planning target volume (PTV). For not included
or partially included parotid glands in PTV, SIB-IMRT could limit the dose to 2/3 of the
volume to <32 Gy using dose conversion in the standard 2 Gy regimen by linear quadratic
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(LQ) radiobiologic model. Lauve et al. reported an average mean dose of 32Gy for the
parotid gland in the vicinity of PTV and an average mean dose of 24 Gy for the contralateral
parotid gland [12,13]. A dose regimen of 70.8 Gy in 30 fractions of 2.36 Gy delivered on
the gross disease was associated with primary tumor, nodal and distant control rates of
76.3%, 66.7%, and 71.8%, respectively. With a 2% rate of late grade 3–4 toxicity, SIB-VMAT
is considered a feasible technique for HNC cases aged 80+ [14,15].

A retrospective cohort analysis including patients with locally advanced HNC treated
with definitive chemo-radiotherapy with doses of 69.3 Gy in 33 fractions compared se-
quential boost technique and SIB IMRT. The study that included 68 cases in the group
treated with sequential boost regimen and 141 cases treated with SIB IMRT and identified a
4-year survival benefit in favor of SIB (76.8% vs. 69%). Even if gastrostoma dependence
and weight loss were similar in the two groups of patients, the rates of dysphagia and
dermatitis were 27% and 22%, respectively, higher in the SIB group. The relatively higher
rate (7% vs. 0%) of treatment interruption due to acute toxicities in the SIB group should
also be mentioned [5,16].

VMAT technique offers advantages in limiting the dose delivery time in the target vol-
umes with a possible radiobiological benefit, which is a preferred solution in radiotherapy
centers with longer waiting lists, but due to the scattering of small doses of radiation in
large volumes of healthy tissue, it implies a possible additional risk of second malignancy.
VMAT technique, based on the IMRT principle, could also offer dose delivery in both
sequential boost and SIB mode. However, the data comparing SIB VMAT and VMAT with
the sequential technique are relatively limited [17]. In a prospective interventional study
that included 52 patients from India, authors evaluated comparative radio-chemotherapy
(Cisplatin 40 mg/m2 plus VMAT radiotherapy) using the sequential boost technique and
the SIB technique. Having similar inclusion criteria in the two trial arms, the dosimetric
data were also similar. Acute toxicity rates (dermatitis, mucositis and dysphagia) were
higher in the SIB-VMAT group with similar rates of local control (65.4% in the SIB group
vs. 53.85% in the sequential boost VMAT group). The authors highlighted the comparable
results between the two groups, also mentioning a possible technical advantage of the
sequential boost VMAT regarding the treatment replanning facility. Assessing normal
tissue complication probabilities (NTCP) for late dysphagia, with a radiobiological model
proposed by Christianen et al., Cilla and collaborators evaluated the risk of dysphagia
associated with SIB-VMAT treatment plans using total doses of 70.5 (67.5), 60.0 and 55.5 Gy
delivered in 30 fractions. Considering the pharyngeal constrictor muscles (PCM) and
glottic and supra-glottic larynx (SGL) as organs at risk (OARs), the SIB-VMAT plan focused
on reducing dysphagia, providing a dose reduction of 3.9 Gy and 4.5 Gy to the superior
pharyngeal constrictor muscles (uPCM), respectively SGL [17–19].

3. The Radiobiological Implications of SIB-IMRT/SIB-VMAT in HNC

Shortening the overall treatment time (OTT) and increasing the fraction size for the
“boost” volume make the SIB technique a new approach with accelerated fractionation
concept for the definitive multimodal treatment of HNC. Traditionally, accelerated fraction-
ation is considered a reduction in OTT without significantly changing the dose per fraction,
but usually the technique involves the administration of two fractions per day. A dose of
2.4 Gy per fraction is defined as the lower limit of moderate hypo-fractionation regimen.
In some situations, for the target volume of gross disease, the SIB regimen combines the
characteristics of these two concepts (the moderate hypo-fractionation and the accelerate
fractionation). The concept of accelerated fractionation and reduction in treatment duration
is based on lowering the risk of clonogenic regrowth in the last phase of treatment. From a
radiobiological point of view, an accelerated irradiation regimen could bring benefits in
term of tumor control for cases where the tumor clonogen’ survival time (Tpot) is <3 days.
A maximum benefit is obtained if the OTT is shorter than the interval from the beginning
of the treatment to the onset of accelerated repopulation. Values between 14 days and
3–5 weeks have been reported for this interval (TK). Tpot values for HNC are evaluated
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at 3–5 days, lower than the cutoff value of 5 days, above which the benefit of accelerated
fractionation is considered minimal. A reduction in OTT below 30 days could be beneficial
from the radiobiology point of view for the primary tumor. However, for acute responder
tissue such as the mucosa, compensatory repopulation begins at the end of the first week
of treatment and the risk of the early onset of grade 2–3 side effects is considered higher in
the case of accelerated fractionation. Relatively higher α/β values (between 7 and 20), both
for the tumor and for the acute responding tissue, make the dependence of the biological
effects with the dose more linear, thus making the magnitude of toxicities less sensitive to
the increase in doses per fraction. Values of 120–150 days until the start of accelerated repop-
ulation for late responder tissues suggest that the late sequelae of accelerated fractionation
on the mucosa and pharyngeal constrictor muscles is mainly attributed to a consequential
effect, the correlation of some late effects with the severity of acute toxicities being already
known [20–24].

Fractionation-dependent toxic effects are more severe for temporal lobe necrosis from
nasopharyngeal carcinoma radiotherapy (α/β estimated at 2.9) and for laryngeal edema
(α/β estimated at 2.35). Radiobiology studies also highlight a possible benefit of a high
dose per fraction (2.5Gy) for early laryngeal cancer, tumoral type with an α/β estimated
at 10. However, for doses >2.5 Gy per fraction, mucosal regeneration could be severely
affected, the precautions in implementing SIB regimens that involve a dose of 2.4 Gy per
fraction or higher in association with chemotherapy also being necessary [25,26]. However,
the study by Schwartz et al., in which a dose of 60 Gy in 25 fractions on the target volume of
the primary tumor was proposed, demonstrated superior rates of 83% of local control and
80% overall survival rates at 25 months with maximum rates of 55% of acute skin grade
2–3 toxicity for SIB-IMRT with or without concurrent chemotherapy. Higher local control
rate 87% vs. 80% was obtained with a regimen of 67.2 Gy in 28 daily fractions for primary
tumor plus involved nodes and 56 Gy in daily 28 fractions for elective irradiation vs. the
SIB regimen of 63 Gy in 28 daily fractions for gross disease and 51.8 Gy in 28 daily fractions
for elective irradiation [27].

Head and neck squamous cell carcinomas (HNSCC) associated with human papil-
lomavirus (HPV), a subtype of HNC that is increasing in incidence, seems to be much
more radiosensitive than HNC associated with smoking. Favorable response to definitive
radio-chemotherapy encouraged the de-escalation trials, but until now, the negative re-
sults supported the use of standard treatment and not de-escalation for this subtype of
HNC. The higher heterogeneity of HNC in terms of radio-sensitivity is highlighted by Reid
and colleagues. Although some cell lines seem to be radiosensitive, repeated fractional
irradiation seems to have the effect of increasing radio-resistance during treatment. The
authors therefore consider that intrinsic radio-sensitivity should not be a decisive factor in
the de-escalation of the treatment [28].

4. Radiomics and Artificial Intelligence (AI)—Perspectives in SIB or Sequential Boost
Radiotherapy Decision in HNC

In the last decade, the computerized analysis of medical images has evolved exponen-
tially, the conversion of images into data for decision-making purposes in medicine called
radiomics. As mentioned by Gillies and his collaborators, “Images Are More than Pictures,
They Are Data”, practically opening new horizons in the approach to medical imaging
beyond visual analysis. The improvement of diagnostic power and the formulation of
predictive and prognostic models make radiomics and cancer management a promising
partnership [29].

The first step of the radiomic analysis is the segmentation of the image and the
delineation of the region of interest (ROI) when using two-dimensional images and the
volume of interest (VOI) for three-dimensional structures. The definition of ROIs/VOIs
could be performed manually, semi-automatically or automatically. Manual and semi-
automatic segmentations have the disadvantage of being time-consuming processes, but
could also introduce sources of inter-observer errors. Automatic deep learning algorithms
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have already been integrated into applications for target volume delineation in radiotherapy,
with most of the identified applications focused on head and neck organs at risk (OARs) and
normal tissue structure segmentation. The second step of radiomics, the image processing,
is an intermediate stage between the segmentation and the radiomic feature extraction. The
purpose of this step is an attempt to standardize the images in terms of the distance between
pixels, gray levels in order to increase the accuracy, and reproducibility of the radiomic
algorithm. Interpolation to isotropic voxel spacing is an algorithm considered necessary
to increase the reproducibility of extracted textural features, and range re-segmentation
and intensity normalization are used to eliminate pixels or voxels that fall outside a gray
range. Discretization of image intensities is necessary to group data in specific range
intervals. The third stage, feature extraction and quantification of gray levels from the
ROI/VOI, is recommended to be performed according to the recommendations of the Image
Biomarker Standardization Initiative (IBSI) guidelines. The most frequently encountered
radiomic features are based on intensity (histogram), shape and texture features. Wavelet
or gaussian filters could also be used in this step. Feature selection/dimension reduction is
the last step before creating the radiomic model. Reducing the number of non-reproducible,
redundant and irrelevant features is an essential step in designing a performing radiomic
model [30–32].

However, radiomics faces many challenges that limit its widespread application in
clinical routine. The absence of standardization, the limited number of codes and open-
source data, the lack of reporting and the difficulties in standardization are some of the
causes of the difficulties in applying radiomics for diagnostic, predictive and prognostic
purposes. Radiomics studies have successfully used all types of high-resolution medical
images: computer tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), but also digital radiographs (XRD), ultrasonography or mammography.
However, since most studies are retrospective, the uneven use of acquisition protocols
and filters between institutions makes it difficult to report radiomics data. We should also
mention “non-reducible technical variations” that involve patient variabilities that cause
image noise or artifacts that are not dependent on the scanner settings and can affect the
quality of the radiomics data [30,33,34].

The immense potential of radiomics in radiation oncology is presented in a systematic
review by Bibault et al., who consider radiomics “a primer for radiation oncologist”. Using
the search terms “radiotherapy”, “radiation oncology” and “radiomics” a search in the
Medline database in 2019 identified in all the evaluated studies the previously mentioned
steps of radiomics, with the fifth step considering the construction of the radiomic model.
Most of the identified studies evaluated head and neck and lung cancers (five studies),
followed by esophageal and rectal cancer (three studies), pancreatic cancer and brain
metastases (two studies). The authors mention the heterogeneity of the data and that
they have not been translated into clinical practice. The authors declared themselves
optimistic about the future that will bring new robust and generalizable models [35].
Lohmann et al. mentioned the ability of radiomics to be implemented in neuroimaging
with application in radiation oncology. Perfusion (PWI) and diffusion-weighted (DWI)
MRI and PET functional images could bring an additional benefit for the model creation
if associated with anatomical/structural imaging. The auto-contouring application based
both on feature-based radiomics and deep learning are mentioned in particular, with three
applications including open source PyRadiomics, MaZda, and LifeX for feature-based
radiomics analysis also proposed for radiomic analyses [36–39].

In order to understand the perspectives of radiomics in radiation oncology for the
construction of treatment response predictive models, we must mention that modern
radiotherapy is based on the delivery of a homogeneous, tumoricidal dose in a well-defined
region dose to surrounding normal tissue, an objective that can only be achieved with
support of CT simulator, as mentioned by Iancu et al. almost 20 years ago [40]. Today,
image-guided radiotherapy (IGRT) planning involves CT simulation and the on-board
imaging (OBI) system attached to linear accelerators (LINAC) including both onboard kV
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and cone beam CT (CBCT) imaging devices as standard. A solid partnership between
radiotherapy and radiomics is easy to anticipate involving the use of these imaging devices
of the radiotherapy treatment planning/delivery chain [41,42].

A deep learning artificial neural networks (DL-ANN) model that analyzed pre-
treatment CT images of HNC extracted from GTV and PTV aimed to predict cancer
recurrence rate, but also death prognosis. The accuracy of the model built on the ba-
sis of pretreatment CT images from 188 HNC cases was estimated to be 77.7% and 74.3%
if it was created based on features extracted from the PTV and GTV, respectively. The
delivery of a personalized multimodal treatment, but also of radiotherapy according to
the concept of precision medicine by enhancing efficacy and limiting toxicity, is one of
the future perspectives identified by the authors. If the models use “classical” radiomics
feature (features extracted and selected with a supervised algorithm) in favor of newer
unsupervised deep learning concepts, entropy is reported as the most stable first-order
features. However, for shape and textural features, there is no consensus regarding the
choice of the most concordant and reproducible radiomic feature [43–45].

Radiomics was evaluated to differentiate the level of radio-sensitivity of different
tumor sub-volumes in order to intensify the radiotherapy regimen in a study that included
40 cases. The fusion between PET/CT imaging for post-treatment evaluation with pre-
treatment contrast agent-based CT images was used for the topographical localization of
the tumor relapse regions. The patient lot was divided into the training set (28 cases) and
the validation set (12 cases). The radiomic analysis aimed to compare the radiomic features
extracted from uncontrolled GTV (which included data not correlated with control PET/CT)
and data from sub-volumes correlated with recurrence PET/CT images. The radiomic
features differed significantly between the two regions, but based on the radiomic features
extracted from these regions, recurrence regions could also be anticipated. Radiomic
analysis demonstrated the ability to identify regions of radio-resistance, and, consequently,
CT radiomics can be a predictive biomarker in radiotherapy. Increased tumor heterogeneity
was identified as a predictor of recurrence [46,47].

Non-rigid anatomical changes and the correction of the patient’s positioning during
the treatment are guided with daily CBCT in IGRT. The identification of a radiomic sig-
nature in CBCT images was evaluated in a lot of 93 HNC cases, of which 60 cases were
included in the training set, and the remaining 33 cases in the validation/test set. GTV
was chosen as VOI and 88 radiomic features were analyzed in weekly dynamics. Initially,
seven radiomic features were identified with an important dynamic during the radio-
chemotherapy treatment. After excluding the inter-correlated features, only coarseness
radiomic features was identified as a possible biomarker of treatment response. Coarseness
is a measure of the difference between the center voxel and its neighborhood. Increased
values of coarseness are associated with lower spatial change rate. Hemoglobin level was
the predictive clinical variable for treatment response. The study advocates the use of
multivariable models that include radiomic and clinical features for predicting the response
to definitive radio-chemotherapy [47–49].

5. Model-Based Treatment Decision Framework: Are We Ready for AI-Based
Model Implementation?

The purpose of the causal classification is to identify those cases that will associate
a positive response in the case of a chosen treatment. Estimating the potential results
includes a note of uncertainty by observing individuals under only one condition regarding
the treatment, without being able to know exactly if certain cases were affected by that
treatment. Fernández-Loría et al. mentioned the routine use of the simple prediction of
the results in clinical practice and theoretically analyzed the possibility that the simple
prediction is preferable to the estimation of the treatment effect. The result of the analysis
underlined the necessity of the concept of causal variance compromise. The risk of error
is considered proportional to the larger sampling variance if the result is dependent on
two outcome predictions. In this case, but also in the situation that associate a stronger
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signal to noise ratio, a biased outcome prediction is preferred. The authors mentioned
three scenarios in which the prediction of outcomes can be a valid option: the bias can
be limited by changing the threshold, there is a correlation between the results and the
effect of the treatment, and there are limited data for the evaluation of counterfactuals. All
interventional models require both the correct specification of cause and effect, but also the
identification of alternative scenarios called counterfactuals, conceptually being necessary
to be applied in the case of models based on artificial intelligence. Prospri et al. mentioned
two types of bias (confounding and collider). In the case of confounding, there is a variable
that causes the effect and outcomes, inducing the wrong assumption that exposure to a
factor caused the effect, even if in reality there is no cause–effect relationship [50–52].

The Dutch National Indication Protocol for Proton Therapy (NIPP) includes the evalu-
ation of three NTCP models (≥grade 2 xerostomia, dysphagia and feed tubing dependence)
and three NTCP thresholds, including NTCP delta; variations from 5 to 15% are used for
the selection of patients who will benefit from fully reimbursed proton therapy. Although
model-based selection is considered an accurate method to predict the benefit of signifi-
cantly limiting treatment related toxicity by using proton therapy, it requires an in silico
treatment planning and comparison that is both beneficial and cost-effective, but can also be
associated with delaying the initiation of treatment. To prevent redundant protonotherapy
planning, Tambas et al. proposed five methods based mainly on regression models, with
the aim of predicting the mean dose (Dmean) for OARs in proton therapy plans, supporting
VMAT plans. In conclusion, the study demonstrated that the advanced preselection tool
based on VMAT plans can prevent laborious work in 68% of cases that would have been
evaluated and planned for proton therapy and would not have qualified [52–54].

The concept of a semi-automatic NTCP Quality of Life (QoL)-weighted model based
on head and neck cancers VMAT treatment plans optimization was proposed by van der
Laan and colleagues in a study that included 30 cases. A total of 80 multivariable NTCP
models including the evaluation of the 20 most frequent toxicities were evaluated at 6, 12,
18 and 24 months after the completion of radiotherapy. The plan optimization strategy was
based on limiting the doses, especially to the organs that are involved in toxicities without
affecting the dosimetric coverage of target volumes. Dysphagia, fatigue, speech problems,
hoarseness and xerostomia were among the toxicities included in the semi-automatic plan
optimization algorithm. The results of the study highlighted the greatest reduction in NTCP
(−7.6% and −6.1%) with ≥grade 3 and ≥grade 2 dysphagia as the endpoint. However,
the QoL-weighted optimization of VMAT plans resulted in an increase in NTCP related to
xerostomia. The study predicted an improvement in QOL by 0.7, 0.9, 1 and 1.1 points using
a scale from 1 to 100 at 6, 12, 18, 24 months, respectively [55].

Modern NTCP models include both a translation of the dose distribution associated
with disease and patient characteristics into a probability of a complication occurring. The
development and improvement of NTCP was associated with an increase in the interest
for using these radiobiological models in clinical practice, these models being actively
involved in the phase of treatment plan optimizing in order to guide the dose distribution.
However, this approach requires an increased performance of the model and a concordance
between the predicted probability of complications and the observed toxicity during the
patient follow-up process. It is considered that both to obtain an increased probability
when choosing an optimal technique, as well as to identify and select relevant predictors to
be included in the model are essential objectives. NTCP modeling faces many challenges
including missing data, non-linear responses, overfitting or predicting different degrees
of toxicity at different time points. Missing data is a process that could be encountered
both in the pre-treatment stage and in the post-radiotherapy follow-up. Multi-state models
and multilevel imputation using joint models are examples of modern techniques used to
compensate for this uncertainty factor. The inclusion of all baseline patients and tumor
characteristics together with radiation dose values and their analysis in multivariate models,
but also their evaluation through non-linear models, could increase the accuracy of the
model. Classic models include predictors reported in the literature and in clinical data
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based on the idea of a linear relationship. Multi-collinearity involves the correlation of two
or more variables included in the analysis and could be a disturbing factor in the selection
of predictors [52,53].

Based on the dosimetric advantages of proton therapy which, due the generation of
a Bragg peak, associates a flat dose profile in the vicinity of the target, Langendijk et al.
proposed a randomized clinical trial (RCT) in order to evaluate whether the dose escala-
tion with protons could bring a benefit without increasing the risk of treatment-related
toxicity. A two-phase approach (a phase that includes patient selection, construction and
evaluation of an NTCP model, in silico planning (ISPC) studies and benefit estimation and
a second phase that includes clinical validation) is implemented in order to identify the
plans that will be associated with a lower treatment-related toxicity, but with the same dose
level for the purpose of tumor control. Even if an NTCP model-based approach cannot be
considered routine to replace an RCT, a pre-treatment evaluation based on an NTCP model
could have a higher level of prediction compared to the simple comparative evaluation of
doses for two different treatment plans. However, it should be mentioned that there are
confounding factors that are often not included in NTCP models (concurrent treatment
with chemotherapy, two different dosimetric values that predict the same toxicity—as in
the case of swallowing dysfunction) [7,52,53].

6. Conclusions

HNC is characterized by an increased heterogeneity as radio-sensitivity, and choos-
ing an optimal treatment regimen is difficult in this context. Sequential boost or SIB
IMRT/VMAT are both accepted regimens administered as standard treatment with com-
parable results, the choice of technique often being a subjective decision or based on
dosimetric considerations. Radiomics has demonstrated the ability to non-invasively pre-
dict radio-sensitivity and the risk of recurrence in HNC. Tumor heterogeneity evaluated
with radiomics analysis, the inclusion of coarseness, entropy and other first-order features
extracted from GTV in multivariate models could identify pre-treatment cases that will
benefit from one of the approaches (SIB or sequential boost radio-chemotherapy) consid-
ered the current standard of care for locally advanced HNC. CT simulation and daily CBCT
could be chosen as imaging methods for radiomic analysis. Even if it does not offer the ac-
curacy of RCT, the prediction of the outcome of a treatment based on NTCP models, already
used in the selection of cases that will benefit significantly from proton beam therapy, but
also the optimization of HNC plans focused on QoL, are already validated strategies and
could be adopted in the case selection of SIB vs. sequential boost IMRT/VMAT for HNC.
The inclusion of radiomic features in modern NTCP models will increase the accuracy of
the prediction, important for the concept of precision medicine, even if currently both SIB
and sequential are considered accepted variants in clinical practice.
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16. Kiprian, D.; Jarząbski, A.; Pawłowska, B.; Michalski, W.; Kawecki, A. Zastosowanie techniki SIB-IMRT w leczeniu skojarzonym z
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