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Abstract: Background: Perioperative stroke remains a devastating complication in the operative
treatment of acute type A aortic dissection. To reduce the risk of perioperative stroke, different
perfusion techniques can be applied. A consensus on the preferred cerebral protection strategy
does not exist. Methods: To provide an overview about the different cerebral protection strategies,
literature research on Medline/PubMed was performed. All available original articles reporting
on cerebral protection in surgery for acute type A aortic dissection and neurologic outcomes since
2010 were included. Results: Antegrade and retrograde cerebral perfusion may provide similar
neurological outcomes while outperforming deep hypothermic circulatory arrest. The choice of
arterial cannulation site and chosen level of hypothermia are influencing factors for perioperative
stroke. Conclusions: Deep hypothermic circulatory arrest is not recommended as the sole cerebral
protection technique. Antegrade and retrograde cerebral perfusion are today’s standard to provide
cerebral protection during aortic surgery. Bilateral antegrade cerebral perfusion potentially leads
to superior outcomes during prolonged circulatory arrest times between 30 and 50 min. Arterial
cannulation sites with antegrade perfusion (axillary, central or carotid artery) in combination with
moderate hypothermia seem to be advantageous. Every concept should be complemented by
adequate intraoperative neuromonitoring.

Keywords: acute type A aortic dissection; cerebral protection; stroke; hypothermic circulatory arrest;
cerebral perfusion; antegrade; retrograde

1. Introduction

Although acute type A aortic dissection (ATAAD) is rare, it is a possibly lethal event
that presents cardiac surgeons with major challenges [1–3]. Even though ATAAD is still
associated with high mortality and morbidity rates, thirty-day mortality has dropped
to an average of 17% [4]. Instant surgical treatment remains the therapy of choice and
should be performed irrespectively of time or day [5–8]. This includes the resection of
the entry tear in combination with an open distal anastomosis to prevent aortic rupture,
re-establish antegrade true lumen perfusion and resolve malperfusion [9]. Perioperative
stroke represents a devastating complication and is influenced by multiple patient specific
factors [10–12]. Female patients, particularly, may suffer from an impaired neurological
outcome [13]. Compared to elective aortic arch surgery, the incidence of stroke is signifi-
cantly higher in surgery for ATAAD and may adversely affect post-operative outcomes [14].
Preoperative neurological dysfunction and cerebral malperfusion frequently appear in the
setting of ATAAD and are associated with an increased risk of perioperative stroke [12,15].
To prevent this severe complication, different cerebral protection strategies evolved in the
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past. While systemic hypothermia prolongs the tolerance for cerebral ischemia, the use of
a selective cerebral perfusion technique aims to meet the metabolic and oxygen demand
of the brain in a direct matter. The aim of this narrative review is to provide an overview
about cerebral protection strategies in ATAAD, discussing the most relevant topics in terms
of cerebral protection based on the current scientific literature and give concrete clinical
advice about how modern cerebral protection should be performed in surgery for ATAAD.

2. Materials and Methods

For this narrative review, the literature research was performed on Medline/PubMed
using the following medical subject heading terms: “Cerebral Protection OR Cerebral Per-
fusion AND Acute Type A Aortic Dissection”. Only original articles dealing with cerebral
protection strategies and neurological outcomes in the treatment of ATAAD published in
2010 or later were considered for further investigation. Each topic had to show potential
impact on neurological outcome in the current literature and is, furthermore, of relevant
clinical interest, playing a concrete role in the perioperative and surgical management of
ATAAD. Studies reporting about cerebral protection strategies including patient cohorts
that were not applicable (e.g., elective aortic surgery) or lacked detailed information re-
garding the different cerebral protection techniques, were excluded. The research process
is illustrated in Figure 1. This review is a narrative review. We do not claim the conduction
of a fully systematic review according to the PRISMA guidelines.
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3. Results

In total, 24 original articles were identified for further investigation. The selected
articles were stratified according to the recruited cerebral protection technique and exam-
ined for the presence of preoperative cerebral malperfusion, the time of circulatory arrest,
the level of hypothermia and the rate of perioperative strokes. The occurrence of periop-
erative stroke was furthermore subdivided according to the most common neurological
endpoints monitored in studies investigating cerebral protection techniques for ATAAD.
Thus, postoperative neurological deficits were defined as permanent neurological deficits
(e.g., stroke) and transient neurological deficits (e.g., transient ischemic attack, delirium etc.)
or solely new postoperative neurological deficits (e.g., stroke), which were defined through
the absence of preoperative neurological dysfunction. Furthermore, influencing factors
identified by regression analyses—if performed—were added. The complete results are
shown in Appendix A in Table 1. The gathered information is embedded in the following
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chapters, dealing with the most relevant aspects of neuroprotection in surgery for ATTAD
with a specific focus on cerebral perfusion techniques.

3.1. Deep Hypothermic Circulatory Arrest

The use of deep hypothermic circulatory arrest (DHCA) was the first standardized
approach of cerebral protection in aortic arch surgery. While the proximal anastomosis
is made, the systemic temperature is usually lowered to between 16 and 19 ◦C. The use
of DHCA offers the advantage to perform the open distal anastomosis in a bloodless and
canula-free field without the use of clamps. Although this method leads to acceptable
short-term results when a short circulatory arrest is needed, the risk for perioperative stroke
and mortality may rise when circulatory arrest exceeds between 30 and 40 min [16–18].
Furthermore, Czerny et al. identified the use of isolated DHCA as an independent risk
factor for permanent neurologic injury [19]. Additionally, the use of DHCA showed
the poorest long-term survival compared to cerebral perfusion techniques according to
Wiedemann et al. [20]. Based on these findings, isolated DHCA without selective cerebral
perfusion is no longer recommended for cerebral protection in the operative treatment of
ATAAD [9,21,22]. Especially in terms of more extensive, complex and time-consuming arch
operations, the use of a selective cerebral perfusion technique as an adjunct to systemic
hypothermia seems of upmost importance.

3.2. Retrograde Cerebral Perfusion

The idea of retrograde cerebral perfusion (RCP) is to complement DHCA by supplying
additional oxygen to the brain through the venous and capillary system, thereby prolonging
the tolerance of cerebral ischemia while flushing embolic material out of the brain vessels
in a retrograde manner. For this purpose, a cannula is inserted into the superior vena
cava through which oxygenated blood is applied during circulatory arrest with a flow
rate of approximately 500 mL/min and a pressure of around 25 mmHg. A schematic
example of RCP is shown in Figure 2. The use of RCP became popular after 1990 and
was associated with a lower mortality, morbidity and perioperative stroke rate compared
to DHCA alone [23,24]. Additionally, RCP enabled a prolongation of the safe cerebral
ischemic time up to 40 min [17,25,26]. Although the use of RCP delivered excellent clinical
results, doubts were cast about RCP regarding the true benefit of actual brain perfusion.
Several studies demonstrating the superiority of RCP had been based on comparisons
with historical cohorts treated with DHCA, potentially leading to bias in favor of RCP [23].
Notably, in a prospective clinical trial, Bonser et al. demonstrated no clinical or metabolic
advantage of using DHCA in combination with RCP compared to DHCA alone [27].
Moreover, the potential effect of retrograde washout also remained questionable and is still
lacking conclusive evidence [28,29]. Some have even tried to combine the flush effect of RCP
with antegrade cerebral perfusion (ACP), but without any significant clinical advantage
proven [30]. However, according to a recent meta-analysis, the additional use of RCP
to DHCA is associated with a lower risk for perioperative stroke compared to DHCA
alone, supporting the concept of an additional neuroprotective effect [31]. These results
were also confirmed by a multicenter analysis by Ghoreishi et al. [32]. Mechanistically,
the additional use of RCP may result in more homogenous cooling effects as well as
an enhanced clearance of neurotoxic substances released due to latent cerebral ischemia.
Nevertheless, the risk for a perioperative stroke during RCP may rise when circulatory
arrest exceeds 60 min, which casts doubt about the use of RCP for longer circulatory
arrest times [33,34]. Indeed, the implementation of RCP as a primary cerebral perfusion
strategy is often performed under DHCA, which is associated with longer cardiopulmonary
bypass times as well as hypothermia-related side effects [35,36]. The performance of RCP
under higher temperatures in the range of moderate hypothermia has not been broadly
established, but may be a valid option in cases of shorter circulatory arrest times not
exceeding 30 min [37].
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3.3. Antegrade Cerebral Perfusion

During antegrade cerebral perfusion (ACP), the brain is perfused in a physiological an-
tegrade manner through the supra-aortic vessels. This allows to perform aortic arch surgery
and treatment of ATAAD safely under moderate hypothermia from 26 ◦C to 28 ◦C, or even
higher temperatures in selected cases, which leads to a lower cardiopulmonary bypass
time and less hypothermia-related side effects [36]. For ACP, a target flow rate of 10 mL/kg
bodyweight is applied, and the pressure is usually kept from around 40–70 mmHg. The
cannulation of the right axillary artery constitutes the basis of ACP. In case of unilateral
antegrade cerebral perfusion (uACP), the brachiocephalic trunk, the left common carotid
artery and the left subclavian artery are clamped proximally to maintain sufficient perfu-
sion pressure and to prevent a steal phenomenon. Furthermore, uACP can be expanded to
bilateral antegrade cerebral perfusion (bACP) by additionally cannulating the left common
carotid artery. Both techniques are illustrated in Figure 3. Another possibility for bACP
is the cannulation of both common carotid arteries, offering the advantage of continuous
cerebral blood flow without interruption. To get an overview, we identified all available
studies since 2010 that investigated the neurological outcomes in ATAAD in terms of the
applied selective cerebral perfusion techniques. So far, the majority of the studies have
failed to detect a significant difference between RCP and ACP [14,21,38–44]. Moreover,
prospective randomized trials are scarce, often limited due to small patients cohorts and
have thus far not shown any significant difference regarding the risk for a perioperative
stroke [45]. These findings suggest that similar neurological outcomes may be achieved
using either RCP or ACP, justifying both techniques as legitimate and reproducible selec-
tive cerebral perfusion strategies, as recently recommended in the expert consensus of the
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American Association for Thoracic Surgery [6]. Moreover, in a propensity score-matched
analysis, Montagner et al. recently showed that all three cerebral perfusion strategies lead
to similar results during open zone 0 arch anastomosis for the treatment of ATAAD in terms
of neurologic outcomes [38]. This may allow for tailored approaches addressing specific
patient needs in the surgical treatment of ATAAD and adapt the procedure to individual
conditions, e.g., the ability to implement RCP if cannulation of the supra-aortic vessels is
not feasible due to substantial atherosclerosis. However, considering the advantages of
moderate instead of deep hypothermia as well as the potentially limited safety of RCP for
longer circulatory arrest times, ACP has been established as the main selective cerebral
perfusion strategy in European cardiac centers, providing a suitable approach in cases of
prolonged circulatory arrest [46,47].
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3.4. Unilateral or Bilateral?

Although the implementation of ACP is recommended by current guidelines, there is
no consensus regarding the specific technique of ACP in the setting of ATAAD [9]. This
decision is often made on the basis of institutional policies, expert consensus and the
surgeon’s preference. Due to its simplicity, uACP represents an attractive strategy for
many surgeons, especially in cases of shorter circulatory arrest [48]. In contrast, bACP is
currently the most frequently performed technique in Europe [46]. Assuming that uACP
ensures an adequate perfusion of the whole brain, it is supported by several studies, which
demonstrated equal results in terms of risk for perioperative stroke comparing uACP
to bACP [18,49–54]. Norton et al. advocated the use of uACP on the basis of a similar
incidence of right and left hemispheric strokes while avoiding the additional manipulation
of supra-aortic vessels for bACP [53]. However, these findings also showed that bACP may
not be associated with a higher risk for perioperative left hemispheric strokes. Interestingly,
in a recent multicenter trial, Piperata et al. observed a higher incidence of perioperative
as well as left hemispheric strokes in case of bACP compared to uACP [55]. So far, this is
the only study reporting inferior neurological outcomes following bACP, highlighting the
demand for further investigation. Regarding the potential time-consuming complexity of
bACP, Tong and colleagues reported equal cardiopulmonary bypass and circulatory arrest
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times in comparison with uACP [56]. Although the incidence of perioperative strokes
was not significantly lower, bACP led to a reduction in permanent neurologic deficits
by 50% when compared to uACP. Additionally, the performance of uACP presupposes
an intact circle of Willis to ensure an adequate perfusion of the left hemisphere, which does
not apply to all patients undergoing surgery for ATAAD [57]. In contrast, Urbanski et al.
demonstrated that the circle of Willis’ individual anatomical conditions do not correlate
with potential contralateral hypoperfusion and that excellent neurological results can be
achieved via uACP in elective aortic arch surgery [58,59]. A major limitation of most studies
supporting the use of uACP is the fact that they often include a disproportionally higher
number of hemiarch replacements and shorter circulatory arrest times (<40 min) when
compared to complex aortic arch surgery [53,59]. This discrepancy was also highlighted
by Preventza et al., leading to potential bias and possibly underestimating the efficacy of
bACP because of its preferred use in extensive arch surgery [49]. Therefore, they suggested
bACP as the perfusion strategy of choice if the estimated circulatory arrest time should
extend >30 min. Notably, more recent studies have supported these suggestions with
Angleitner et al. demonstrating superior long-term survival for bACP if the circulatory
arrest time exceeded ≥50 min [52]. Consistently, a meta-analysis of Angeloni et al. revealed
that longer circulatory arrest times were associated with increased mortality only among
patients treated with uACP but not bACP [60]. The safety of uACP for shorter circulatory
arrest times and the need of bACP for extended circulatory arrest was also confirmed
by current results of the UK National Adult Cardiac Surgical Audit [22]. In case of total
arch replacement in the setting of ATAAD, Liu et al. could even observe a significantly
reduced risk for perioperative stroke in the group treated by bACP compared to uACP [61].
However, a clear recommendation for the limited safety time of circulatory arrest from
which bACP should be applied has not been reliably described yet. The most recent
guidelines suggest a time interval between 30 and 50 min of circulatory arrest, for which
bACP may be advantageous [9]. The idea of performing trilateral cerebral perfusion
via additional cannulation of the left axillary artery in selected cases represents a rather
experimental approach with no available clinical evidence [62].

3.5. Arterial Cannulation and Neuroprotection

Femoral arterial cannulation has been used widely for the safe implementation of
cardiopulmonary bypass. In recent years, increasing evidence suggests that femoral can-
nulation and consecutive retrograde perfusion may be inferior to antegrade perfusion
techniques in terms of mortality and the risk for perioperative stroke [9,63,64]. Cannulation
of the right axillary artery, particularly, in the setting of ATAAD may be associated with
lower risk for perioperative stroke while being suitable for antegrade cerebral perfusion
by clamping the innominate artery [65]. This may also be possible and safe in cases of
innominate artery dissection [66]. Other approaches such as the direct central cannulation
of the dissected aorta or bilateral cannulation of the common carotid arteries are possible
cannulation strategies, but are only used at a few centers [9,67,68]. Double arterial cannula-
tion strategies combining axillary and femoral cannulation are gaining interest with regards
to potentially preventing and treating malperfusion syndromes, especially in cases of true
lumen collapse and consecutive hypoperfusion [69]. Whether these techniques could also
lower the risk of perioperative stroke is still under investigation.

3.6. Hypothermia and Neuroprotection

Because DHCA was the first established cerebral protection technique for aortic arch
surgery during circulatory arrest, subsequently developed selective cerebral perfusion
strategies were initially also performed during deep hypothermia. Then, especially in terms
of ACP, the setting of deep hypothermia slowly switched to moderate hypothermia and
reached average temperatures of approximately 28 ◦C [70,71]. Leshnower et al. compared
the use of deep hypothermia in combination with ACP to moderate hypothermia with
ACP in the treatment of ATAAD, showing no benefit in terms of mortality or perioperative
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stroke in the group with deep hypothermia [72]. These findings underline that there
is no significant effect of additional cerebral protection when performing ACP under
lower temperatures, justifying the use of moderate or maybe even mild hypothermia
in the treatment of ATAAD [73]. In support, a recent propensity-matched analysis of
the International Registry of Acute Aortic Dissection showed satisfactory results under
moderate hypothermia while avoiding extended cardio-pulmonary bypass times under
deep hypothermia [74]. Although deeper levels of hypothermia do not seem to offer
an additional significant effect of cerebral protection during ACP, the risk of ischemic
damage to the spinal cord must be considered as having particular relevance during
prolonged circulatory arrest under moderate hypothermia [75]. Indeed, Kamiya et al.
showed that the incidence of postoperative paraplegia increased from 0 to 18% when
circulatory arrest exceeded ≥60 min and only moderate instead of deep hypothermia was
used [76]. Of note, different sites of perioperative body temperature assessment have
been delineated to diverge from the actual cerebral temperature, which may affect study
outcomes. While tympanic temperature measurements were tightly correlated with arterial
blood monitoring, bladder and rectal measurements resulted in significantly divergent
measurements [77]. The optimal location for cerebral temperature measurement thus
remains to be defined, although a combination of two locations may increase reliability.

3.7. Monitoring for Neuroprotection

Using near infrared spectroscopy (NIRS) to constantly monitor brain tissue oxygen
saturation seems to be indispensable during surgery for ATAAD and is, furthermore, the
most frequently used neuromonitoring technique in Europe during aortic arch surgery [46].
According to the individual baseline levels of cerebral oxygen saturation, proportional
alterations can be immediately detected. This offers the opportunity to identify the occur-
rence of a sudden cerebral malperfusion syndrome while providing positive feedbacks
after the successful restoration of dissected supra-aortic vessels with recovered adequate
cerebral perfusion. Furthermore, when applying uACP with asymmetric oxygen saturation
reflected by decreases over the left hemisphere, NIRS can support the decision to switch to
bACP, which, in turn, may lower the risk for developing a perioperative stroke [78]. Though
NIRS represents an essential and useful tool during aortic arch surgery, its registration
range is restricted to the frontal cortex when placed bilaterally on the forehead. Thus,
local perioperative strokes in the frontal lobes or global oxygen declines in one or both
hemispheres can be reliably detected, whereas strokes in the medial or vertebrobasilar area
may not be recognized.

3.8. Neuroprotective Drugs

The perioperative application of drugs with potential neuroprotective effects, such
as barbiturates, steroids or mannitol, is also frequently discussed in aortic arch surgery.
An analysis of the German Registry for Acute Aortic Dissection Type A revealed that 50%
of patients undergoing surgery for ATAAD received at least one neuroprotective drug,
indicating a slight advantage for the use of steroids in terms of neurological outcomes [79].
However, further scientific evidence supporting the implementation of neuroprotective
pharmacological treatment is low, while no significant benefit has been shown in larger
clinical trials yet [80].

4. Conclusions

The chosen concept of cerebral protection in the surgical treatment of ATAAD has
a great impact on patients’ outcome in terms of mortality and the risk for a perioperative
stroke. Whereas the use of DHCA alone seems to be outdated today, RCP and ACP have
both been established as legitimate and reproducible selective cerebral perfusion strategies.
Thereby, the use of ACP seems to be superior regarding the possibility to perform the
operation safely under moderate hypothermia compared to RCP and deep hypothermia.
Although there is no clear recommendation by current guidelines for the technique of
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ACP, several studies suggest bACP as the most suitable cerebral perfusion strategy for
prolonged circulatory arrest, while uACP is proven to be safe for shorter times of circulatory
arrest. A well-described and evidence-based time threshold for this purpose is still missing,
although a time interval from 30–50 min has recently been proposed. This issue demands
a prospective, randomized and ideally multicenter trial to evaluate the true benefit of bACP.
Arterial cannulation sites with consecutive antegrade body perfusion, especially right
axillary cannulation, may lead to lower mortality and superior neurological outcome. Single
arterial femoral cannulation leading to retrograde body perfusion should hereby be avoided,
if possible. Regarding the level of hypothermia, moderate hypothermia at approximately
28 ◦C seems to be an effective and well-balanced strategy, offering adequate cerebral
protection while avoiding the disadvantages of deep hypothermia. Additionally, precise
temperature management and adequate neuromonitoring should complement the concept
of cerebral protection. For this purpose, NIRS plays a major role in neuromonitoring during
aortic arch surgery, possibly detecting and potentially lowering the risk for developing
a perioperative stroke.
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Appendix A

Table 1. Recent Studies Investigating the Neurological Outcome after Surgery for ATAAD Taking into Account the Different Techniques of Cerebral Protection.

Author and
Year

Number of
Patients

Cerebral Protection
Technique, n (%)

Preoperative Cerebral
Malperfusion, n (%)

Mean Temperature, ◦C
(±SD/Median)

Circulatory Arrest,
Minutes

(±SD/Median)

Neurological Outcome Defined as
New Postoperative Neurological

Deficit (*) or Permanent (PND) and
Transient (TND) Neurological

Deficit, n (%)

Identified Influencing Factors
on Neurological Outcome

Montagner,
2022 [38] n = 186

uACP: 62 (33.3)
bACP: 62 (33.3) RCP: 62

(33.3)

uACP: 12 (19.4)
bACP: 10 (16.1)

RCP: 8 (12.9)

uACP: 25 ± 4
bACP: 28 ± 3
RCP: 17 ± 3

uACP: 33 ± 16
bACP: 38 ± 14
RCP: 35 ± 15

uACP: 8 (12.9) *
bACP: 7 (11.3) *
RCP: 8 (12.9) *

n.a.

Song,
2022 [50] n = 188 uACP: 94 (50.0)

bACP: 94 (50.0) n.a. uACP: 28 (27–28)
bACP: 28 (27–28)

uACP: 41 (32–56)
bACP: 43 (35–56)

uACP: PND 8 (8.5), TND 19 (20.2)
bACP: 11 (11.8), TND 17 (18.1) n.a.

Samanidis,
2021 [39] n = 290 ACP: 117 (40.3)

RCP: 173 (59.7)
ACP: 14 (12.0)
RCP: 32 (18.5)

ACP: 22 (21–23)
RCP: 18 (17–21)

ACP: 33 (26–48)
RCP: 26 (21–33)

ACP: PND 12 (10.3), TND 15 (12.8)
RCP: PND 12 (6.9), TND 22 (12.7) n.a.

Piperata,
2021 [55] n = 378 uACP: 189 (50.0)

bACP: 189 (50.0)
uACP: 5 (3)
bACP: 5 (3)

uACP: 28 (28–28)
bACP: 28 (25–28)

uACP: 35 (28–44)
bACP: 36 (28–44)

uACP: PND 8 (4.0), TND 21 (11.0)
bACP: PND 26 (14.0), TND 23 (12.0)

Risk Factors:
• bACP may be associated

with a higher risk for
perioperative as well as
left hemispheric strokes

Benedetto,
2021 [22] n = 1929

uACP: 117 (6.1)
bACP: 760 (39.4)
RCP: 222 (11.5)

DHCA: 830 (43.0)

uACP: 10 (8.5)
bACP: 76 (10.0)

RCP: 22 (9.9)
DHCA: 52 (6.3)

n.a.

uACP: 35 ± 21
bACP: 44 ± 36
RCP: 31 ± 19

DHCA: 33 ± 22

uACP: 11 (9.4) *
bACP: 111 (14.6) *

RCP: 29 (13.1) *
DHCA: 118 (14.2) *

Risk Factors:
• DHCA as the single

technique for cerebral
protection

Sun,
2021 [40] n = 108 ACP: 54 (50.0)

RCP: 54 (50.0)
ACP: 2 (3.7)
RCP: 2 (3.7)

ACP: 25 (n.a.)
RCP: 18 (n.a.)

ACP: 88 ± 5
RCP: 63 ± 10

ACP: PND 10 (18.5)
RCP: PND 6 (11.1)

Risk Factors:
• S/p stroke
• Total arch replacement

Xue,
2021 [41] n = 746

uACP: 617 (82.7)
bACP: 13 (1.8)
RCP: 51 (6.8)

DHCA: 65 (8.7)

Total:
82 (11.0)

Total:
21 (14–30)

Total:
29 ± 12

Total:
PND 35 (4.7)

Risk Factors:
• Preoperative cerebral

malperfusion
• Preoperative peripheral

malperfusion
• End-Stage renal disease
• Salvage surgery
Protective Factors:
• Conservative arch repair
• Low-Flow-ACP
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Table 1. Cont.

Author and
Year

Number of
Patients

Cerebral Protection
Technique, n (%)

Preoperative Cerebral
Malperfusion, n (%)

Mean Temperature, ◦C
(±SD/Median)

Circulatory Arrest,
Minutes

(±SD/Median)

Neurological Outcome Defined as
New Postoperative Neurological

Deficit (*) or Permanent (PND) and
Transient (TND) Neurological

Deficit, n (%)

Identified Influencing Factors
on Neurological Outcome

Angleitner,
2020 [52] n = 184 uACP: 93 (50.5)

bACP: 91 (49.5)
uACP: 21 (22.6)
bACP: 15 (16.5) n.a. uACP: 30 (25–45)

bACP: 38 (30–57)
uACP: PND 18 (19.4), TND 9 (9.7)
bACP: PND 17 (18.7), TND 7 (7.7) n.a.

Norton,
2020 [53] n = 307 uACP: 140 (45.6)

bACP: 167 (54.4)
uACP: 10 (7.1)
bACP: 7 (4.2)

uACP: 20 (18–24)
bACP: 17 (16–18)

uACP: 29 (23–38)
bACP: 45 (38–55)

uACP: 9 (6.4) *
bACP: 15 (9.0) * n.a.

O’Hara,
2020 [21] n = 6387

ACP: 2950 (46.2)
RCP: 1445 (22.6)

No Cerebral
Perfusion:
1992 (31.2)

n.a.

ACP: 22 (18–25)
RCP: 18 (19–22)

No Cerebral
Perfusion:
19 (18–21)

ACP: 35 (26–48)
RCP: 33 (25–45)

No Cerebral Perfusion:
26 (20-34)

ACP: PND 369 (12.5)
RCP: PND 162 (11.2)

No Cerebral Perfusion:
PND 277 (13.9)

Risk Factors:
• Prolonged circulatory

arrest
• Protective Factors:
• Utilization of either ACP

or RCP in combination
with Deep or moderate
hypothermic arrest vs. no
cerebral perfusion

Liu,
2020 [61] n = 321 uACP: 124 (38.6)

bACP: 197 (61.4)
uACP: 5 (4.0)

bACP: 11 (5.6)
uACP: 25 ± 0
bACP: 27 ± 1

uACP: 27 ± 7
bACP: 26 ± 6

uACP: PND 22 (17.7), TND 32 (25.8)
bACP: PND 16 (8.1), TND 31 (15.7)

Risk Factors:
• Preoperative neurological

dysfunction
• Prolonged CPB time
• Type of cerebral perfusion

Dong,
2020 [51] n = 61

uACP:
36 (59.0)
bACP:

25 (41.0)

n.a.

uACP:
25 ± 1
bACP:
29 ± 1

uACP:
29 ± 5
bACP:
16 ± 4

uACP:
PND 3 (8.3), TND 5 (13.9)

bACP:
PND 0 (0.0), TND 2 (8.0)

n.a.

Dumfarth,
2018 [14] n = 303

ACP: 202 (66.7)
RCP: 45 (14.9)

DHCA: 46 (15.2)
Without: 10 (3.2)

Total:
17 (5.6)

Total:
21 ± 4

Total:
45 ± 21

Total:
PND: 48 (15.8)

Risk Factors:
• Bovine aortic arch
• Preoperative resuscitation
• Preoperative malperfusion

Furukawa,
2017 [81] n = 137 ACP: 137 (100.0) Total:

12 (8.8)
Total:

22–28 (n.a.) n.a. Total:
PND: 4 (2.9)

Risk Factors:
• Preoperative neurological

symptoms
• Partial or complete

thrombosis of supra-aortic
branch vessels

Keeling, 2017
[48] n = 342 uACP: 342 (100.0) n.a. Total:

26 ± 3
Total:

39 ± 19
Total:

PND: 25 (7.3) TND: 20 (5.8) n.a.
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Table 1. Cont.

Author and
Year

Number of
Patients

Cerebral Protection
Technique, n (%)

Preoperative Cerebral
Malperfusion, n (%)

Mean Temperature, ◦C
(±SD/Median)

Circulatory Arrest,
Minutes

(±SD/Median)

Neurological Outcome Defined as
New Postoperative Neurological

Deficit (*) or Permanent (PND) and
Transient (TND) Neurological

Deficit, n (%)

Identified Influencing Factors
on Neurological Outcome

Zierer,
2017 [71] n = 453 uACP: 298 (66.0)

bACP: 155 (34)
Total:

33 (7.0)
Total:

29 ± 1
Total:

46 ± 23

Total:
PND: 27 (6.0)
TND: 31 (7.0)

n.a.

Tong,
2017 [56] n = 203 uACP: 82 (40.4)

bACP: 121 (59.6)
uACP: 4 (4.9)
bACP: 5 (5.8)

uACP: 24 ± 1
bACP: 24 ± 1

uACP: 23 ± 9
bACP: 24 ± 8

uACP: PND 11 (16.9), TND 6 (9.2)
bACP: PND 9 (8.4), TND 5 (4.7)

Risk Factors:
• Prolonged CPB time
• Prolonged circulatory

arrest

Stamou,
2016 [42] n = 324

ACP: 84 (25.9)
RCP: 55 (17.0)

DHCA: 184 (56.8)
n.a.

ACP: 19 (8–26)
RCP: 17 (10–20)

DHCA: 19 (10–32)

ACP: 31 (0–71)
RCP: 36 (4–61)

DHCA:
17 (0–146)

ACP: 12 (14.3) *
RCP: 12 (21.8) *

DHCA: 26 (14.1) *
n.a.

Preventza,
2015 [49] n = 157 uACP: 90 (57.3)

bACP: 63 (40.1)
uACP: 16 (18.6)
bACP: 17 (27.9)

Total:
22–24 (n.a.)

uACP: 34 ± 11
bACP:46 ± 27

uACP: PND 12 (13.6), TND 10 (11.4)
bACP: PND 7 (11.3), TND 5 (8.2)

Risk Factors:
• S/p coronary intervention

or coronary artery bypass
graft

• Preoperative peripheral
malperfusion

Tokuda, 2014
[43] n = 4128 ACP: 2769 (67.1)

RCP: 1359 (32.9) n.a. ACP: 25 ± 3
RCP: 23 ± 3 n.a. ACP: PND 311 (11.2), TND 121 (4.4)

RCP: PND 132 (9.7), TND 61 (4.5) n.a.

Wiedemann,
2013 [20] n = 329

ACP: 91 (27.7)
RCP: 122 (37.0)

DHCA:
116 (35.3)

ACP: 3 (3.3)
RCP: 9 (7.4)

DHCA:
8 (6.9)

ACP: 25 (n.a.)
RCP: 18 (n.a.)

DHCA:
18 (n.a.)

ACP: 30 (14–92)
RCP: 30 (14–88)

DHCA:
36 (12-88)

ACP: PND 11 (12)
RCP: PND 15 (12)

DHCA:
PND 27 (23)

n.a.

Sugiura, 2012
[44] n = 203 ACP: 94 (46.3)

RCP: 109 (53.7)
ACP: 3 (3.2)
RCP: 1 (0.9)

ACP: 26 ± 1
RCP: 24 ± 1

ACP:65 ± 15
RCP: 53 ± 16

ACP: PND 11 (12.0), TND 32 (34)
RCP: PND 10 (9.2), TND 41 (38) n.a.

Lu,
2012 [54] n = 263 uACP: 135 (51.3)

bACP: 128 (48.7) n.a. uACP: 16 ± 2
bACP: 18 ± 2

uACP: 35 ± 15
bACP: 32 ± 14

uACP: PND 14 (10.4), TND 9 (6.7)
bACP: PND 16 (12.5), TND 7 (5.5) n.a.

Krüger, 2011
[18] n = 1558

uACP: 628 (40.3)
bACP: 453 (29.1)

RCP: 34 (2.2)
DHCA: 355 (22.8)
Without: 88 (5.6)

uACP: 107 (17.0)
bACP: 106 (23.4)
DHCA: 76 (21.4)

n.a.
uACP: 32 ± 18
bACP: 38 ± 24
DHCA: 23 ± 14

uACP: 79 (12.6) *
bACP: 64 (14.1) *
DHCA: 53 (15) *

n.a.

* ACP: Antegrade cerebral perfusion; ATAAD: Acute type A aortic dissection; bACP: Bilateral antegrade cerebral perfusion; CPB: Cardiopulmonary bypass; DHCA: Deep hypothermic
circulatory arrest; n.a.: not available; PND: Permanent neurological deficit; RCP: Retrograde cerebral perfusion; SD: Standard deviation; S/p: Status post; TND: Transient neurological deficit.
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