
Citation: Wyns, A.; Hendrix, J.;

Lahousse, A.; De Bruyne, E.; Nijs, J.;

Godderis, L.; Polli, A. The Biology of

Stress Intolerance in Patients with

Chronic Pain—State of the Art and

Future Directions. J. Clin. Med. 2023,

12, 2245. https://doi.org/10.3390/

jcm12062245

Academic Editor: Achim Berthele

Received: 9 February 2023

Revised: 7 March 2023

Accepted: 10 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

The Biology of Stress Intolerance in Patients with Chronic
Pain—State of the Art and Future Directions
Arne Wyns 1,† , Jolien Hendrix 1,2,3,*,† , Astrid Lahousse 1,3,4,5 , Elke De Bruyne 6 , Jo Nijs 1,4,7 ,
Lode Godderis 2,8 and Andrea Polli 1,2,3

1 Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy,
Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
arne.wyns@vub.be (A.W.); astrid.lucie.lahousse@vub.be (A.L.); jo.nijs@vub.be (J.N.);
andrea.polli@vub.be (A.P.)

2 Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven,
Kapucijnenvoer 35, 3000 Leuven, Belgium; lode.godderis@kuleuven.be

3 Flanders Research Foundation-FWO, 1090 Brussels, Belgium
4 Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital,

1090 Brussels, Belgium
5 Rehabilitation Research (RERE) Research Group, Department of Physiotherapy, Human Physiology and

Anatomy, Faculty of Physical Education & Physiotherapy (KIMA), Vrije Universiteit Brussel,
1090 Brussels, Belgium

6 Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel,
1090 Brussels, Belgium; elke.de.bruyne@vub.be

7 Unit of Physiotherapy, Department of Health and Rehabilitation, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden

8 External Service for Prevention and Protection at Work, IDEWE, 3001 Heverlee, Belgium
* Correspondence: jolien.hendrix@vub.be
† These authors contributed equally to this work.

Abstract: Stress has been consistently linked to negative impacts on physical and mental health.
More specifically, patients with chronic pain experience stress intolerance, which is an exacerbation
or occurrence of symptoms in response to any type of stress. The pathophysiological mechanisms
underlying this phenomenon remain unsolved. In this state-of-the-art paper, we summarised the
role of the autonomic nervous system (ANS) and hypothalamus-pituitary-adrenal (HPA) axis, the
two major stress response systems in stress intolerance. We provided insights into such mechanisms
based on evidence from clinical studies in both patients with chronic pain, showing dysregulated
stress systems, and healthy controls supported by preclinical studies, highlighting the link between
these systems and symptoms of stress intolerance. Furthermore, we explored the possible regulating
role for (epi)genetic mechanisms influencing the ANS and HPA axis. The link between stress
and chronic pain has become an important area of research as it has the potential to inform the
development of interventions to improve the quality of life for individuals living with chronic pain.
As stress has become a prevalent concern in modern society, understanding the connection between
stress, HPA axis, ANS, and chronic health conditions such as chronic pain is crucial to improve public
health and well-being.

Keywords: chronic pain; stress intolerance; autonomic nervous system; hypothalamus-pituitary-
adrenal axis; genetics; epigenetics

1. Stress Intolerance Plays a Major Role in Chronic Widespread Pain

Chronic pain affects approximately 20% of the global population and is associated
with a significant burden for the individual and their significant others [1]. It is moreover
influenced by several cognitive, emotional, and social factors [2]. Stress is one such factor
that is able to influence pain symptoms and has long been proposed as relevant in the pain
experience [3]. The World Health Organization (WHO) defines stress as any type of change
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that causes physical, emotional, or psychological strain [4]. The stress response is the
physiological and biological response of the body to any situation causing such strains [5].

Stress is highly subjective. Different individuals might respond differently to the same
stressful situation. The stress response, therefore, depends on the perceived amount of stress
as well as on the nature, duration, and intensity of the stress stimulus [6–8]. In patients with
chronic pain, stress is generally associated with a worsening of pain symptoms and stress-
induced hyperalgesia. In fact, stress and pain are highly comorbid, and show significant
overlap in both conceptual and biological processes [9]. On the one hand, experiencing
stressful events in life puts individuals at risk to develop chronic musculoskeletal pain
and patients with symptoms of post-traumatic stress disorder report higher pain severity
levels [3,10]. On the other hand, dealing with chronic pain increases the risk to develop
stress-related conditions such as depression and anxiety [11]. Furthermore, a recent review
showed that a blunted acute stress response predicted chronic pain and poor health at a
long-term follow-up (1 year) [12].

However, the impact of stress in patients with chronic pain goes beyond pain mod-
ulation. Other symptoms such as fatigue and cognitive symptoms can also be triggered
or worsened because of stress [13,14]. Here, we define the exacerbation or occurrence of
symptoms in response to stress as stress intolerance.

2. Objectives

This state-of-the-art paper aims to provide an overview of the biological mechanisms
that may explain stress intolerance in patients with chronic pain, focussing on the two major
stress systems—the autonomic nervous system (ANS) and the hypothalamic pituitary axis
(HPA). Although stress intolerance can be induced by physical and mental stress, this state-
of-the-art paper focuses on evidence originating from studies investigating mental stress.

Of note, other biological systems should not be ignored when aiming to unravel the
pathophysiology of stress intolerance in patients with chronic pain. Considering that stress
intolerance comprises various symptoms within different domains, it probably stems from
a multisystemic pathophysiology. Other systems showing intricate links with the ANS,
the HPA, nociceptive mechanisms, and the stress response are thus likely, collaboratively
with the ANS and HPA axis, involved in explaining stress intolerance in chronic pain.
The immune system, as well as mechanisms related to the opioid and endocannabinoid
system, can all potentially influence and be influenced by pain and stress. We acknowl-
edge the complexity of the aforementioned systems and their interactions. However,
a detailed description of such systems is beyond the scope of this review and can be
found elsewhere [15–19].

3. Methodology

A search exploring stress system dysregulations in chronic pain was queried on
PubMed and Web of Science up to December 2022 using following keywords such as chronic
pain, stress physiology, autonomic nervous system, SAM axis, HPA axis, hyperalgesia,
(nor)adrenaline, catecholamine, cortisol, glucocorticoids, stress hormone, stress response,
(epi)genetics, immunology. Inclusion criteria for relevant articles were: (1) address one
of the scopes within this review; (2) describe a rationale for the state-of-the-art aspect;
(3) written in English or Dutch; (4) human studies or animal studies if necessary.

4. Two Major Stress Systems: The Autonomic Nervous System and the
Hypothala-Mus-Pituitary-Adrenal Axis

The stress response is an evolutionary conserved, complex, and efficient system with
modulation in associated neural (CNS), endocrinological, and immunological systems [20].
Perception of a stressor activates several neuronal circuits involving the limbic forebrain,
the brainstem, and nuclei of the hypothalamus, which on their part release stress-mediating
molecules, initiating a stress response [21]. Physical and psychological stressors activate
different neural networks, resulting in a specified stress response [20]. Physiological and
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behavioural mechanisms simultaneously aim to restore body homeostasis and promote
stress adaptation [22]. The two main neural circuits through which our body adapts to stress
are the autonomic nervous system (ANS) and the Hypothalamus-Pituitary-Adrenal (HPA)
axis (see Figure 1 for a schematic overview). These systems usually work in synchrony and
influence each other through mutual, positive feedback loops [23].
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Figure 1. Visual representation of the major stress pathways, together with common dysregu-
lations in chronic pain and their possible pathophysiological implications in stress intolerance.
↑, Increased; ↓, Decreased; ACh, Acetylcholine; Adr, Adrenaline; ACTH, Adrenocorticotropic
hormone; COMT, Catechol-O-methyltransferase; CNS, Central nervous system; CWP, Chronic
widespread pain; CRH, Corticotropin-releasing hormone; mDNA, DNA methylation; GR, Glu-
cocorticoid receptor; HRV, Heart rate variability; HPA axis, Hypothalamic-pituitary-adrenal axis;
MAO-A&B, Monoamine oxidase A&B; NA, Noradrenaline. Created with BioRender.com (Accessed
on 9 February 2023).

Under normal circumstances, acute physical or psychological stressors activate the
ANS inducing a short-lasting increase in sympathetic nervous system (SNS) activity. Stress
activates brainstem catecholaminergic neurons and efferent spinal cord neurons of the dor-
sal intermediolateral column, which converge in pre-ganglionic sympathetic neurons [24].
These neurons synapse directly to chromaffin cells in the adrenal medulla, which secretes
adrenaline and noradrenaline in the circulation. In addition, other pre-ganglionic neurons
project to several post-ganglionic sympathetic neurons in paravertebral ganglia, using
acetylcholine (ACh) as neurotransmitter. Consequent activation of nicotinic receptors on
these post-ganglionic neurons results in noradrenaline secretion at the target tissue [25].
Adrenaline and noradrenaline have diverse physiological functions, depending on the
adrenergic receptor (AR) they bind to. ARs are G-protein-coupled receptors and can be
divided in α1-, α2- and α1-, β2-, and β3-ARs. The overall effect of α1- and α2-ARs ac-
tivation is increased heart rate (HR) and blood pressure (BP), and decreased heart rate
variability (HRV). Blood flow is increased to the skeletal muscles and decreased towards
the abdominal organs, metabolic activity such as glycogenolysis in skeletal muscle and
lipolysis in adipocytes are promoted to increase energy availability [24]. On the contrary,
β1- and β2-ARs stimulation foster vasodilation, decrease blood pressure and increase HRV,
though can either increase or decrease HR [26–28]. Several organs, as well as immune
cells, express both α- and β-ARs, allowing fine regulation of their functions. Decreased
expression of β-ARs have been associated with several inflammatory conditions such as
rheumatic diseases and obesity [29,30]. β2-ARs show potent anti-inflammatory effects [23],
and their down-regulation or desensitisation can help explain pain symptoms.

The HPA axis provides a protracted response, yet its activation is delayed compared
to the SNS. This response originates when the hypothalamus, the paraventricular nucleus
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(PVN) in particular, is triggered by stressors. The PVN releases several neurochemicals,
such as oxytocin, vasopressin, and corticotrophin-releasing hormone (CRH) [31,32]. CRH
reaches the anterior pituitary (adenohypophysis) and stimulates it to synthesise and secrete
adrenocorticotrophic hormone (ACTH) [32]. ACTH, on its part, stimulates the cortex of
the adrenal gland to produce and release glucocorticoids, mostly cortisol [33]. Cortisol in
turn also exerts an effect on the PVN and anterior pituitary, by limiting synaptic plasticity
and suppressing neural excitability, thus creating a long and short negative feedback
loop [22]. Glucocorticoid secretion in humans follows a general ultradian and circadian
rhythm with basal peak cortisol levels around weaking-up time [34]. Cortisol exerts its
functions through binding mineralocorticoid receptors (MR) or glucocorticoid receptors
(GR), both ligand-activated transcription factors [35]. These receptors are widely expressed
throughout the body. Not surprisingly, cortisol affects several organs and systems [36].
The HPA axis regulates blood pressure and vascular tone homeostasis, as well as raises
blood glucose levels through gluconeogenesis in the liver during the stress response [37].
Moreover, it is widely known that cortisol signalling in most immune cells generally leads
to an immunosuppressive phenotype, which will be discussed later [38].

Both systems convert physical and psychological stressors in the appropriate and situ-
ational stress response and are vital for several, if not most, processes in body homeostasis.
Dysregulations in these systems may lead to severe disorders, such as a dysfunctional stress
response, i.e., stress intolerance. Both the SNS and the HPA axis have been found to be
disturbed in several disorders, including chronic pain syndrome [39–42]. In the following
parts, we will discuss the role of both systems in stress intolerance in chronic pain disorders.
In addition, we briefly touch upon dysregulations in epigenetic modifications and the
immune response, in relation to stress intolerance.

5. Sympathetic and Adrenergic Activity Have a Role in Stress Intolerance

Sympathetic dominance as a result of decreased parasympathetic and increased sympa-
thetic activity at baseline has been observed in patients with chronic pain [43–47]. However,
the strength of the evidence depends on the clinical aetiology of chronic pain. A meta-
analysis by Koenig et al. demonstrated that HRV was consistently decreased only in
patients with fibromyalgia and other chronic pain conditions such as pelvic pain, whiplash-
associated disorder, and neck-and-shoulder pain [43]. On the contrary, results were con-
flicting for primary headache or irritable bowel syndrome (IBS) [43]. In addition, the
sympathetic stress response in patients with chronic pain is blunted, especially in chronic
widespread pain (CWP) syndromes such as fibromyalgia [45,48–53]. In other conditions,
such as localised chronic muscle pain and chronic whiplash-associated disorder, hypo-
reactivity is less pronounced or absent, respectively [48,54].

Biological measures (e.g., catecholamine levels) point in the same direction. On the
one hand, noradrenaline levels at baseline have been found to be elevated in patients
with fibromyalgia, which is consistent with an increased sympathetic activity [55–59]. On
the other hand, changes in noradrenaline and adrenaline in response to different types of
stressors are less pronounced, which is consistent with the blunted stress response [58,60,61].
However, results on catecholamine levels in patients with chronic pain remain conflicting
as some studies report no or opposite differences at baseline or in response to stress [61–64].

Autonomic activity has also been associated with various symptoms of stress intol-
erance [65,66]. Recent systematic reviews concluded that parasympathetic activity was
positively associated with self-regulation and pain inhibition capacities, and that cognitive
performance is positively associated with HRV [65,66]. Additionally, pain severity showed
to be inversely correlated with HRV in an occupational sample comprising people with and
without chronic pain. However, this correlation was only significant in the entire sample
and in the group without chronic pain, but not in the group with chronic pain, implicating
that the autonomic activity of patients with chronic pain relates differently to pain than
in those without chronic pain [47]. This is contradicting to the results of Zamunér et al.
who demonstrated that pain intensity in fibromyalgia is in fact correlated with sympathetic
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activity, which is in turn inversely correlated with HRV [67]. Taken together, these results
show that sympathetic dominance is associated with symptoms of stress intolerance. Sym-
pathetic dominance might be due to reduced parasympathetic reactivation during recovery
from stress, as is the case during recovery from exercise [26].

Preclinical studies also support autonomic involvement in stress intolerance and
provide us with deeper insights. Khasar et al. were able to induce hyperalgesia in rats
by injection of adrenaline [68]. The hyperalgesia was further enhanced by unexpected
sound stress. In addition, removing the adrenal medulla before stress exposure prevented
stress-induced enhancement of hyperalgesia [68]. As the adrenal medulla is an important
site of adrenaline production, these results indicate that elevated levels of catecholamines
are required for the induction of stress-induced hyperalgesia. Their follow-up study
later revealed that catecholamines are also pivotal for the maintenance of stress-induced
hyperalgesia. Removal of the adrenal medulla after exposure to sound stress reversed the
stress-induced hyperalgesia that had occurred in response to stress. Finally, administration
of adrenaline in these rats reconstituted the stress-induced hyperalgesia again [69]. These
results are in line with another animal study that focussed on the role of α2 ARs, which
tightly control noradrenaline release by autoinhibition upon activation. Animals in which
the α2 ARs were blocked (through injection of receptor antagonists or knock-out) developed
hyperalgesia in response to stress. This stress-induced hyperalgesia was prevented when
sympathetic activity was blocked, again showing that sympathetic activity is required for
the induction of stress-induced hyperalgesia [70]. Finally, inhibition of the catechol-O-
methyltransferase (COMT) enzyme, which prevents the degradation of catecholamines,
has been found to increase pain sensitivity through activation of β-ARs [71]. Although
some contradictory findings exist [72], accumulating evidence suggests that sympathetic
and adrenergic activity may be involved in stress intolerance (see Figure 1).

6. The HPA Axis Is Deregulated in Chronic Pain Syndromes

The HPA axis also plays an important role in stress intolerance (see Figure 1 for a
summary of findings). Activation of the HPA axis results in an increased concentration of
circulating corticosteroids, especially cortisol. Deregulation of adrenal steroid secretion
has been reported in several chronic pathological conditions, including chronic stress and
dysfunctional chronic pain conditions [73,74]. Alteration of corticosteroid expression can
give rise to two opposite phenomena, namely hyper- and hypocortisolism [75].

Hypercortisolism is characterised by basal hypercortisolism and/or hyper-reactivity.
Basal hypercortisolism is defined as a permanently increased cortisol level and decreased
negative feedback of the HPA axis, whereas hyperreactivity refers to normal cortisol levels
with exaggerated behavioural and cortisol responses to stressful events [76]. Hypercor-
tisolism has been reported in several chronic pain conditions, including myofascial pain
and burning mouth syndrome [77,78]. Similarly, hypocortisolism includes basal hypocor-
tisolism and hypo-reactivity to stressful events [74]. Tops et al. found that hypocorti-
solism occurs after a prolonged period of repetitive stimulation of the HPA axis result-
ing in excessive cortisol release, suggesting that hypocortisolism chronologically follows
hypercortisolism [79]. Hypocortisolism has been reported in patients with myalgic en-
cephalomyelitis/chronic fatigue syndrome (ME/CFS), IBS, and chronic pelvic pain [80–82].
Interestingly, lower cortisol levels have been associated with lowered pain thresholds and
increased pain sensitivity, and a blunted cortisol-awakening response with decreased cog-
nitive function [83–86]. In CWP and fibromyalgia, contradicting results have been found.
Although most findings report hypocortisolism, several studies also reported increased
cortisol levels [87–91]. These contradictory results might be partially explained by the
fact that the HPA axis can respond differently depending on previous unknown repetitive
stressors that have been present in the lives of the participants [92]. One study by Coppens
et al., found a blunted cortisol response and a higher subjective stress rating in response to
psychological stress in fibromyalgia patients compared to healthy controls [93]. Concern-
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ing these inconsistencies, more research is needed to elucidate whether a true causal link
between corticosteroid mechanisms and the pathogenesis of chronic pain exists.

Though research has mostly focused on cortisol as measure of the HPA axis function,
other components of the axis have also been investigated. CRH is released from the hy-
pothalamus in response to physical and psychological stressors. It interacts with CRH
receptors 1 and 2 [94]. CRH exerts actions in both the periphery and stress-related regions in
the brain, i.e., the hypothalamus, amygdala, locus coeruleus, and hippocampus. Preclinical
research using rat models demonstrated the involvement of CRH in stress-induced hyperal-
gesia and stress intolerance [95]. Peripheral administration of a CRH receptor 1 antagonist
before water avoidance stress inhibited the development of stress-induced visceral hyperal-
gesia [96,97]. Additionally, in mice exposed to a forced swim test, administration of the
CRH receptor 2 antagonist attenuated the development of stress-induced musculoskeletal
hyperalgesia [98]. In patients with IBS, administration of the CRH antagonist alpha-helical
CRH reduced electrical stimulation-induced abdominal pain [99,100]. Another study found
increased pain intensity and decreased pain thresholds as result of rectal distention in
healthy volunteers when CRH was peripherally administered [99,100]. Consistent with the
preclinical findings, these results strengthen the evidence that CRH and its receptors are
involved in stress-induced hyperalgesia and stress intolerance.

7. A Key Regulatory Role for Genetics and Epigenetics in Stress Intolerance

Despite accumulating evidence implicating the relevance of the abovementioned
systems in stress intolerance in patients with chronic pain, stress responses and pain are
variable among and within individuals. For instance, the effect of stress on pain (i.e., hypo-
or hyperalgesia in response to stress) depends on the magnitude of the individual stress
response [101]. Part of the variability in pain and stress among individuals can be explained
by genetics. Genetic polymorphisms affecting the activity of COMT or monoamine oxi-
dase A and B (MAO-A/B), which are both catecholamine-degrading enzymes and thus
influence catecholamine levels and ANS functioning, have been associated with increased
stress responsiveness and pain sensitivity in both animals and humans [102–111]. Typi-
cally, polymorphisms that lower enzymatic activity and thus elevate catecholamine levels
are associated with higher pain sensitivity [112]. Although some conflicting evidence
exists [61–64], these findings are in line with the higher catecholamine levels that have been
found in patients with chronic pain.

Genetic polymorphisms of the corticosteroid receptor gene found in chronic pain are
also worth mentioning. Macedo et al. found reduced GR expression in combination with the
increased prevalence of the MR rs5522 (I180 V) polymorphism in fibromyalgia patients [75].
Other polymorphisms that alter the stress response have also been described. For example,
Wüst et al. found that carriers of the GR N363S polymorphism showed increased salivary
cortisol response to psychological stimuli, and that the GR BclI RFLP polymorphism was
associated with a diminished cortisol stress response upon psychological stress in healthy
individuals [113]. Recently, a study by Linnstaedt et al. found a functional polymorphism
in the 3′-UTR of the FKBP5 gene (rs3800373), a key regulator for glucocorticoid receptor
sensitivity, which was associated with a higher chance to develop chronic post-traumatic
pain [114]. Finally, the same group found a polymorphism in the corticotropin-releasing
hormone binding protein (CRHBP) gene (rs7718461) to be highly associated with the FKBP5
gene, and to be predictive of chronic musculoskeletal pain after a motor vehicle crash [115].

Although genetic polymorphisms can explain at least part of between-subject variabil-
ity in stress responses and pain [116,117], they cannot explain within-subject variability.
Epigenetic changes are strong candidates to explain both variability among individuals and
within the same individual as they are dynamic mechanisms, responsive to environmental
changes and the context [118]. Only few clinical studies investigated epigenetic changes in
relation to chronic pain [119]. The role of epigenetics in the context of stress intolerance in
chronic pain has never been investigated in humans, even though epigenetic mechanisms
are clearly influenced by acute stress [120,121]. Stress has been reported to influence epige-
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netic regulation of genes involved in the abovementioned systems. Clinical studies found
that DNA methylation—the best-known epigenetic modification—of genes involved in
catecholamine degradation (COMT, MAOA, and MAOB) [122–125] and HPA-axis (CRHR1,
NR3C1) [126–130] is in fact influenced by early-life stress and altered in patients with
stress-related conditions. One study showed that COMT DNA methylation associated with
lifetime exposure to stress relates to cognitive function in healthy controls [123]. Greater
lifetime exposure to stress was associated with reduced COMT DNA methylation, which
was in turn correlated with reduced working memory accuracy [123]. This study thus
supports the involvement of epigenetic mechanisms in stress intolerance as cognitive symp-
toms, including impaired working memory, may worsen or be triggered in response to
stress [13,14].

Genetics and epigenetics are thus both associated with pain and stress. Moreover,
genetic polymorphisms can influence DNA methylation in several genes [131–135], as is
the case for COMT [136,137]. It is thus likely that both genetics and epigenetics underly the
role of the ANS and HPA axis in stress intolerance in patients with chronic pain. Of note,
the aforementioned studies described stress-related rather than stress-induced epigenetic
modifications as all data were obtained from cross-sectional studies. To elucidate a causal
and/or regulatory role of epigenetic mechanisms in stress intolerance in chronic pain, future
research should investigate the link between acute and chronic stress-induced epigenetic
modifications, their downstream effects on the ANS and the HPA axis, and the associated
symptoms in both patients with chronic pain and healthy controls.

8. Future Directions for Research

Research suggests that patients suffering from chronic pain conditions react differently
to stress. However, the biological and physiological mechanisms linking stress and pain
remain vague. We introduced the term “stress intolerance”, which refers to the exacerbation
or occurrence of symptoms, including but not limited to pain, in response to any type
of stress. In this review, we summarised (preliminary) evidence supporting the idea
that the two major stress systems, the ANS and the HPA axis, might be able to explain
this phenomenon. Furthermore, genetic and epigenetic mechanisms might cover a key
regulatory role.

Although evidence indicates that the functionality of the stress systems is deviant
in patients with chronic pain, the direction of the link between stress and pain remains
unclear. Some studies found that a blunted stress response can predict chronic pain later in
life [12,84]. Such results imply that the stress response is already deviant before chronic pain
develops. However, other studies could not support this finding [3]. The alternative option
is that the stress responses become altered after chronic pain has already developed. This
latter option would explain why stress intolerance is common in chronic pain populations.
Future studies should thus be designed in a way that would allow us to unravel causal
relationships between the two. In a later phase, we can then intervene with the underlying
mechanisms and aim to prevent the development of chronic pain and/or the altered stress
response.

To date, research on the topic is not only very scarce but the methods and protocols
used to measure aspects of the ANS and HPA axis, as well as epigenetic and immune
markers, are highly heterogeneous. Consequently, results are often not comparable. Future
research methods should be standardised; time of data collection as well as the time between
waking up and data collection is crucial and should be clearly reported and standardised.
This is especially true when data collection takes place in the morning, due to the cortisol
awakening response. We would also suggest employing multiple measurements across
several days before and after stress exposure to further control for circadian fluctuations
and within-patient variability. Such a design would also allow to investigate the recovery
phase after the stressful challenge or event.

Additionally, current research investigated biological outcomes alone, with no link
to symptom severity, thus making the available findings less relevant clinically. As stress
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intolerance is defined by the fluctuations in severity and presence of symptoms after stress
exposure, repeated-measure designs investigating solely biological outcomes (without
linking them to symptom severity) cannot provide answers on which mechanisms are
involved. Future studies should thus also assess symptom severity and biological outcomes
at the same time.

Taken together, the current knowledge creates the basis supporting a role for the
stress systems in the pathology of chronic pain disorders and specifically stress intolerance.
Further studies investigating the stress systems using standardised methods are warranted
to obtain a better understanding of the mechanisms at play. A summary of the main future
directions for research can be found in Figure 2.
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9. Future Directions for Clinical Practice

Currently, most physicians provide chronic pain patients with passive and biomedical
treatments, which usually consist of medication and surgery. However, this approach
often leads to poor benefits and carries a higher risk of adverse events [138]. A biomed-
ical approach to pain omits its multidimensional aspects and disregards the impact of
distress, which increases the risk of maintaining the pain experience [139]. Dysfunctional
physiological stress response systems add complexity and induce heterogeneity in treat-
ment responses, which emphasises the importance for clinicians of being attentive to
stress intolerance.

Several treatment options are available targeting contributing factors to the mainte-
nance of pain and possibly the development of stress intolerance. Educating the patient
about pain is relevant in terms of stress management as patients with chronic pain are
at higher risk of developing anxiety and depression [139], which in turn have a mediat-
ing effect on pain [140,141]. Patient education and reassurance are able to reduce their
distress and change their attitudes towards pain [142]. Several systematic reviews with
meta-analyses have shown compelling evidence for neuroscience education in reducing
pain, perceived disability, and psychosocial factors such as fear-of-movement and catas-
trophising in patients with chronic pain [142–145]. Cognitive Behavioural therapy (CBT),
acceptance and commitment therapy (ACT), and pain education targeting pain interference,
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stress, and disability, can also be employed, in an attempt to reduce contributing factors to
the pain experience [146–149].

Sleep is another important contributing factor to chronic pain that should be addressed
during management of chronic pain and stress intolerance [150]. The interplay between
sleep, stress, and pain has been demonstrated by numerous chronic pain studies, even
though the pathophysiology is not fully understood [151,152]. Disrupted sleep results in a
low-grade inflammatory response, which will decrease patients’ stress tolerance [153,154].
Clinicians should thus assess sleep problems because sleep deprivation can lead to patients’
inability to face daily stressors [153].

Though the aforementioned approaches have been shown to help reduce pain and
increase quality of life, research into the pathophysiological mechanisms of chronic pain
and stress intolerance is still much needed. Research into the causal mechanisms may
highlight the importance of preventive medicine when results show that the physiological
stress response is already deviant before chronic pain develops, as is already shown by
some studies [12]. In that case, the development of chronic pain may be prevented by
targeting mechanisms underlying a dysregulated stress response. Animal studies already
demonstrated that several interventions may be of help in targeting a dysregulated stress
response. Both physical activity and antidepressant administration have been found to
attenuate stress-induced DNA-methylation changes in rats [155,156]. By understanding
the effect of various interventions on stress-induced epigenetic changes, we might be able
to target key dysregulations underlying stress intolerance.
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