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Abstract: Image recognition and neuroimaging are increasingly being used to understand the pro-
gression of Alzheimer’s disease (AD). However, image data from single-photon emission computed
tomography (SPECT) are limited. Medical image analysis requires large, labeled training datasets.
Therefore, studies have focused on overcoming this problem. In this study, the detection performance
of five convolutional neural network (CNN) models (MobileNet V2 and NASNetMobile (lightweight
models); VGG16, Inception V3, and ResNet (heavier weight models)) on medical images was com-
pared to establish a classification model for epidemiological research. Brain scan image data were
collected from 99 subjects, and 4711 images were used. Demographic data were compared using the
chi-squared test and one-way analysis of variance with Bonferroni’s post hoc test. Accuracy and loss
functions were used to evaluate the performance of CNN models. The cognitive abilities screening
instrument and mini mental state exam scores of subjects with a clinical dementia rating (CDR) of
2 were considerably lower than those of subjects with a CDR of 1 or 0.5. This study analyzed the
classification performance of various CNN models for medical images and proved the effectiveness
of transfer learning in identifying the mild cognitive impairment, mild AD, and moderate AD scoring
based on SPECT images.

Keywords: convolutional neural network (CNN); Alzheimer’s disease (AD); single-photon emission
computed tomography (SPECT); transfer learning; image recognition

1. Introduction

With a rapidly aging society, the number of people with Alzheimer’s disease (AD)
is increasing globally. Approximately 9.9 million new cases of dementia are reported
annually, which implies that a new patient is diagnosed with the disease every 3.2 s. The
number of people with AD is expected to exceed 100 million by 2050. However, an effective
medical treatment for the disease is yet to be devised. Neuroimaging has been used for
understanding the progression of AD, and considerable progress has been achieved in
the use of deep learning for medical imaging in research and clinical medicine [1]. The
macroscopic findings of AD have revealed diffuse brain atrophy [2]. The classification
accuracy of AD versus healthy control using deep learning of magnetic resonance imaging
(MRI) is 91.4%, and that of mild cognitive impairment (MCI) versus AD is 70.1% [3].
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The economic evaluation of dynamic susceptibility MRI compared with nonenhanced
computer-assisted tomography (CT) is USD 479,500 per quality-adjusted life year, whereas
the corresponding comparison for single-photon emission computed tomography (SPECT)
with CT is better (higher effectiveness and lower cost) [4,5]. Regional cerebral blood
flow (rCBF) is related to brain metabolism; therefore, changes in CBF reflect variations
in neuronal metabolism. From the perspective of neuropathology, subjects with very
mild AD typically exhibit abnormal metabolic and rCBF patterns, even at the preclinical
stage [6]. A decreased rCBF already occurs in individuals with MCI before they transition
to AD [7]. A disrupted cerebral perfusion may cause impaired vascular clearance ability,
which promotes the deposition of beta-amyloid and neurofibrillary tangles. Clinical studies
have revealed that rCBF alterations are involved in AD pathogenesis. Even before the
accumulation of beta-amyloid, subjects with high risk exhibit changes in cerebral blood
flow [8]. In addition to clinical manifestations, rCBF SPECT, such as voxel-as-features, has
frequently been used by physicians as a diagnostic tool [9,10].

Unlike general natural image recognition tasks, large, labeled training datasets are yet
to be devised for medical image analysis [11]. These inadequate labeled data for supervised
machine learning using electronic health records are the primary bottleneck in the model
development [12]. Therefore, many models based on transfer learning-based methods have
been proposed to address this concern [13]. In transfer learning, a previously trained model
is applied to another field to improve the learning method for a few labels or small number
of datasets in the target data. Pretrained convolutional neural networks (CNNs) (OverFeat)
have been used in transfer learning to identify and detect vertical pathologies using X-ray
and CT modalities [14]. In previous studies, the accuracy of pretrained CNNs using MRI to
detect AD was 0.40 [15]. A fully convolutional network has been used with transfer learning
for identifying malignant breast lesions [16] and retinal blood vessel segmentation [17].
Overfitting can easily occur when a small dataset is directly used to train deep learning
networks. Transfer learning can improve the initial ability to extract features to alleviate this
risk [13]. In this case, transfer learning between task domains is desirable. Furthermore, a
fine-tuned CNN after transfer learning should always be the preferred option, regardless of
the size of the available training sets. Additionally, the fine-tuned CNN model after transfer
learning can quickly attain the maximum performance [18]. By contrast, CNNs trained
from scratch require extensive training to achieve the highest performance. Therefore,
transfer learning was used in this study to conduct experiments. Such a method can be
executed even with limited training data.

In previous studies, rCBF SPECT for the diagnosis of AD revealed a sensitivity of 86%,
specificity of 73%, and accuracy of 82% [19]. Brain perfusion SPECT has been proven to be
a sensitive tool for assessing functional deficits in the early stages of AD [20]. MCI, referred
to with a clinical dementia rating (CDR) of 0.5, with a pooled sensitivity and specificity of
93% and 97%, respectively [21], is an emerging tool for early detection and intervention. A
study [9] used voxel-as-features with k-nearest neighbor classification to develop a set of
diagnostic models for SPECT imaging. To highlight the benefits of the proposed approach
in the early diagnosis of AD, 180 SPECT images with Tc-99m ethyl cysteinate dimer (ECD)
as the tracer were used, including 43 normal participants and 30 participants with possible
AD. The accuracy of classification of patients with possible AD and normal controls was
71.67%, which indicated acceptable accuracy of the conventional machine learning method.
To the best of our knowledge, rCBF SPECT has not been used to classify MCI and mild and
moderate AD. Specifically, few studies have comprehensively analyzed the various types
of CNN models and discussed their applications in medical imaging [13,22,23].
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This study compared various methods based on CNN models for the detection
and medical diagnosis of MCI and AD. Specifically, the detection performances of the
lightweight CNN models MobileNet V2 [24] and NASNetMobile [25] and the heavier
weight CNN models VGG16 [26], Inception V3 [27], and ResNet [28] were compared. These
five CNN models are the most widely used in transfer learning for disease diagnosis using
medical imaging [29]. The findings of this study can assist physicians in the early stages of
clinical diagnosis and reduce the occurrence of misdiagnoses.

2. Materials and Methods

This study was approved by the National Cheng Kung University Human Research
Ethics Committee (NCKU HREC-E-108-282-2) and was conducted in accordance with
the principles of the Declaration of Helsinki. All participants provided written informed
consent. The experimental steps for training the CNN model were divided into two
stages. This study compared the accuracies of various architectures of CNN models in
predicting SPECT images. In terms of the analysis strategy, adjustments were made to three
influencing factors, namely optimizer, fully connected layers, and model parameters, to
optimize the CNN model performance. The two-stage experimental process is illustrated
in Figure S1.

2.1. Participants

Inclusion criteria: (1) Patients who were over 60 years and sought evaluation for cog-
nitive function decline in the Department of Neurology, National Cheng Kung University
Hospital from January 2017 to December 2019. (2) Patients who completed comprehensive
cognitive function tests, with results including mini mental state exam (MMSE) score,
cognitive abilities screening instrument (CASI) score, CDR score, and sum of box (SOB)
and brain SPECT imaging data with Tc-99m ECD as a tracer. Clinical history, physical and
neurological examinations, laboratory, and instrumental investigations (including routine
laboratory tests, thyroid hormone status, vitamin B12, folate levels, EEG, and CT or MRI
brain scans) were performed to exclude secondary dementia. Experienced neurologists
evaluated these image data for the possibility of AD and the detailed diagnosis, including
the education level, the MMSE score, CASI score, CDR score, and SOB. Brain SPECT image
data were collected from 99 subjects, 36 men and 63 women. Detailed demographic and
diagnostic data are presented in Table 1.

Table 1. Subjects’ demographic and clinical information.

CDR (0.5) CDR (1) CDR (2) p Value

N 52 39 8
Age (years) 72.08 ± 7.96 76.15 ± 8.91 80.11 ± 3.22 0.01 * (CDR (0.5) < CDR (2))

Gender
(female/male) 27/25 31/8 5/3 0.03 *

Education (years) 8.43 ± 4.40 7.03 ± 4.13 7.00 ± 6.08 n.s.

SOB 1.30 ± 0.72 4.73 ± 1.31 10.39 ± 0.93 <0.01 ** (CDR (0.5) < CDR (1);
CDR (1) < CDR (2))

CASI 76.96 ± 11.80 63.26 ± 13.68 48.89 ± 14.91 <0.01 ** (CDR (0.5) > CDR (1);
CDR (1) > CDR (2))

MMSE 22.92 ± 4.04 19.18 ± 3.91 14.78 ± 3.96 <0.01 ** (CDR (0.5) > CDR (1);
CDR (1) > CDR (2))

Note: Values are numbers or mean ± standard deviation (range). Abbreviations: CDR = Clinical Dementia
Rating Scale; MMSE = Mini Mental State Exam; N = Number; CASI = Cognitive Abilities Screening Instrument;
SOB = Sum of Box. Data were compared using the chi-squared test and one-way analysis of variance with
Bonferroni’s post hoc test. * p < 0.05, ** p < 0.01, p > 0.05; no significant difference (n.s.).
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2.2. SPECT Image Dataset

Generally, the collection of image data suitable for developing a brain imaging recogni-
tion system is one of the hardest steps in the procedure. In this study, SPECT imaging data
with Tc-99m ECD as a tracer were used to test the effectiveness of the proposed method. To
avoid deviations between different hospital sources, the images used were obtained from a
single hospital; specifically, the archives of the Department of Neurology, National Cheng
Kung University Hospital (Figures 1 and 2).
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Figure 1. Single-photon emission computed tomography (SPECT) images of one participant. A
total of 16 SPECT images were obtained in one section of one patient. Next, 48 SPECT images
were obtained in three sections of this participant. A total of 4752 (48 × 99) SPECT images of all
99 participants were used. Of the 4752 images, 41 images beyond the area of brain were deleted.
Therefore, 4711 images were used for further analysis. The colors in the figure represent the ranges of
blood flow with red being the most blood flow and violet the least.
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Figure 2. Three sections of SPECT images. (a) Transverse section; (b) Sagittal Section; (c) Coronal
section. The colors in the figure represent the ranges of blood flow with red being the most blood
flow and violet the least.

To reduce unnecessary information in the images and reduce model training errors,
images of all 99 participants were cropped to remove excess background information [30].
After the preprocessing operation, 4711 images of individual slices (as displayed in Figure 3)
were obtained. Each cropped SPECT image was a JPG file with a size of 124 × 120 pixels. Of
the 99 patients, 52 patients were categorized as having questionable dementia (CDR = 0.5),
39 had MCI (CDR = 1), and 8 had moderate cognitive impairment (CDR = 2). The 4711 im-
ages were classified into three categories based on the CDR: 4461 were used as training
data (80%) and verification data (20%) to perform all the experiments, and the remainder
were manually used as test data (250 images) as suggested in previous studies [31].
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Figure 3. Process and architecture of CNN models.

2.3. Architecture of Five CNN Models after Transfer Learning

After obtaining the SPECT images (Figure 1), the voxel intensities were directly used as
features. In the feature set, graphics were output in the transverse/sagittal/coronal sections
of three intelligent identifications. In machine learning classification, a neural network
was used to classify the three feature sets of CDR 0.5, 1, and 2. The neural network-like
architecture is displayed in Figure 3, in the order of the graphics input layer (the size
is 124 × 120 × 3), convolution layer, pooling layer, and fully connected layer. The fully
connected layer groups and classifies the features extracted by the previous convolutional
layer. Furthermore, to verify the accuracy of the prediction, each image is analyzed through
an activation function and an output probability value is obtained (Figure 3 and Table 2).

Table 2. Layer settings after transfer learning and preprocessing for data enhancement.

(a) MobileNet V2 Layer Type

Layer Setting

global_average_pooling2d_1 GlobalAveragePooling2D
batch_normalization_1 BatchNormalization

dense_1 Dense
batch_normalization_2 BatchNormalization

dropout_1 Dropout

Data Enhancement

height_shift_range = 0.2
width_shift_range = 0.2

shear_range = 0.2
zoom_range = 0.2

horizontal_flip = True
fill_mode = nearest

(b) NASNetMobile Layer Type

Layer Setting
global_average_pooling2d_1 GlobalAveragePooling2D

dense_1 Dense
dropout_1 Dropout

Data Enhancement

height_shift_range = 0.2
shear_range = 0.2

horizontal_flip = True
fill_mode = nearest
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Table 2. Cont.

(c) VGG16 Layer Type

Layer Setting

flatten Flatten
dense_1 Dense

dropout_1 Dropout
dense_2 Dense

Data Enhancement

rotation_range = 40
height_shift_range = 0.2

shear_range = 0.2
zoom_range = 0.2

horizontal_flip = True
fill_mode = nearest

(d) Inception V3 Layer Type

Layer Setting global_average_pooling2d_1 GlobalAveragePooling2D
dense_1 Dense

Data Enhancement
height_shift_range = 0.2
horizontal_flip = True

fill_mode = nearest

(e) ResNet Layer Type

Layer Setting

flatten Flatten
batch_normalization_1 BatchNormalization

dense_1 Dense
dropout_1 Dropout

dense_2 Dense

Data Enhancement

height_shift_range = 0.2
width_shift_range = 0.2
horizontal_flip = True

fill_mode = nearest

This study used transfer learning to load the weights of the pretrained model on the
new network structure and then trained the network to recognize SPECT images. Five
CNNs, namely MobileNet V2, NASNetMobile, VGG16, Inception V3, and ResNet, were
used. The structure of the pretrained model was modified through fine-tuning and was then
used as the initial model for the SPECT image recognition task. First, we preprocessed the
SPECT image data and then used the original convolutional layer in the network structure
to extract bottleneck features. Second, we connected the fine-tuned fully connected layer
to form a new network structure. The experimental process is illustrated in Figure 3. The
fine-tuning process of the fully connected layers in various CNN models is presented in the
following subsections. The details of the two lightweight CNN models, namely, MobileNet
V2 and NASNetMobile, are presented in the Supplementary Materials.

2.4. VGG16
2.4.1. Fine-Tuning

First, a flattened layer was added to dimensionalize the output of the previous con-
volutional layer into a two-dimensional matrix. This method reduced the image size
without affecting important image features. The output dimension of DenseNet was set to
1024. Finally, the dropout layer was added, and the ratio was set to 0.5 to improve model
generalization and avoid excessive reliance on certain regional features (see Table 2).

2.4.2. Experimental Setup

The dataset was normalized to improve data integrity and ensure the similarity of
appearance and reading methods of all image data in the records. SoftMax was used as the
resulting classifier. For VGG16, the experimental settings (ADAM optimization method,
learning rate, exponential decay rate, and attenuation value) were the same as those of
MobileNet V2. ReLU was used as the activation function. To increase the amount of
training data, we performed rotation, shearing strength, horizontal flip, random scaling,
filling, and other processes on the original image (see Table 2).
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2.5. Inception V3
2.5.1. Fine-Tuning

To prevent excessive model parameters from causing overfitting problems, Global
Average Pooling 2D was added at the end of the model to replace the fully connected layer,
and the average value of each feature map was selected as the output. Subsequently, a
dense layer was added, and the output dimension was set to 2048 (see Table 2 for details).

2.5.2. Experimental Setup

The input image size of Inception V3 is 299 × 299 pixels. Therefore, rescale = 1/255
was added in the preprocessing stage of the image data, and each pixel value of the SPECT
image with an original size of 124 × 120 pixels was multiplied by the scaling factor to
facilitate model convergence. To present the classification results as percentages, SoftMax
was added as the resulting classifier, and the classification category was set to 3. Similar to
the NASNetMobile model, SGD was selected as the optimizer of the model to increase the
training speed. The learning rate was set to 10−5, momentum was 0.9, loss function was
categorical cross-entropy, batch size was 64, and epoch number was 50. Table 2 details the
horizontal flip, random zoom, and original image for data enhancement.

2.6. ResNet
2.6.1. Fine-Tuning

The flattened layer was added to dimensionalize the output of the previous convolu-
tional layer into a two-dimensional matrix, and batch normalization was added. A dense
layer was included, and the output dimension was set to 256. Finally, the dropout layer
was set to 0.5 to avoid too much reliance on certain regional features. Table 2 details layers
added at the end of the ResNet after fine-tuning. Figure 4 illustrates the architecture of the
ResNet model.
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2.6.2. Experimental Setup

As described for NASNetMobile, rescale = 1/255 was added in the preprocessing
stage of the image data to facilitate model convergence. To present the classification
results as percentages, SoftMax was selected as the result classifier and SGD was the
optimization method. The learning rate was set to 10−4, momentum was 0.9, loss function
was categorical cross-entropy, batch size was set to 32, epoch number was set to 50, and
activation function was ReLU. Before data analysis, the data enhancement method was
used to perform position shift, horizontal flip, and fill processing on the original image
(Table 2).

2.7. Statistical Analysis

All 4711 image data were randomly categorized into three separate data frames,
namely training, validation, and test sets. First, 250 image data were manually extracted as
test data. Subsequently, the random train–validation split was used to divide all remaining
data into training (80%) and validation (20%) datasets. The training dataset was used to
fit the model, and the validation dataset was used to validate the generalization ability
of the model during the training process. The validation and training datasets remained
unchanged to avoid the training–serving skew. The demographic data were expressed
as the mean ± standard deviation and compared using the chi-squared test and one-way
analysis of variance with Bonferroni’s post hoc test. The performance of CNN models
was evaluated using the learning curves of model accuracy and loss [32]. Learning curves
are widely used in machine learning for models that optimize their internal parameters
incrementally over training cycles (epochs). The metric used to evaluate learning could
be maximizing, which revealed that better scores of classification accuracy indicate more
learning. Using a score that is minimizing, such as loss, is preferable, where better scores
(smaller loss) indicate more learning, and a value of 0 indicates that the training dataset
was learned perfectly, and no errors were made. The confusion matrix was also calculated.
A p value of <0.05 was considered statistically significant.

3. Results

Brain scan image data were collected from 36 men and 63 women. The demographic
characteristics of the subjects are presented in Table 1.

Subjects with CDRs of 2 were significantly older than those with CDRs of 0.5. The
SOB scores of subjects with CDR of 2 were significantly higher than those of subjects with
CDRs of 1 and 0.5. The CASI and MMSE scores of subjects with CDR of 2 were significantly
lower than those of subjects with CDRs of 1 and 0.5 (Table 1). The scores of the SOB, CASI,
and MMSE validated the severity of cognitive impairments classified using the CDR score.

Following the evaluation of the severity of cognitive impairments, SPECT images were
analyzed using two lightweight and three heavier weight CNN models to distinguish the
severity of AD in patients based on the CDR scores. We used two evaluation indicators,
namely accuracy and loss, to evaluate the detection performance of the model.

We first examined the effect of the various sections of brain images (i.e., the transverse,
sagittal, and coronal sections) on the model to improve its performance in detecting the
severity of AD by detecting different sections of SPECT images. A total of 1602 transverse
images, 1584 sagittal images, and 1525 coronal images were obtained. Subsequently,
the SPECT image data of the three cross-sections were mixed for model identification
experiments.

Table 3 lists the performance indicators of the five CNN models that identify different
CDR scores from a single brain section and a mixed section in the validation and testing
data. Based on the classification results for a single brain section presented in Table 3,
the ResNet model was the best performer among the five CNN models. The validation
accuracy rates in the transverse, sagittal, and coronal section image data were 67.23%,
65.37%, and 68.51%, respectively. Inception V3 was the worst-performing CNN model
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with validation accuracy rates of 56.77%, 53.09%, and 52.78%. The classification validation
accuracy of MobileNet V2, NASNetMobile, and VGG16 was approximately 60–69%.

Table 3. Detection performance of the two lightweight and three heavier weight CNN models.

Model Types of Data Validation Accuracy (%) Test Accuracy (%)

MobileNet V2

Transverse section 60.57 60.01

Sagittal section 58.69 50.45

Coronal section 60.89 57.77

Mixed
(three kinds of section) 61.87 58.43

NASNetMobile

Transverse section 63.87 61.25

Sagittal section 57.12 57.03

Coronal section 63.03 55.49

Mixed
(three kinds of section) 59.89 58.77

VGG16

Transverse section 66.03 64.58

Sagittal section 64.20 61.89

Coronal section 58.66 53.01

Mixed
(three kinds of section) 69.45 67.53

Inception V3

Transverse section 56.77 54.22

Sagittal section 53.09 50.98

Coronal section 52.78 47.55

Mixed
(three kinds of section) 54.03 52.13

ResNet

Transverse section 67.23 61.20

Sagittal section 65.37 63.37

Coronal section 68.51 65.28

Mixed
(three kinds of section) 72.39 68.80

For the classification results of the mixed section, Table 3 reveals that the best model
was ResNet, with a validation accuracy rate of 72.39% and a test accuracy rate of 68.8%
(confusion matrix in Figure S2; the precision, recall, and F1 score for each class of CDR scores
in Table S1), which is sufficient for determining the performance of various CNN models
for medical images. The second highest accuracy rate was 69.45% (VGG16). Inception V3
was the worst-performing model, with a validation accuracy rate of only 56.77%. Based on
the experimental results, the lightweight CNN models (MobileNet V2 and NASNetMobile)
were unsatisfactory. For the image data obtained by mixing the three sections, the best
validation accuracies of MobileNet V2 and NASNetMobile were only 61.87% and 59.89%,
respectively, indicating that the two lightweight CNN models can be improved to match
SPECT medical images. The epoch of each CNN model after transfer learning was set to
50, and the learning curves of model accuracy and loss of mixed data using each CNN
model are displayed in Figures S3–S6. The loss of the ResNet model after transfer learning
was the smallest, which indicated that it learned the most (Figure S7). The values of
validation accuracy were higher than those of training accuracy in the NASNetMobile,
VGG16, Inception V3, and ResNet models after approximately 40 epochs. This phenomenon
indicated that validation improved the classification accuracy in these four models after a
longer training duration (Figures S4–S6).



J. Clin. Med. 2023, 12, 2218 11 of 14

4. Discussion

Neuroimaging has become a useful tool for understanding AD pathogenesis, and the
use of deep learning techniques in medical imaging has achieved considerable progress in
research and clinical care.

In this study, five CNN models were trained in the transfer learning process, and
performance evaluations and comparisons were performed. The primary objective of this
study was to compare the detection performance of various CNN structures for medical
images, which was confirmed based on the results. Moreover, compared with using a single
cross-sectional image as the input, the use of mixed data from the three cross-sections as
the model input produced excellent results.

The validation and test accuracy records in Table 3 indicate that the performance of
ResNet was superior to those of MobileNet V2, NASNetMobile, VGG16, and Inception V3.
In this type of medical imaging dataset, the heavier weight networks performed better than
the lightweight networks. Furthermore, ResNet can effectively avoid gradient explosion,
disappearance, and network degradation. Therefore, ResNet can be used to develop
an AI expert system that can analyze AD severity using SPECT images, as displayed
in Figure 5. The AI expert system does not replace physicians but helps them achieve
clearer decisions on disease classification and more confident diagnosis based on systematic
objective information to reduce the uncertainty in disease classification diagnosis.
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Figure 5. AI expert system based on the ResNet model. Physicians can import the SPECT image (left
part), and the AI expert system will show the outcome (here, of 0.5) (right part) to help them make
decisions on disease classification.

The performance of CNN models, such as ResNet, varies depending on the type of
study, field of study, data used, and imbalance in the sample [33]. In neuroimaging research,
image processing and feature recognition have been applied to AD classification. Among
the various deep learning methods, ResNet has been widely used for the classification and
diagnosis of AD. Amin-Naji et al. [34] used a residual structure in each branch of a CNN.
The OASIS dataset was used to evaluate the effectiveness of the model. Finally, an accuracy
of 98.72% was obtained in the classification of old patients with AD and normal controls
using MRI, which is the best result compared with those in other previous studies on the
same database.
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Abrol et al. [35] evaluated the ability of a residual structure to learn from structural
MRI data using neuroimaging and revealed that it is binary classification or heap classifi-
cation. Their results showed that the recognition performance of the ResNet architecture
is better than that of the SVM and SAE methods. Karasawa and Ohwada [36] proposed a
ResNet-based structure for classifying MRI data from the Alzheimer’s Disease Neuroimag-
ing Initiative database. The experimental results indicated that the proposed 39-layer
residual structure had the highest accuracy compared with those of VGGNet and ResNet-
50. Therefore, related research has revealed that the residual structure exhibited a certain
effect on the applicability of image recognition in neuroimaging. This finding revealed that
the ResNet structure used in this study is effective for AD classification. In previous stud-
ies, the performance of the total and subscale scores of the Mattis Dementia Rating Scale
for discriminating MCI from NC, MCI from mild AD, and mild AD from moderate AD
revealed an accuracy from 61% to 85% [37], which was comparable with the performance
of our rCBF SPECT CNN model.

5. Conclusions

Although this study revealed that deep learning technology can achieve excellent
performance in SPECT image classification, performance can be improved. The proposed
method provides important implications for image recognition and deep learning in the
development of mobile applications in AI and medical treatment and exhibits considerable
potential in other biomedical fields. The proposed method may open novel avenues for
medical image analysis and provide a potentially accurate CNN architecture for researchers
and physicians to predict new data. In the future, we hope to collect more clinical data from
various hospitals to increase the depth of the training dataset. Moreover, neuroimaging
information can be combined with cognitive scale functional information to obtain a
superior machine learning model for the improved classification of AD severity.
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