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Abstract: Background: Body composition can be accurately quantified based on computed tomogra-
phy (CT) and typically reflects an individual’s overall health status. However, there is a dearth of
research examining the relationship between body composition and survival following esophagec-
tomy. Methods: We created a cohort consisting of 183 patients who underwent esophagectomy for
esophageal cancer without neoadjuvant therapy. The cohort included preoperative PET-CT scans,
along with pathologic and clinical data, which were collected prospectively. Radiomic, tumor, PET,
and body composition features were automatically extracted from the images. Cox regression models
were utilized to identify variables associated with survival. Logistic regression and machine learning
models were developed to predict one-, three-, and five-year survival rates. Model performance
was evaluated based on the area under the receiver operating characteristics curve (ROC/AUC). To
test for the statistical significance of the impact of body composition on survival, body composition
features were excluded for the best-performing models, and the DeLong test was used. Results:
The one-year survival model contained 10 variables, including three body composition variables
(bone mass, bone density, and visceral adipose tissue (VAT) density), and demonstrated an AUC of
0.817 (95% CI: 0.738–0.897). The three-year survival model incorporated 14 variables, including three
body composition variables (intermuscular adipose tissue (IMAT) volume, IMAT mass, and bone
mass), with an AUC of 0.693 (95% CI: 0.594–0.792). For the five-year survival model, 10 variables
were included, of which two were body composition variables (intramuscular adipose tissue (IMAT)
volume and visceral adipose tissue (VAT) mass), with an AUC of 0.861 (95% CI: 0.783–0.938). The
one- and five-year survival models exhibited significantly inferior performance when body com-
position features were not incorporated. Conclusions: Body composition features derived from
preoperative CT scans should be considered when predicting survival following esophagectomy.

Keywords: esophagectomy; esophageal cancer; body composition; radiomics; survival

1. Introduction

Approximately 90% of cancer-related mortality following esophagectomy occurs due
to distant disease. The current approach to predict survival primarily relies on patho-
logic or clinical staging and response to neoadjuvant treatments [1]. Identifying factors
associated with postoperative survival may provide valuable guidance to clinicians and
patients regarding treatment and prognosis [2]. Radiographically derived variables and
machine learning analyses are taking a foothold in thoracic surgery, with sophisticated
image processing being used more frequently to predict clinical outcomes [3–6]. In fact,
some models utilizing radiomic features have outperformed traditional clinicopathologic
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models [7], demonstrating the potential of these techniques for improved prediction of
postoperative survival.

Most models that predict long-term survival after esophagectomy rely on demo-
graphic, clinical, and pathologic variables without consideration of radiographically de-
rived features [8,9]. However, CT scans contain an extensive amount of information related
to bone, fat, and muscle, collectively known as body composition. Although body composi-
tion has been studied as a prognostic variable in other cancers [10,11], it remains relatively
unexplored in esophageal cancer. There are other radiomic variables that have predictive
capabilities after esophagectomy, such as sarcopenia and myosteatosis [12,13]. However,
and quite importantly, most radiomic variables calculate tissue composition based on single
images at a single anatomical location (i.e., from a single CT scan slice). To our knowledge,
only one study has evaluated a survival model incorporating radiomic, PET, and body
composition variables [14], finding sarcopenia to be an independent predictor of survival.

Quantifying various body composition tissues depicted on CT scans using traditional
manual approaches can be technically challenging and time-consuming. Moreover, practical
consideration often necessitates compromises in the calculations, such as using a single
slice with cutoffs to calculate sarcopenia, which does not account for intermediate values
of body tissues in other locations. To overcome some of these challenges, we developed
computer software to automatically segment three-dimensional body composition from
CT images [15], allowing for extensive and accurate quantification. Compared to other
methods, our software computes a larger number of variables and provides precise values
for each body tissue type [16]. In this way, a more comprehensive assessment of body
composition can be made compared to evaluating sarcopenia from a single image slice.

In this study, we built a post-esophagectomy survival model that incorporates a com-
prehensive set of body composition features from pretreatment CT scans, tumor radiomic
features from preoperative CT and PET-CT scans, and clinical features (including pathologic
stage). The model was designed to: (1) predict post-esophagectomy survival, (2) assess
the impact of body composition features on the model performance, and (3) compare the
performance of our model to other models.

2. Patients and Methods
2.1. Study Population

This study was approved by the University of Pittsburgh Institutional Review Board
(IRB #: STUDY20100305) on 5 February 2021. Our dataset was developed from a prospec-
tively collected database of all patients undergoing esophagectomy at the University of
Pittsburgh Medical Center (UPMC) between 2008 and 2021. Inclusion criteria were pa-
tients who underwent esophagectomy for esophageal cancer, had available preoperative
PET-CT and CT scans, and did not have preoperative chemotherapy or radiation. Data
from 301 patients were de-identified and re-identified with a unique study ID number
by an honest broker, and after removing patients with missing information, 183 patients
ultimately met the inclusion criteria. Demographic (age, race, gender), clinical (stage,
height, weight, smoking history), survival, and radiologic data were collected. CT scans
were used to generate radiomic, tumor, and body composition features (described below).
PET scans were used to generate SUV features, Total Lesion Glucose (TLG), and Metabolic
Tumor Volume (MTV). Patients were followed for a mean of 31 months (0.1–132 months)
post-surgery, and subjects without follow-up survival data were censored.

2.2. Image Acquisition

CT scans were performed over 13 years using Discovery STE (GE Healthcare, Wauke-
sha, WI, USA) or Siemens Biograph scanners. The acquisition parameters are as follows:
120 kV or 130 kV, 60 mAs to 444 mAs, reconstruction field of view 275 × 450 mm, and
image thicknesses ranging from 2–5 mm.
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2.3. Image Features

Body composition: A three-dimensional (3-D) convolutional neural network (CNN) [15]
was used to automatically segment five different body tissues depicted on CT scans,
including visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intramuscular
adipose tissue (IMAT), skeletal muscle (SM) and bone (Supplemental Figure S1). Each body
tissue was quantified with three measurements: mass, volume, and density (measured in
average Hounsfield units (HU)). Mass was estimated from CT HU values, where x is the
HU value and y is the density (g/cm3) of a CT voxel [17] (Equation (1)).

y = 0.0011 × x + 1.136 (1)

Tumor radiomic features: The esophageal tumor contours were manually annotated
on CT and PET-CT images using our in-house software system [18]. Three groups of image
features were computed from pretreatment CT and PET scans based on the manual outlines:

(1) Basic tumor features: (a) volume (mL), (b) density (HU), (c) mean diameter (mm),
(d) maximum length (mm), and density based on average HU value.

(2) CT-based tumor radiomic features: High-dimensional radiomic features (n = 500)
were automatically extracted from the segmented regions on the CT images, which
included summary, first order, shape, and gray-level co-occurrence features [19].

(3) Tumor PET features: PET features were quantified by mapping tumor ROIs from the
CT images onto PET images and then extracting functional characteristics, including
maximum SUV, minimum SUV, average SUV, SUV entropy, SUV P75, PET metabolic
tumor volume (MTV)/mL, and PET total lesion glycolysis (TLG).

2.4. Clinical Features

Clinical and demographic information included post-surgery survival time, pathologic
stage, height, weight, BMI, age, sex, race, and smoking status (current-smoker, former-
smoker, or never-smoker).

2.5. Statistical Analysis

Cox proportional-hazard model was used to perform survival analysis. All variables
were initially evaluated by univariate analysis. Then, multivariate Cox proportional-
hazard models were created using backward-stepwise regression. The final model kept
all variables with a p-value less than 0.05. The primary performance metric for the Cox
proportional-hazard model was the concordance index (c-index). Independent time-point
survival classification was performed on subsets of the cohort at three time points: one-year,
three-years, and five-years post-esophagectomy. Patients were included into the time
points if their survival time was greater than the time of consideration or their date of
expiration was known (not censored). Models constructed include the logistic regression
modeling with L1 penalty [20], the Naïve Bayes model with a Gaussian prior [21], the
random-forest model with the Gini impurity index [22], and the support vector machine
(SVM) with the radial basis kernel function [23,24]. Models were trained and tested on both
normalized and un-normalized data; the model with superior performance was selected.
Z-score normalization was used to standardize the data.

Two sets of models were created for each time point. One model was created using
just pathologic T-, N-, and M-stage variables, herein termed the “reference model”. The
second model included stage variables in addition to the clinical and radiomic features.
A multivariable model was constructed using stepwise forward logistic regression on
each variable group (i.e., radiomic, tumor, PET, body composition, and clinical features).
Intermediate variable models were then combined to create the final nested model using
forward stepwise logistic regression. Training and validating the models were performed
using 10-fold cross-validation. The performance metric was the area under the receiver op-
erating characteristic curve (AUC/ROC). The DeLong test was used to assess the difference
in performance between our model and the reference model, as well as to assess the impact
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of variables on the performance of the final model [25]. All statistics were performed in
R 3.4.1 or Python. A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Body Composition

The cohort had 183 patients who had an esophagectomy but did not receive preopera-
tive chemotherapy or radiation. Demographic and clinical information are summarized
in Table 1. Supplemental Table S1 lists the body composition and tumor features. There
was no significant difference between body composition distribution based on any demo-
graphic categories.

Table 1. Baseline demographics (n = 183).

Characteristic Value

Age 6.7 ± 10.48
Height (cm) 171 ± 9.97
Weight (kg) 85 ± 21.20

Male 138 (75.41%)
Race

White 179 (97.81%)
Black 3 (1.64%)
Asian 1 (0.05%)

Smoking
Former-smoker 120 (65.57%)
Never-smoker 51 (27.87%)

Current-smoker 12 (6.56%)
Cancer Stage

I 65 (35.52%)
II 31 (16.94%)
III 59 (32.79%)
IV 27 (14.75%)

Postoperative Complications
Atrial Fibrillation 42 (22.95%)

Pneumonia 41 (22.40%)
Effusion 37 (20.22%)

Mean ± (SD); n (%)

3.2. Cox Regression Analysis

Sixteen of the 500 radiomic features had statistical significance in the univariate Cox
proportional-hazard models for overall survival. Clinical features that contributed to
mortality were advanced pathological T- and N-stage, being a former smoker, being older,
and having low BMI (Table 2). VAT density was the only body composition from the
univariate Cox proportional-hazard model that was statistically significant (Table 3). The
final post-esophagectomy five-year survival model generated a concordance index (c-index)
of 0.754, using eight variables, including four clinical features (race, BMI, pathological
N-stage, pneumonia) and four body-composition features (bone density, muscle density,
IMAT volume, SAT volume) (Table 4).

Table 2. Univariate Cox proportional-hazard models for clinical information.

Covariate Coefficient Hazard Ratio Lower 95% Upper 95% p-Value

Age 0.024 1.024 0.004 0.044 0.021
BMI −0.049 0.952 −0.089 −0.01 0.014

Height(cm) 0.009 1.009 −0.013 0.032 0.422
Weight(kg) −0.009 0.991 −0.02 0.002 0.1
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Table 2. Cont.

Covariate Coefficient Hazard Ratio Lower 95% Upper 95% p-Value

Sex
Female −0.081 0.922 −0.621 0.459 0.768
Male 0.081 1.084 −0.459 0.621 0.768
Race

White −0.484 0.617 −1.32 0.353 0.257
Black 1.476 4.373 −0.533 3.484 0.15
Asian −21.885 0 −83.864 40.095 0.489

Smoking
Never-smoker 0.03 1.031 −0.455 0.515 0.903

Current-smoker −0.138 0.871 −0.614 0.337 0.569
Former-smoker 2.47 11.826 0.974 3.967 0.001

Pathological T-stage
T1 −0.877 0.416 −1.398 −0.355 0.001
T2 0.028 1.029 −0.551 0.608 0.924
T3 0.579 1.784 0.118 1.04 0.014
T4 1.569 4.801 0.613 2.524 0.001

Pathological N-stage
N0 −0.891 0.41 −1.376 −0.406 0
N1 0.391 1.479 −0.083 0.866 0.106
N2 0.796 2.217 0.119 1.474 0.021
N3 0.51 1.665 −0.112 1.132 0.108

Pathological M-stage
M0 −0.714 0.49 −1.626 0.199 0.125
M1 0.714 2.041 −0.199 1.626 0.125

Postoperative
Complications

Atrial Fibrillation 0.175 1.191 −0.345 0.694 0.510
Pneumonia 0.447 1.563 −0.049 0.943 0.078

Effusion 0.432 1.540 −0.099 0.962 0.111

Table 3. Univariate Cox proportional-hazard models for image features.

Covariate Coefficient Hazard Ratio Lower 95% Upper 95% p-Value

Tumor Features
Tumor volume 0.003 1.003 −0.002 0.009 0.272
Tumor density 0.004 1.004 −0.002 0.010 0.192

Tumor mean diameter 0.025 1.026 −0.001 0.052 0.061
Tumor maximum length 0.003 1.003 0.000 0.006 0.093

PET Features
Average SUV −0.014 0.986 −0.087 0.059 0.710

Maximum SUV −0.013 0.987 −0.068 0.041 0.633
Minimum SUV 0.030 1.031 −0.199 0.259 0.795
PET MTV/ml 0.000 1.000 0.000 0.001 0.135

PET TLG 0.000 1.000 0.000 0.000 0.270
SUV entropy −0.129 0.879 −0.271 0.013 0.076

SUV P75 −0.012 0.988 −0.068 0.044 0.678
Body Composition Features

VAT volume −0.048 0.953 −0.120 0.024 0.191
VAT density 0.034 1.034 0.002 0.065 0.037

VAT mass −0.047 0.954 −0.117 0.023 0.192
SAT volume −0.021 0.979 −0.046 0.003 0.090
SAT density 0.013 1.013 −0.008 0.033 0.236

SAT mass −0.021 0.979 −0.045 0.003 0.090
IMAT volume 0.023 1.023 −0.273 0.320 0.878
IMAT density 0.032 1.033 −0.006 0.071 0.096

IMAT mass 0.022 1.022 −0.261 0.305 0.878
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Table 3. Cont.

Covariate Coefficient Hazard Ratio Lower 95% Upper 95% p-Value

SM volume −0.035 0.966 −0.086 0.017 0.186
SM density 0.000 1.000 −0.026 0.026 0.984
SM muscle −0.029 0.971 −0.073 0.014 0.183

Bone volume −0.008 0.992 −0.259 0.244 0.951
Bone density −0.004 0.996 −0.009 0.001 0.108

Bone mass −0.024 0.976 −0.179 0.131 0.762

Table 4. Multivariate Cox proportional-hazard model for survival post-esophagectomy (n = 183).

Covariate Coefficient Hazard Ratio Lower 95% Upper 95% p-Value

Race 0.363 1.438 0.124 0.603 0.003
BMI −0.254 0.776 −0.356 −0.151 <0.0001

Staging
Pathological N-Stage 0.533 1.705 0.315 0.752 <0.0001

Postoperative Complications
Pneumonia 0.684 1.982 0.161 1.207 0.010

Body Composition
Bone density −0.006 0.994 −0.011 −0.001 0.031

Muscle density 0.062 1.064 0.015 0.109 0.009
IMAT volume 1.016 2.763 0.468 1.565 <0.0001
SAT volume 0.081 1.084 0.019 0.143 0.010

c-index: 0.754

3.3. One-Year Survival

One-year survival had 147 patients included in the analysis. The SVM model for
predicting one-year post-esophagectomy survival exhibited significantly higher perfor-
mance than the logistic regression, Naïve Bayes, and random forest models (Supplemental
Figure S2). Specifically, the SVM model had an AUC of 0.817 (95% CI: 0.0.738–0.897) using
five clinicodemographic (race, BMI, pathological n-stage, effusion, pneumonia), one ra-
diomic feature (DV), 1 PET feature (SUV p75) and three body composition variables (bone
density, bone mass, VAT density) (Supplemental Table S2). In contrast, the reference model,
which used only pathological T-, N-, and M, yielded an AUC of 0.584 (95% CI: 0.461–0.725).
The performance of the SVM model was significantly better than the reference model
(Figure 1A, p = 0.0005). Furthermore, the full SVM model’s performance was significantly
superior to the SVM model without body composition variables (Figure 1B, p = 0.0286),
which produced an AUC of 0.725 (95% CI: 0.612–0.838).

3.4. Three-Year Survival

Three-year survival had 113 patients included in the analysis. The random forest model
for predicting three-year post-esophagectomy survival exhibited superior performance
compared to the other three models (Supplemental Figure S3) with an AUC of 0.693 (95% CI:
0.594–0.792). This model incorporated six radiomic features (Mean intensity, 10th percentile
intensity, root-mean-squared average intensity, summed average intensity, and grey-level
co-occurrence matrix autocorrelation), four clinical features (race, pathological T-stage,
pathological M-stage, smoking history), one PET feature (minimum SUV uptake), and
three body composition features (bone mass, IMAT mass, IMAT volume) (Supplemental
Table S3). The reference model achieved an AUC of 0.598 (95% CI: 0.491–0.706), and the
SVM model did not show a significant difference (Figure 2A, p = 0.127). The performance
of the full random forest model was not statistically different from that of the random
forest model without body composition variables, which achieved an AUC of 0.678 (95%
CI: 0.578–0.777) (Figure 2B, p = 0.629).
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3.5. Five-Year Survival

The five-year survival had 99 patients included in the analysis. The SVM model for
predicting five-year post-esophagectomy survival outperformed other models (Supplemen-
tal Figure S4) with an AUC of 0.861 (95% CI: 0.783–0.938). This model incorporated four
radiomic features (mean, root-mean-squared mean, median, and 10th percentile intensity),
three clinical features (age, BMI, pathological T-stage), one tumor feature (mean diame-
ter), and two body composition features (VAT mass and IMAT volume) (Supplemental
Table S4). Compared to the reference model with an AUC of 0.731 (95% CI: 0.617–0.845),
the SVM model’s performance was significantly better (Figure 3A, p = 0.022). The full
SVM model, including body composition variables, performed significantly better than the
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model without body composition variables (p = 0.042), which had an AUC of 0.801 (95% CI:
0.711–0.891) (Figure 3B).
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4. Comment

Although studies have explored the potential of radiomics as a prognostic tool for
cancer stage and survival [26,27], the impact of body composition on postoperative survival
has received limited attention. We used a prospectively collected database of patients
who underwent esophagectomy and specifically selected patients who did not receive
neoadjuvant treatments. This approach allowed us to accurately determine the “true”
pathologic stage, as that is a well-known predictor of survival.

Our model, which incorporated clinicopathologic, radiomic, and body composition
variables, showed significantly higher performance in predicting one-year and five-year
survival compared to a reference model that only used pathologic T, N, and M. Body
composition variables were found to be important predictors. Although our three-year
model had a higher AUC than the reference model, their difference was not significant
according to the DeLong test (Figure 2A). This lack of significance could partly be due to
the conservative nature of the DeLong test, which becomes increasingly conservative in
“nested” models [28].

Sarcopenia on a single CT slice has been studied as a predictor of clinical outcomes, as
it is thought to reflect a subject’s nutritional status, general health, and physical activity.
However, our approach using body composition variables derived from a full-body CT
scan may provide a more comprehensive assessment of overall health. Our univariate
Cox proportional-hazard models indicated that the adipose tissue-related features (VAT,
SAT, and IMAT) were all marginally significant, while SAT volume, IMAT volume, bone
density, and muscle density volume became significant (p < 0.05) predictors in the multi-
variate Cox proportional-hazards model. This suggests that increased subcutaneous and
intramuscular adipose tissue volumes and muscle density are associated with decreased
survival after esophagectomy, while increased bone density is associated with improved
survival outcomes. The role of IMAT in cancer patients is not well understood, but some
theory suggests that increased IMAT may be linked to metabolic risk factors, such as insulin
resistance, as well as negative effects on immune pathways and wound healing [29].
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Previous studies have utilized logistic regression as the primary method for their
survival prediction models post-esopahgectomy [5,8,9]. However, we took a different
approach by evaluating sophisticated machine learning methods and conducted a compre-
hensive comparison of the four most common machine learning methods. We found that
SVM had the best performance, even with a relatively small number of predictors (~10).
Although logistic regression is a simpler method for prediction modeling and performs
well with a smaller set of variables, SVM generates a high-dimensional feature landscape
and improved separation of classes when incorporating a broader array of features.

The importance of including non-significant variables in the multivariate analysis
should be noted, as some of the variables may become significant when included with other
predictors in the model. Traditionally, only variables that show significance in univariate
analysis are included in the multivariate analysis. However, the suppression principle in
statistics recognizes that the addition of a third variable can provide more insight into the
relationship between an independent and dependent variable [30]. Therefore, we have
included some variables in the multivariate models that did not show significance in the
univariate analysis to better understand the complex relationships between variables.

This study has several limitations that should be acknowledged. First, our analysis
only include patients who did not receive neoadjuvant treatment, which allowed us to
have accurate pathologic staging as a reference for survival prediction. However, our
analysis does not take into account postoperative treatments, although postoperative
complications were included into models. While our cohort only included preoperative
CT-scans, future work that includes not only preoperative, but also postoperative CT-scans
could greatly improve our understanding of how changes in body composition will affect
overall survival outcomes. Additionally, we did not consider other potential prognostic
factors, such as tumor grade or location, although most of the patients had distal esophageal
adenocarcinoma. The use of various CT protocols over a 13-year period also introduced a
diverse set of images used for model training, which could affect the generalizability of our
findings. While we used an automated body composition segmentation tool, its accuracy
is not perfect, but we find the results encouraging and believe that future studies should
explore this further. Finally, external validation and larger cohorts are needed to establish
the robustness of our work.

Esophageal cancer is a highly lethal form of cancer, and identifying better predictors
of survival can aid in guiding patients toward appropriate therapy. Our study demon-
strates that body composition is a significant contributing factor to survival models, and
these variables can be automatically derived from preoperative images. The inclusion
of body composition variables, such as intramuscular adipose tissue volume, in survival
models can provide a more comprehensive assessment of prognosis. This may lead to
improved personalized treatment strategies and ultimately better outcomes for patients
with esophageal cancer.
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