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Abstract: Data obtained from routine clinical care find increasing use in a scientific context. Many
routine databases, e.g., from health insurance providers, include records of medical devices and
therapies, but not on motor function, such as the frequently used Gross Motor Function Measure-66
(GMFM-66) score for children and adolescents with cerebral palsy (CP). However, motor function
is the most common outcome of therapeutic efforts. In order to increase the usability of available
records, the aim of this study was to predict the GMFM-66 score from the medical devices used by a
patient with CP. For this purpose, we developed the Medical Device Score Calculator (MDSC) based
on the analysis of a population of 1581 children and adolescents with CP. Several machine learning
algorithms were compared for predicting the GMFM-66 score. The random forest algorithm proved
to be the most accurate with a concordance correlation coefficient (Lin) of 0.75 (0.71; 0.78) with a
mean absolute error of 7.74 (7.15; 8.33) and a root mean square error of 10.1 (9.51; 10.8). Our findings
suggest that the MDSC is appropriate for estimating the GMFM-66 score in sufficiently large patient
groups for scientific purposes, such as comparison or efficacy of different therapies. The MDSC is not
suitable for the individual assessment of a child or adolescent with CP.

Keywords: cerebral palsy; gross motor function measure; GMFM-66; GMFCS; machine learning

1. Introduction

Cerebral palsy (CP) is an umbrella term for a heterogeneous group of motor disorders
of the developing child [1]. The disorder of movement and posture is due to non-progressive
damage of the developing brain and is the most common cause of motor impairment in
childhood [1,2]. The symptoms of CP are highly variable [3]. The typical symptom in most
cases is increased muscle tone, but can also be expressed as dystonia, chorea, or athetosis
depending on the localization of the damage [4,5]. Neurological symptoms lead to abnormal
posture and movement. Secondary skeletal deformities such as clubfoot, scoliosis, and hip
dislocations may occur leading to pain [5]. In addition to motor impairment, there is a
wide range of associated disorders, such as epileptic seizures [5] and sensory, behavioral,
perceptual, cognitive, and communication disorders [1]. The clinical presentation and the
severity vary from very mild limitations to severe physical disability. By distribution of
the symptoms, CP is classified clinically into bilateral spastic CP (quadriplegic or diplegic),
unilateral spastic CP, dyskinetic CP, ataxic CP, or mixed-type CP.

Due to the high complexity of CP, multidisciplinary care is required [6]. There is a
broad field of therapeutic options, which are as diverse as the presentation of CP [7]. The
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evidence base of interventions continues to grow and there is a large increase in research
findings [8,9]. Nevertheless, evidence for efficacy is often lacking, especially for standard
care therapies [8]. Even for therapies that are already well evaluated, there is a lack of
long-term outcomes [8]. In addition, more research is needed to find the best possible
frequency and intensity of intervention [9].

The benefit of therapy varies inter-individually, and it is usually difficult to find
appropriate selection criteria. On the other hand, there are many databases, such as those of
health insurance companies and health care providers from which a lot of information could
be generated. However, these databases usually only contain records about the type of CP,
therapies, and prescribed medical devices, such as walking aids or wheelchairs. Motor
assessments, such as the most frequently used Gross Motor Function Measure (GMFM-66),
are often not available. The GMFM-66 score is the most commonly used assessment of
gross motor skills and is a standard element for evaluating the success of therapy [10]. In
order to increase the usability of available records, the aim of this study was to predict the
GMFM-66 score from medical devices used by a patient with CP.

Obviously, a child or adolescent using a wheelchair is more restricted in their mobility
than one using crutches. The medical device used usually matches the patient’s impairment
like a “negative image”. The approach of using an assistive medical device for classification
is not new. The Gross Motor Function Classification System (GMFCS), a five-level clinical
classification system to describe the gross motor function of children with CP, also utilizes the
use of aids as a basis for classification into groups [11]. Consequently, in this study, we aimed
to determine the accuracy of measuring the level of gross motor impairment in children and
adolescents with CP based on patient data including information about their medical devices.
For this purpose, we developed the Medical Device Score Calculator (MDSC).

2. Materials and Methods
2.1. Study Participants

This study is retrospective, nonrecurring, and cross-sectional. The sample consists of
data from 1639 patients who were treated within the routine rehabilitation program “Auf
die Beine” from 2006 to 2021 at UniReha GmbH, Centre of Prevention and Rehabilitation
of the University Hospital of the University of Cologne, Germany. The program “Auf
die Beine” is aimed at children and adolescents with movement disorders such as CP,
offering holistic, intensified, and interdisciplinary forms of therapy [12]. Trained healthcare
professionals scored patients with the GMFM-66 and the GMFCS.

All patients or their legal guardians were informed, and consented to the collection of
data for research purposes. Data were recorded in the German clinical trial registry and
can be found at www.germanctr.de (DRKS0001131) (accessed on 16 December 2022). Data
collection and use were approved by the Ethics Committee of the University of Cologne
(16-269). Only data collected initially upon entering the program were used. Other data
from follow-up examinations were not included in this study. Inclusion criteria for this
study were the diagnosis of CP, age 2 to 25 years, and at least 60 items completed and
scored on the GMFM-66, resulting in the inclusion of 1581 patients.

2.2. Gross Motor Function Measure-66 (GMFM-66)

The Gross Motor Function Measure is an evaluative test for the assessment of motor
skills originally consisting of 88 test items and was reduced to 66 items in a revised
version [10]. It was developed based on the milestones of normal motor development in
children. A five-year-old normally developing child should be able to complete all test
items with the highest possible score [13]. Scores range from 0 to 100, with 100 representing
the highest motor ability [13].

Each test item is scored from 0–3 points:

0 = does not initiate
1 = initiates
2 = partially completes

www.germanctr.de
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3 = completes completely
NT = Not tested

The GMFM-66 is one of the most investigated clinical test instruments for assessing
the mobility of children with CP [14]. However, it is also a key element of research, e.g., to
validate new therapeutic procedures or to evaluate other assessment instruments [13].
Reliability, validity, and responsiveness to change have been demonstrated to a high
degree [10,13,14]. Scoring the GMFM-66 requires a computer program, the Gross Motor
Ability Estimator (GMAE). It converts the entered scores into an interval scale.

2.3. Gross Motor Function Classification System (GMFCS)

The Gross Motor Function Classification System (GMFCS) is a standardized grading
procedure for classifying the degree of physical limitation or motor performance of a child
with CP aged 1 to 18 years [15,16]. The GMFCS consists of 5 levels for classifying the severity
of CP, with level I representing the greatest level of ability and thus the lowest severity of
the condition and level V representing the highest severity. An ordinal scale is used [11].

The GMFCS levels for children with CP (6 to 12 years) are [11]:
Level I: Walking without limitations; limitations of higher motor skills.
Level II: Independent walking without walking aids in the community.
Level III: Walking with aids, limitations in walking in the community.
Level IV: Independent locomotion limited; children are pushed in a wheelchair or use
powered mobility
Level V: Independent locomotion is severely limited even with powered mobility.

GMFCS grading is based on observation and/or report by the affected person or
caregiver. Children are assigned to the level that best reflects their usual performance [11].
It does not assess the quality of execution or the best possible skill a child may be able
to perform. The GMFCS primarily considers motor functions in the areas of locomotion,
transfer, and sitting (trunk stability) [17]. The use of assistive devices represents a central
element of the classification into a level. For each of the 5 levels, there are age-dependent
defined descriptions of the characteristics.

2.4. Data Preparation

The previously collected data from the “Auf die Beine” program were anonymized and
transferred in tabular form to the statistical software IBM SPSS Statistics. During this process,
data were reviewed for correctness and missing data were added from existing medical
records. In addition to the age, height, weight, and gender of the patients, the different
assistive devices, the subtype of CP, and the GMFM-66 total score, subscores, and the GMFCS
level were recorded. The different assistive devices were grouped appropriately based on
their characteristics. After that, only aids or groups with a minimum count of n = 5 were used.
Statistical analysis was initially performed using SPSS Statistics (Version 28.0.1.0).

2.5. Generation and Evaluation of the Four Machine Learning Algorithms

Machine learning is increasingly being used to process big data [18]. Used correctly,
analyses of big data can quickly lead to research results [19]. In supervised learning, self-
learning algorithms or neural networks are utilized to try to predict a known result as
accurately as possible, based on various parameters [20]. Roughly, this procedure can be
divided into two steps. In the first step (the feature selection), predictors or combinations
of those are determined by their predictive power. In the second step, based on the feature
expression, a function is searched that relates to the result [20]. For an optimal selection of
an algorithm, it is advisable to use several algorithms in comparison [20].

For generating an algorithm for the Medical Device Score Calculator (MDSC), we
compared four machine learning models in the software R (version 4.2.1.):

1. Feed forward neural net (FNN)
2. Random forest (RF)
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3. Support vector machine (SVM)
4. Extreme Gradient Boosting (XGBoost)

with the software packages randomForest (version 4.7-1.1) [21], neuralnet (version 1.44.2) [22],
nnet (version 7.3-18) [23], mlr (version 2.19.1) [24], and xgboost (version 1.6.0.1) [25].

In addition to the different assistive devices, the patient’s age and the type of CP
(bilateral spastic, unilateral spastic, dyskinetic, ataxic, or mixed type CP) were included
as variables. The different machine learning models all received the same input data with
the aim to predict the GMFM-66 score. We omitted the GMFCS level as input data because
it will generally not be available to health insurance companies. We were careful to use
only data available to the health insurance company to predict the patient’s gross motor
skills. The four models differ in the algorithm of how the prediction is calculated, with the
XGBoost being a further development of the RF model. For a detailed description of the
algorithms, please see specific literature [21–25].

The dataset was randomly selected and divided into two groups: The first group with
70% of the patients in the dataset was used to train the algorithms. The second group
with 30% of patients was used afterward to predict GMFM-66 scores and the predicted
Medical Device Score (MDS) was compared with the reported GMFM-66 scores. For this
comparison, the concordance correlation coefficient (by Lin) (CCC), the mean absolute
error (MAE), and the root mean square error (RMSE) were calculated. The concordance
correlation coefficient (Lin) is a measure to assess the concordance of two measurement
procedures performed on a patient (here GMFM-66 and MDS). The value ranges from 0–1,
with a CCC of 0.61–0.80 indicating a strong concordance and a value > 0.80 indicating
almost complete concordance [26]. The MDSC was also evaluated by using scatterplot and
boxplot sorted by GMFCS level.

2.6. Evaluation of the Accuracy of MDSC in Group Analysis

Finally, analyses were performed to determine the accuracy of MDSC depending on
group size in the analysis. To see if the MDSC can detect the true difference in GMFM-66
between two groups, different group sizes (30, 40, 50, 75, 100, 150, 200, and 250) were
investigated. For this purpose, the study population (n = 1581) was randomly divided
10,000 times into 2 groups with 790 patients each. Of these, the divisions were chosen
which differed most precisely by a certain point value (3, 4, . . . , 10). These two groups then
formed the basis. From both groups, random samples were drawn in the above-mentioned
group sizes. Then, it was considered whether a significant difference at level p = 0.05 could
be detected between the samples of the two groups using the GMFM-66 and the MDS. This
was repeated 10,000 times for each sample size. The ratio of samples that were significantly
different and thus able to detect the true difference was expressed as a percentage.

3. Results
3.1. Descriptive Analysis

The study population included 1581 patients from the “Auf die Beine” program with
an average age of 8.1 ± 4.3 years, with the youngest child being 2.2 years and the oldest
patient 25.5 years old. Bilateral Spastic was the most common form of CP with a total
of 75.6%. Most patients had GMFCS level III (37.4%) or IV (29.7%). A more detailed
presentation is given in Table 1.

The type of medical devices used by the patients in the study is summarized in
Figure 1. The figure shows the range of the GMFM-66 scores that were associated with the
use of different medical aids. Additional bar graphs as an overview of the distribution of
assistive devices at different GMFCS levels and types of CP are available in the Appendix A
(Figures A1 and A2, Table A1). The most frequently used assistive devices were transtib-
ial orthoses (13.2%) and active wheelchair (12.8%); followed by posterior walker (9.5%),
standing frame (7.6%), and night splints (6.6%).
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Table 1. Study population by GMFCS-level.

GMFCS-level

I–V I II III IV V

n 1581 118 289 592 470 112
Female, n 656 48 129 240 199 40

Age, years M (SD) 8.1 (4.3) 9.0 (4.3) 8.2 (4.2) 7.8 (4.2) 8.4 (4.5) 7.2 (3.6)
Height, cm M (SD) 119.1 (21.7) 130.2 (24.3) 122.3 (21.8) 117.5 (21.0) 118.4 (21.3) 110.6 (17.5)

BMI, kg/m2 M (SD) 16.0 (3.4) 16.7 (3.0) 16.3 (3.3) 16.3 (3.4) 15.7 (3.4) 14.3 (2.7)
CP subtype:

Bilateral spastic, % 75.6 50.0 75.8 82.1 77.4 60.7
Unilateral spastic, % 7.0 39.8 12.1 3.5 1.5 0.0

Dyskinetic, % 5.8 2.5 1.7 3.7 7.7 22.3
Ataxic, % 2.0 2.5 4.2 1.7 1.1 0.9

Mixed type, % 9.7 5.1 6.2 9.0 12.3 16.1

Data are mean (M) with standard deviation (SD) unless otherwise indicated. Cerebral palsy (CP), Gross Motor Function
Classification System (GMFCS), Body Mass Index (BMI). Bilateral spastic includes di- and quadriplegic types.

In the descriptive analysis, the therapy bike with training wheels had the highest mean
scores with a mean score of 71.19 GMFM-66 points followed by shoe inserts (61.06 points).
This indicates that patients with higher gross motor skill scores are on average more likely
to use those medical devices. The passive wheelchair (26.20 points) and the roller board
(an aid for the initiation of crawling) (30.29 points) were reflected in the lowest GMFM-66
scores on average, which are therefore likely to be used more frequently by patients with
low scores.

Figure 1. Statistical distribution of aids: Boxplot of the GMFM-66 scores of the different medical
devices in descending frequency.
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3.2. Evaluation of the Medical Device Score Calculator (MDSC)

Table 2 presents a summary of the evaluation procedure’s results referring to the
prediction of the GMFM-66 score based on patient information and their medical aids by
the four machine learning algorithms used in the comparison.

Table 2. Comparison of four different machine-learning algorithms to predict gross motor function
using patient data and medical device information: Accuracy to predict the GMFM-66 using the MDS.

Algorithms CCC MAE RMSE

RF 0.75
(0.71; 0.78)

7.74
(7.15; 8.33)

10.1
(9.51; 10.8)

SVM 0.72
(0.68; 0.76)

8.27
(7.63; 8.89)

10.8
(10.1; 11.5)

FNN 0.75
(0.71; 0.79)

7.86
(7.26; 8.46)

10.3
(9.67; 11.0)

XGBoost 0.75
(0.71; 0.78)

8.10
(7.50; 8.70)

10.5
(9.85; 11.2)

Data of the 95% confidence interval are given in parentheses; CCC concordance correlation coefficient (Lin), FNN
feed forward neural net, MAE mean absolute error, RF random forest, RMSE root mean square error, SVM support
vector machine, XGBoost eXtreme Gradient Boosting.

The results of all four algorithms showed strong accordance in the concordance
correlation coefficient, with the support vector machine producing the lowest value of
0.72 (0.71; 0.78) and the others producing comparably average values [27]. However, the
random forest method had the lowest mean absolute error and the lowest root mean square
error and was thus used as the basis of the MDSC.

In the comparison of the GMFM score and the Medical Device Scores separated by
GMFCS level in Figure 2, it is evident that MDS are overestimated for patients with higher
GMFCS levels and are underestimated for patients with lower GMFCS levels. This scale
shift can also be observed in the scatterplots (shown in Figure 3).

Figure 2. Comparison of GMFM-66 score and MDS by GMFCS-level.
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Figure 3. (A–F) Scatterplots with the unit line for the MDS against the GMFM-66 by GMFCS-level.

3.3. Results of the Accuracy of MDSC in Group Analysis

The results of the analysis of the power of the GMFM-66 and the MDSC, by means of
the difference of the compared groups are shown in Table 3.

Table 3. Power of GMFM-66 and MDSC to detect differences in GMFM-66 score in samples of
different group sizes with defined GMFM-66 score differences.

Power of GMFM66-Score
GMFM66-Score Difference of the Compared Groups

Size of the Samples, n 3 4 5 6 7 8 9 10

30 0.0 0.5 2.0 3.9 20.2 68.1 94.8 99.1
40 0.1 1.8 5.5 20.5 71.3 97.9 98.8 100.0
50 0.6 4.4 12.8 58.8 96.7 99.9 100.0 100.0
75 3.6 16.1 77.1 99.4 99.9 100.0 100.0 100.0
100 10.9 60.9 99.7 100.0 100.0 100.0 100.0 100.0
150 53.3 99.6 100.0 100.0 100.0 100.0 100.0 100.0
200 89.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
250 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 3. Cont.

Power of Medical Device-Score
GMFM66-Score difference of the compared groups

Size of the samples, n 3 4 5 6 7 8 9 10

30 0.7 2.3 6.7 10.6 21.0 40.8 55.0 80.6
40 2.3 4.7 13.8 22.1 38.3 63.6 82.0 94.8
50 3.0 9.2 24.3 34.9 57.5 80.4 93.9 99.1
75 10.3 26.0 53.6 66.7 88.2 98.1 99.6 100.0
100 20.3 47.0 79.5 88.4 98.1 100.0 100.0 100.0
150 50.5 82.1 97.9 99.5 100.0 100.0 100.0 100.0
200 75.0 96.3 99.9 100.0 100.0 100.0 100.0 100.0
250 91.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0

Bold is the smallest group size with which a difference could be shown in more than 80%. Of particular note, a
maximum difference of 3 points was achieved in 89.8% using the GMFM-66 score with a group size of 200. Using
the MDS, 250 patients are needed to achieve this for 91.0%.

4. Discussion

The results of this study show the possibility to predict the motor function measured
by the GMFM-66, based on the pattern of assistive device use, with an accuracy of a con-
cordance correlation coefficient of 0.75 (0.71; 0.78) with a mean absolute error of 7.74 (7.15;
8.33), and a root mean square error of 10.1 (9.51; 10.8) applied to group comparisons. The
Random Forrest model was found to be the most suitable of the four investigated machine-
learning algorithms. However, the MAE of 7.74 (7.15; 8.33) of this model is not suitable to
predict an individual GMFM-66 score because it is too high. In addition, it was shown that
the MDS in patients with GMFCS levels II-IV correlated better with the GMFM-66 score
than in patients with GMFCS level I or V. For patients with GMFCS level I, the GMFM-66
scores are more likely to be underestimated by the MDSC and for patients with GMFCS
level V, rather overestimated (Figures 2 and 3, “floor and ceiling effect”). The reason for
this lack of correlation at the two ends of the scale could be the reduced need for medical
devices for very severely or very mildly affected patients.

In order to evaluate the MDSC to detect a true GMFM-66 difference of, e.g., 5 points in
two groups with a power of 80%, the sample size should be approximately n = 100 (in Table 3,
n = 100 and 5 points gives a power of 79.5% for MDS). In contrast, for the GMFM-66 score
used directly, the necessary sample size for detecting a 5-point difference in the GMFM-66
according to Table 3 would be approx. n = 75 (power of GMFM-66 for n = 75 and 5 points:
77.1%). This is only slightly higher than for the analysis using MDSC.

If a difference of, e.g., 8 points is to be recognized in the GMFM-66 scores in two study
groups by MDSC with a power of 80%, then the sample size needed is n = 50. Therefore,
the results of Table 3 can be used for sample size calculation in future studies that want to
use the MDSC for predicting the GMFM-66 scores of a group.

The results above demonstrate the suitability of the MDSC to evaluate big data sets,
such as those of health insurance companies. It is conceivable that using the MDSC, thera-
pies can be retrospectively analyzed; not only longitudinally, but also across interventions
comparing data sets including information about medical devices, but lack information
about the severity of motor function skills such as a GMFM-66 score. To give an example,
selective dorsal rhizotomy (SDR) could be considered: this is a surgical procedure on the
posterior root of the lumbar spinal cord to reduce leg spasticity [28]. It would be possible
to compare the MDS of children with SDR, calculated with the data of the health insurance
companies, before surgery and, e.g., 2 years after surgery with a control group, which
are of similar age and have a similar MDS at the beginning, in the sense of a case-control
study. Accordingly, the MDSC could contribute to finding the most appropriate intensity
and duration of therapy by a comparison of different therapies, and their durations and
intensities. It could also be possible to assess the effectiveness of combinations of different
therapies. Perhaps this type of analysis could identify patterns or groups that benefit
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more from specific therapies than others. By this means, therapies could be tailored more
individually in the future and provide more benefits to the patient.

The disadvantages of estimating the motor function based on the supply of medical
devices are that this observation only allows indirect conclusions about motor function. If,
for example, the patients tend to have a supply of aids that is not in accordance with their
needs, the motor function could be incorrectly predicted. Furthermore, medical devices
that are procured outside of health insurance companies cannot be considered.

So far, only a theoretical/statistical evaluation has been done and it remains to be seen
in application studies whether meaningful results can be generated using the MDSC.

It must be stressed that the MDSC does not seem to be suitable for an assessment of
an individual. This measurement tool is not able to evaluate a single patient for clinical
purposes with sufficient accuracy. It should only be used to assess groups of patients for
research purposes, as described earlier. Expanding the size of the study population would
likely generate even more accurate results. This is worth considering and striving for in the
future to consequently obtain more accurate results.

4.1. Related Works

There are few studies that have used artificial intelligence to evaluate the gross mo-
tor function of children with CP. Duran et al. demonstrated that by using self-learning
algorithms, the quantification of gross motor skills in children with CP could be made
more efficient [12]. Zhang et al. used self-learning algorithms to assist in the assessment of
gait analysis in children with CP [29]. To our knowledge, this is the first study that uses
artificial intelligence to estimate gross motor skills based on patient data including medical
device information.

4.2. Limitations of the Study

Study participant selection was determined by the participation in the rehabilitation
program “Auf die Beine”. Children and adolescents with GMFCS Level I (7.5%) and V
(7.1%) were particularly underrepresented because these two groups rarely participate
in this rehabilitation program. In other studies, 34.2% and 15.2% of CP patients were
classified as GMFCS Level I and V, respectively [30]. Thus, this selection bias resulted in
bias. Furthermore, this study is based on a data set that was not specifically collected for
this study and was examined retrospectively. The recording of the aids is not standardized.
Therefore, completeness cannot be guaranteed.

5. Conclusions

The study results suggest that the MDSC is appropriate to predict differences in gross
motor function in sufficiently large groups of children and adolescents with CP based on
their medical device use for scientific purposes, such as comparison or efficacy of different
therapies. The MDSC is not appropriate for the assessment of an individual child or
adolescent in a clinical setting.

Author Contributions: Conceptualization, L.v.E.-T., E.S. and I.D.; Data curation, L.v.E.-T., C.S.,
K.R.W., E.A., E.S. and I.D.; Formal analysis, L.v.E.-T. and I.D.; Methodology, L.v.E.-T. and I.D.; Supervi-
sion, E.S. and I.D.; Visualization, L.v.E.-T. and I.D.; Writing—original draft, L.v.E.-T.; Writing—review
& editing, L.v.E.-T., C.S., K.R.W., E.A. and E.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The data collection recorded in the German clinical trial
registry (DRKS0001131) was approved by the Ethics Committee of the University of Cologne (16-269).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset is available on request.



J. Clin. Med. 2023, 12, 2228 10 of 12

Acknowledgments: We thank all probands of the study and their caregivers. We thank IA for
maintaining the database. This research received no specific grant from any funding agency in the
public, commercial, or not-for-profit sectors. We thank Imke Tammen for the kindly performed
English revision.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Distribution of medical devices by GMFCS-level: Bar chart of the number of different
medical devices divided by GMFCS-level in descending order.

Figure A2. Distribution of medical devices by the type of cerebral palsy: Bar chart of the number of
different medical devices divided by the diagnosed type of cerebral palsy (classified by the ICD-10
system) in descending order.
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Table A1. GMFM-66 scores and distribution of different medical devices.

Valid n Column
Valid n%

Mean
GMFM-66

95.0% Lower
CL for Mean

95.0% Upper
CL for Mean

Standard
Deviation

Medical
devices

1 point crutch 79 1.2% 56.38 55.02 57.74 6.07
3 point crutch 6 0.1% 51.42 43.14 59.70 7.89
4 point crutch 191 2.9% 52.35 51.62 53.08 5.15
Abduction splint 23 0.3% 47.38 40.31 54.45 16.35
Abduction wedge 22 0.3% 37.22 29.96 44.49 16.38
Adaptive tricycle 155 2.3% 49.19 47.25 51.13 12.23
Ankle orthosis 309 4.7% 50.79 49.02 52.56 15.81
Arm braces 22 0.3% 50.94 41.00 60.87 22.40
Balance bike 8 0.1% 51.95 40.01 63.89 14.29
Derotation straps 56 0.8% 57.15 53.53 60.77 13.51
Hand bike 10 0.2% 46.89 39.79 53.99 9.93
Hand orthosis 111 1.7% 43.62 40.12 47.12 18.61
High walker 8 0.1% 36.25 24.79 47.71 13.71
Hip orthosis 54 0.8% 40.01 36.38 43.65 13.32
Lower leg orthosis 873 13.2% 46.67 45.66 47.69 15.31
Motomed 71 1.1% 41.98 38.96 44.99 12.75
Night splints 438 6.6% 51.65 50.10 53.21 16.55
Orthopaedic shoes 215 3.2% 47.73 45.87 49.59 13.81
Orthopaedic corset 82 1.2% 34.58 31.24 37.92 15.19
Recumbent bike 9 0.1% 51.63 41.45 61.82 13.25
Reha buggy 335 5.1% 40.93 39.20 42.65 16.04
Roller board 8 0.1% 30.29 19.01 41.57 13.49
Seat shell 69 1.0% 32.59 28.97 36.21 15.07
Shoe inserts 314 4.7% 61.06 59.33 62.79 15.61
Special needs bike 319 4.8% 51.25 49.81 52.68 12.99
Special needs bike with
support wheels 5 0.1% 71.19 56.30 86.09 12.00

Speech aid 93 1.4% 35.59 32.76 38.43 13.79
Standing frames 500 7.6% 38.13 37.03 39.23 12.53
Standing wheelchair 10 0.2% 39.16 35.84 42.48 4.65
Therapy chair 242 3.7% 38.52 36.84 40.21 13.30
Thigh orthosis 73 1.1% 48.19 44.91 51.48 14.09
Treadmill 12 0.2% 55.35 45.13 65.57 16.08
Walker (anterior) 118 1.8% 51.56 49.96 53.17 8.80
Walker (posterior) 626 9.5% 49.73 49.02 50.43 9.01
Walker with a seat 230 3.5% 34.37 33.14 35.60 9.45
Wheelchair (active) 845 12.8% 46.50 45.60 47.40 13.31
Wheelchair (electronic) 58 0.9% 34.66 31.86 37.46 10.64
Wheelchair (passive) 17 0.3% 26.20 20.20 32.20 11.67
Total 6616 100.0% 46.50 46.13 46.86 15.05
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