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Abstract: The correct determination of volume status is a fundamental component of clinical evalua-
tion as both hypovolaemia (with hypoperfusion) and hypervolaemia (with fluid overload) increase
morbidity and mortality in critically ill patients. As inferior vena cava (IVC) accounts for two-thirds
of systemic venous return, it has been proposed as a marker of volaemic status by indirect assessment
of central venous pressure or fluid responsiveness. Although ultrasonographic evaluation of IVC is
relatively easy to perform, correct interpretation of the results may not be that simple and multiple
pitfalls hamper its wider application in the clinical setting. In the present review, the basic elements
of the pathophysiology of IVC behaviour, potential applications and limitations of its evaluation
are discussed.

Keywords: inferior vena cava ultrasonography; volume status; central venous pressure; fluid respon-
siveness; collapsibility index; distensibility index

1. Introduction

Correct determination of the volume status of the patient represents a fundamental
step in clinical evaluation. In fact, in many critically ill patients hypovolaemia might
result in reduced tissue perfusion, while fluid overload can lead to organ congestion with
associated morbidity and mortality [1]. Thus, volaemic assessment is essential to guide
clinicians in treatment and might have a potential prognostic implication.

Right atrial pressure (RAP) is a cornerstone of evaluation of the intravascular volume
status that predicts overall survival in patients with heart failure [2]; the terms “central
venous pressure” (CVP) and “right atrial pressure” (RAP) are synonymous as long as there
is no vena cava obstruction, and they will be used interchangeably in this manuscript.

The standard monitoring tool for assessing CVP is the central venous catheter. How-
ever, due to its invasiveness, infectious and thrombotic complications are considered major
concerns. In this context, point-of-care ultrasonography (POCUS) might be a reliable
alternative for volume estimation.

Ultrasonographic evaluation of the IVC (US-IVC) has been proposed as the non-
invasive technique of choice for CVP assessment due to its wide availability, low costs, and
ease of use. Estimation of volume status by measuring the static diameter of the IVC and
dynamic respiratory fluctuations has been investigated in various clinical settings; never-
theless, results are often conflicting and uncertain, as hypervolaemia and hypovolaemia
are not the only factors affecting IVC diameter. Hence, although US-IVC is relatively easy
to apply, its use in clinical decision-making requires a deep knowledge of pathophysiology,
limitations and pitfalls to avoid perceptual and interpretive errors.
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The aim of this paper is thus to review the main physiopathology about venous return
and right atrial filling, explore the current evidence (accuracy and pitfalls) of US-IVC in
clinical practice, and give clinicians the instruments for its correct interpretation.

2. Pathophysiological Assumptions

The IVC has the largest diameter of the entire venous system; it is a thin-walled,
valveless, retroperitoneal vessel, responsible for returning large volumes of deoxygenated
blood from the lower extremities and abdomen to the right atrium. With 85% of total
plasma volume in the venous circulation, the IVC is an important blood reservoir, and
modifications of circulating volume result in IVC calibre variations.

Indeed, evidence of a ‘’flat vena cava” (e.g., an IVC with an anteroposterior diameter
of less than 9 mm) at multiple levels is associated with significant hypovolaemia in trauma
patients [3].

Patient position and decubitus can influence circulating blood volume and IVC diame-
ter by gravity: the IVC is smaller when the patient is in the left lateral position and larger
when the patient is in the right lateral position [4].

In addition to circulating volume, other important factors can lead to variations in
IVC diameter during the respiratory cycle, such as right heart function and the gradient
between intrathoracic and intra-abdominal pressure (Figure 1).
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Figure 1. Main determinants affecting inferior vena cava diameter. Chest pressure can act directly
and/or indirectly (via the RAP) on IVC diameter. The clinical conditions within the grey dashed
rectangle can correlate with both types of chest pressure variations. (ARDS: acute respiratory distress
syndrome, COPD: chronic obstructive pulmonary disease, HF: heart failure, IVC: inferior vena cava,
PEEP: positive end-expiratory pressure, RAP: right atrial pressure).

2.1. Intrathoracic Pressure

In spontaneously breathing subjects, during inspiration abdominal pressure increases
while intrathoracic pressure (ITP) increases its negativity, lowering right atrial pressure.
The haemodynamic counterpart to the aforementioned thoraco–abdominal interaction is
the increase in blood return from the IVC to the RA, leading to a secondary reduction in
the size of the IVC [5] and a transient increase in stroke volume. Conversely, venous return
decreases during exhalation, while the calibre of the IVC increases [6,7].
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IVC collapsibility may be exaggerated if ITP becomes markedly negative with forced
inspiratory efforts, respiratory distress, or exacerbation of chronic obstructive pulmonary
disease, causing an increased venous return to the right atrium.

In ventilated patients, positive end-expiratory pressure (PEEP) may hamper the venous
return during inspiration by increasing the ITP and reducing the pressure gradient between
the abdominal and thoracic compartments [8]. This issue may be critical in cases of pre-
load dependence (e.g., right ventricular infarction, pulmonary embolism, tamponade,
severe hypovolaemia), leading to the abrupt reduction in venous return that triggers
haemodynamic instability [9].

2.2. Intra-Abdominal Pressure

Intra-abdominal pressure (IAP) may influence IVC physiology even more than ITP, as
it affects both venous return and IVC diameter. In the subdiaphragmatic region, when the
transmural pressure of the IVC exceeds the critical closing pressure, the IVC is pervious;
in this situation, an increase in abdominal pressure reduces IVC diameter and increases
transitorily the venous return, with the liver serving as the immediate blood source [7].
Conversely, when the IVC pressure is below the critical closing pressure, the increased
intrabdominal pressure causes the IVC collapse with a dramatic drop in venous return [10].
Therefore, increased intra-abdominal pressure during inspiration might have opposite
effects on total and regional IVC venous return.

Not only IAP but also the volaemic status can influence venous return during the
respiratory cycle. In case of hypervolaemia, the active diaphragmatic descent causes a
significant increase in total IVC flow by enhancing splanchnic venous return through the
IVC. On the other hand, in case of hypovolaemia the possibly increased abdominal pressure
reduces venous return, leading to a decrease in IVC flow at the level of the diaphragm (e.g.,
vascular waterfall effect) [11].

Therefore, two important factors may affect IVC flow and diameter and thus venous
return: intra-abdominal pressure and volaemia. Regardless of the volaemic state, severe
abdominal hypertension always causes a drop in the IVC venous return and a consequent
decrease in cardiac output [12].

2.3. Cardiac Function

Because of the close relationship between venous return and right atrial pressure, the
wall movements of the IVC reflect the haemodynamic behaviour of the right atrium (RA)
under both physiological and pathological conditions [13], which are influenced by the
cardiac cycle, right heart function, and rhythm.

In sinus rhythm, the IVC has its maximum diameter during the presystolic and systolic
phases [5] while atrial fibrillation alters the filling of the IVC, making the relationship
between cardiac cycle and IVC dimension difficult to assess. IVC diameter should be
interpreted in the light of the physiology of venous return, right heart function and heart-
lung interaction.

Indeed, the inspiratory collapsibility of the IVC with normal ITP is an expression of
the adequacy of the right heart to reduce RAP (Figure 2B) [14]. In response to increased ITP,
the curvilinear relationship between IVC diameter and CVP is clearly evident (Figure 2A),
with an initial steep part (i.e., a minimal increase in CVP determines a large increase in IVC
diameter) and a flat part (a larger increase in CVP causes minimal or no IVC dilation [9].

Under pathological conditions, such as acute circulatory failure, the change in IVC
diameter is thus a function of residual venous compliance and cardiac functional reserve
(Figure 2A,B).
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Figure 2. Inferior vena cava diameter as a function of residual venous compliance (A). In the initial
ascending part, a small variation in CVP significantly increases IVC diameter. In the second part, IVC
compliance decreases and a larger increase in CVP causes minimal IVC dilation. Modified from [9,15].
Inferior vena cava diameter as a function of cardiac functional reserve (B). The intersection between
the venous return and cardiac function curves is shown for subjects with normal (solid lines) and
impaired cardiac function (dotted lines). Only when cardiac function is preserved can inspiration
shift the cardiac function curve to the left with CVP reduction and IVC collapse. Modified from [14].
(CVP: central venous pressure, IVC: inferior vena cava).

Therefore, the behaviour of the IVC is the result of a complex interplay between
the heart, volaemia, and respiratory mechanics acting simultaneously in different clinical
contexts (Figure 1).

3. Anatomical Variations of Inferior Vena Cava and Their Clinical Significance

Due to a complex embryogenesis process, congenital anomalies of the IVC and its
tributaries are not uncommon, with a reported prevalence of 0.3% to 10.14% of the popula-
tion and a total of 14 observed variations; knowledge of these clinical entities may avoid
severe consequences during retroperitoneal surgical procedures (especially laparoscopic
procedures) [16,17].

The most common IVC anomalies are duplication, with a left IVC terminating below
or at the level of the left renal vein, a left-sided IVC, and interruption or agenesia of the
IVC [18,19].

From a clinical point of view, IVC duplication together with left-sided vena cava and
megacava are generally asymptomatic, whereas aplasia and hypoplasia may be associated
with iliofemoral deep venous thrombosis [16].

In all these conditions, both the calibre of the vessel (or vessels), the venous return and
the behaviour of the IVC in relation to various volaemic conditions may be severely altered.

4. Ultrasound Technique, Static and Dynamic IVC Indexes

Either a low-frequency convex probe (2–5.5 MHz) for the abdomen or a phased array
transducer (2–8 MHz) for the heart can be used to assess the IVC.

The IVC is usually visualized from a subcostal view by a longitudinal scan, including
the veno–atrial junction and the right atrium with inner walls clearly visible. In case
of a suboptimal or unavailable subcostal window, a coronal transhepatic scan along the
posterior right axillary line may be an effective alternative (Figure 3).
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applied with a sweep velocity set at 25 to 50 mm/s, depending on the respiratory rate, to 
capture at least three respiratory cycles. 

Since the minimum venous diameter in spontaneously breathing patients may be in-
fluenced by inspiratory effort, maximal inspiration (sniffing manoeuvre) could be evoked 
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Figure 3. A longitudinal scan of the inferior vena cava including the veno–atrial junction (A) and
the right coronal transhepatic scan along the posterior right axillary line (B). B-mode (A) is used to
identify the inferior vena cava and then the Doppler M-mode (B) is applied with the sweep velocity
set at 25 to 50 mm/s depending on the respiratory rate in order to include at least three respiratory
cycles. The maximum and minimum IVC diameters are used to obtain the collapsibility index (in the
example, cIVC is 50%). Pulsed wave Doppler in the IVC (C) and at the outlet of the left renal vein (D)
may provide additional information to estimate CVP, as the presence of continuous flow equates to
low to normal central venous pressure. (IVC: inferior vena cava, LRV: left renal vein, yellow + : peak
velocity at end-expiration and end-inspiration).

The exact position at which the IVC diameter should be measured is crucial, although
it is not universally standardized: in spontaneously breathing patients, variations in the
IVC diameter are smaller near the right atrium and larger 2 cm caudal to the hepatic vein
inlet or at the level of the left renal vein [20]. Most authors suggest that measurements
should be acquired within 1.5 cm from the IVC-to-right atrial junction [21].

B-mode is used for the identification of the IVC and then the M-mode Doppler is
applied with a sweep velocity set at 25 to 50 mm/s, depending on the respiratory rate, to
capture at least three respiratory cycles.

Since the minimum venous diameter in spontaneously breathing patients may be
influenced by inspiratory effort, maximal inspiration (sniffing manoeuvre) could be evoked
while maximal IVC diameter is measured at the end of expiration [22].

Sample accuracy can be improved by using indexed IVC size (iIVC), which is calcu-
lated by dividing IVCmax by body surface area [23].

In addition to these static parameters, it is always useful to make a dynamic assessment
using the IVC collapsibility index (cIVC), which is calculated according to the following
formula: cIVC = (IVCmax − IVCmin)/IVCmax [24,25].

In mechanically ventilated patients, the IVC distensibility index, described as
dIVC = (IVCmax − IVCmin)/IVCmin, [21] the respiratory variations in inferior vena

cava diameter as ∆DIVC = (IVCmax − IVCmin)/(IVCmax + IVC min)/2) [26] or the
IVC Area Distensibility Index (IVC-ADI) defined as maximum IVC area-minimum IVC
area)/minimum IVC area × 100% can be applied [27].
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Echocolour and pulsed wave Doppler assessment of the venous spectrometric wave,
although not commonly performed in IVC, can be helpful in certain clinical contexts such
as stenosis/thrombosis or congenital anomalies [28,29].

The technical limitations of US-IVC are obesity or pregnancy, chest or gastric tubes,
and non-negligible inter/intra-observer variability often caused by lateral displacement of
the IVC during respiration, so that both the true centre of the vein and the accuracy of the
measurement are lost in M-mode imaging [30,31].

5. Evidence for Volaemic Status Evaluation with IVC Ultrasonography

IVC diameter and its temporal changes in the respiratory cycle have long been studied
to correlate with CVP and predict fluid responsiveness.

These two aspects are addressed here separately according to the pathophysiological
premises.

5.1. Volaemic Status Evaluation in Spontaneously Breathing Patient

Overall, a statistically significant non-linear correlation was described between the
sonographic dimensional parameters of IVC and CVP [32]. Most studies demonstrated a
moderate correlation between measurements of IVC diameter or collapsibility and CVP or
RAP [33]. Cut-off values of 2 cm diameter and cIVC of 40% provided the best diagnostic
accuracy in predicting a RAP above or below 10 mmHg [34–36].

According to the current updated American and European guidelines, an IVC diameter
≤2.1 cm and collapsibility >50% during inspiration suggest a RAP between 0–5 mm
Hg while a diameter >2.1 cm with <50% inspiratory collapse indicates a high RAP of
10–20 mmHg; a mean pressure value of 8 mmHg is used if the clinical picture does not
follow the proposed pattern [37].

In outpatients undergoing haemodialysis, standardization of IVC diameter to body
surface area (BSA) was recommended (i.e., IVC diameter 2.1 cm if BSA > 1.61 m2, IVC diam-
eter 1.7 cm when BSA < 1.61 m2) [38] and an indexed IVC size (iIVC) ≥ 8 and <11.5 mm/m2

is considered safe to rule out severe hyper or hypovolaemia in this setting [23,36].
The addition of pulsed wave Doppler applied to the IVC may provide additional

information to estimate CVP (Figure 3). The presence of continuous flow from the IVC to
the RA corresponds to a low to normal CVP; on the contrary, an interrupted waveform
indicates a high RAP only if it is associated with other ultrasound indices such as the IVC
size and cIVC [29].

It has also been described that the IVC diameter and cIVC correlate with plasma
volume removal by ultrafiltration in continuous and intermittent haemodialysis or blood
donation [39,40].

For the assessment of fluid responsiveness, the US-IVC diameters are useless [41,42].
Hence “dynamic” measurements have been developed to predict the response to volume
infusion and guide fluid resuscitation (Table 1). To this end, cIVC measurements are taken
before intravenous fluid administration or passive leg raising and then the cardiac output
response is observed.

From all these studies it emerged that only extreme cIVC values (i.e., a cIVC value > 40%)
may be useful in predicting the haemodynamic response to volume expansion [30,43], due
to multiple pitfalls that can affect respiratory mechanics and cardiopulmonary interactions.

Considering that even a reduced cIVC may not rule out a fluid responsiveness or
the need for fluid therapy, a cIVC threshold < 15% with the addition of a standardized
inspiratory effort was proposed as an attempt to improve cIVC diagnostic accuracy [44].

Therefore, in spontaneously breathing patients, a cIVC-guided fluid infusion can be
considered a logical, but rarely decisive, option before the administration of infusion therapy.
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Table 1. Fluid responsiveness in spontaneous breathing or mechanical ventilated patients.

Study Patients (n) Setting Parameter Cut-Off (%) S (%) Sp (%)

Spontaneously breathing patients

Airapetian et al. [42] 59 Hypovolaemia cIVC ≥42 31 97

Lanspa et al. [43] 14 Sepsis cIVC ≥50 NR NR

Bortolotti et al. [44] 55 Sepsis cIVC-st ≥39 93 88

Vignon et al. [45] 422 Shock dIVC >18 28 90

Byon et al. [46] 33 Paediatric
neurosurgery ∆DIVC NR NR NR

Choi et al. [47] 21 Paediatric cardiac
surgery ∆DIVC NR NR NR

Weber et al. [48] 31 Paediatric dIVC NR NR NR

Muller et al. [49] 40 Shock cIVC >40 70 80

Preau et al. [50] 90 Sepsis cIVC-st ≥48 84 90

Corl et al. [51] 124 Shock cIVC ≥25 87 81

Doucet et al. [52] 144 Trauma cIVC ≥51 NR NR

Machare-Delgado [53] 25 Shock dIVC >12 100 53

Charbonneau et al. [54] 44 Sepsis dIVC >21 38 61

Theerawit et al. [55] 29 Sepsis dIVC ≥10 75 77

Lu et al. [56] 49 Sepsis dIVC ≥20 67 77

Zhang et al. [57] 40 Elective GI surgery dIVC ≥46 69 93

Sobczyk et al. [58] 50 Cardiac Surgery dIVC > 18 NR NR

Sobczyk et al. [59] 35 Cardiac Surgery dIVC ≥ 18 82 73

Moretti et al. [60] 29 SAH dIVC >16 70 100

De Valk et al. [17] 45 Shock cIVC ≥36.5 83 67

Long et al. [30] 291 Meta-analysis cIVC >42 52 77

Mechanical Ventilated patients

Barbier et al. [15] 20 Sepsis dIVC >18 90 90

Feissel et al. [26] 39 Sepsis dIVC >12 NR NR

Yao et al. [27] 67 Mixed
IVC ADI ≥10.2 97 40

dIVC ≥25.5 46 90

Long et al. [30] 242 Meta-analysis dIVC >16 67 68

Table legend: NR: not reported; n: numbers; S: Sensitivity; Sp: specificity; cIVC: inferior vena cava collapsibility
index; cIVC-st; dIVC: inferior vena cava distensibility index; ∆DIVC: respiratory variation in IVC diameter; IVC
ADI: IVC Area Distensibility Index; SAH: subarachnoid haemorrhage.

5.2. Volaemic Status Evaluation in Mechanically Ventilated Patients

Regarding the non-invasive estimation of CVP, current evidence does not support the
use of the IVC diameter in mechanically ventilated patients. In a recent meta-analysis that
included 16 studies, the correlation between CVP and IVC diameter was not statistically sig-
nificant in 8 studies and was weak to moderate in the others [33]. These results may be due
to the complex interplay between intrathoracic pressure, right atrial pressure and venous
return, so that a unique interpretation can be challenging in most cases (Figure 1) [37].

Evaluation of fluid responsiveness relies on the IVC’s potential to dilate by increasing
its diameter during positive pressure ventilation, shifting from the steep to the flat part of
the IVC-to-CVP curve (Figure 2A) [9,15]. However, in 540 subjects with acute circulatory
failure of any cause (the largest adult population ever studied on this topic), respiratory
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variations in the IVC diameter provided only weak to moderate diagnostic accuracy in
predicting fluid responsiveness; this result was likely due to concurrent abdominal hyper-
tension and/or low level of mechanical power during protective mechanical ventilation
(e.g., low tidal volume of less than 8 mL/kg predicted body weight, moderate to low
positive end expiratory pressure, low respiratory rate, low driving pressures) [45].

Regarding the paediatric population, the evidence for patients on mechanical ventila-
tion is quite sparse and contrasting. In 21 children who had undergone cardiac surgery, the
∆DIVC accurately predicted fluid responsiveness, whereas it did not in 33 neurosurgical
patients [46,47].

Likewise, in the work by Weber et al. on 31 subjects (aged 1 day to 13 years), respira-
tory cycle-induced changes in IVC diameter were useless for predicting fluid responsive-
ness [48,61]. These results may be explained by the higher IVC elasticity and chest wall
compliance in the paediatric population compared with the adults, resulting in dampened
transpulmonary pressure [48].

Regardless, we must note that in most of the above-mentioned adult and paediatric
studies, cardiac function data were not available, which is a significant limitation in the
assessment reliability of IVC US.

In mechanically ventilated subjects, a new distensibility index based on IVC area was
recently proposed by Yao and coworkers (VCI ADI, cut-off value 10.2%), which revealed
higher sensitivity in predicting fluid responsiveness than dIVC, even though it was loaded
with very low specificity (97.3% sensitivity and 40.0% specificity, respectively) [23].

In summary, for fluid responsiveness assessment, dIVC has a better diagnostic per-
formance than cIVC in spontaneously breathing patients [26]; its clinical utility in patients
receiving mechanical ventilation is questionable and can be only applied in the context of a
preserved biventricular heart function. Moreover, dIVC is not adequately supported by
the currently available evidence [62] in abdominal surgery, concurrent abdominal hyper-
tension, patients ventilated with protective mechanical ventilation [63] and the paediatric
population, as it is burdened by poor diagnostic accuracy.

6. Pitfalls That May Lead to Misinterpretation of Volume Status

IVC dilatation had been suggested as a potential predictor of outcome in many differ-
ent clinical contexts [64–66]. However, numerous physiological and pathophysiological
conditions, as well as several interpretive pitfalls, have limited its wide applicability [24].

IVC diameter interpretation in relation to volume status includes several confounding
conditions, such as: chronically dilated IVC in young trained athletes due to adaptation to
chronic strenuous exercise, young patients with vasovagal syncope that present increased
venous pooling, children with increased venous compliance, direct vasoplegic effect of
drugs or sepsis, [67,68] severe tricuspid regurgitation, right ventricular failure, pericar-
dial effusion or tamponade, acute pulmonary embolism, intra-abdominal hypertension
including pregnancy, [69–71] (Figure 1), COPD exacerbations with hyperinflation and in-
creased intrathoracic pressure [72], and patients undergoing mechanical ventilation with
high positive end-expiratory pressure [73]. Similarly, local mechanical factors such as IVC
stenosis and thrombosis or the presence of devices such as cava filters and catheters can
reduce venous return. In all the above-mentioned conditions, chronically strained IVC can
be dilated without an underlying hypervolaemic state.

On the contrary, the presence of masses compressing the IVC and COPD exacerba-
tions with forced expiration may mimic IVC collapsibility [71]; when circulating volume
depletion occurs due to severe hypoproteinaemia such as in liver cirrhosis, malnutrition,
cancer or sepsis, the IVC reduces in size, but the patient can be hyper-hydrated due to the
massive shift of fluid into the third space, leading to splanchnic congestion regardless of
the behaviour of the IVC.
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7. IVC Ultrasonography: Current Knowledge and Future Directions

The reliability of IVC US as an index of volaemic status varies greatly in different
clinical contexts and this aspect must be considered before drawing therapeutic conclusions.

For all the above reasons, and because of its complex pathophysiology, the inferior
vena cava evaluation has numerous interpretive pitfalls that make it useless for inferring
volume status when considered as a sole measure. Recently, a combined evaluation of
IVC and other body districts’ veins has been proposed to minimize its interpretative
drawbacks and have a more comprehensive view of the congestion [74]. However, even in
this case, IVC-US cannot be considered as a gateway to decide whether to proceed with
the investigation of the splanchnic compartment, as splanchnic congestion can be present
independently from IVC’s behaviour. Even if it is time-consuming, only a combined US
assessment of IVC, heart, lung, portal, splenic and renal veins, (Figure 4) may provide
additional insights to explain a complex pathophysiology [75].
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Note that the IVC appears dilated and almost motionless during breaths (IVC max 2.6 cm, cIVC close
to 0%).

8. Conclusions

Assessment of volume status is a cornerstone of clinical evaluation, and for this
purpose we cannot ignore the major advantages of IVC ultrasonography such as non-
invasivity, wide availability, low cost, relative ease of use and repeatability.

On the other hand, its use is burdened by technical limitations, errors in interpretation
and limited areas of clinical application.

For these reasons, IVC-US cannot be considered a stand-alone method suitable for
all patients, and a comprehensive assessment of organ perfusion in the critically ill pa-
tients requires a clinical physiopathological perspective in conjunction with an integrated
ultrasonographic approach, combining multiple sites of investigation.
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