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Abstract: This study aims to identify potential factors for both femoral and tibial tunnel widening
(TW) and to investigate the effect of TW on postoperative outcomes after anterior cruciate ligament
(ACL) reconstruction with a tibialis anterior allograft. A total 75 patients (75 knees) who underwent
ACL reconstruction with tibialis anterior allografts were investigated between February 2015 and
October 2017. TW was calculated as the difference in tunnel widths between the immediate and 2-year
postoperative measurements. The risk factors for TW, including demographic data, concomitant
meniscal injury, hip–knee–ankle angle, tibial slope, femoral and tibial tunnel position (quadrant
method), and length of both tunnels, were investigated. The patients were divided twice into
two groups depending on whether the femoral or tibial TW was over or less than 3 mm. Pre-
and 2-year follow-up outcomes, including the Lysholm score, International Knee Documentation
Committee (IKDC) subjective score, and side-to-side difference (STSD) of anterior translation on stress
radiographs, were compared between TW ≥ 3 mm and TW < 3 mm. The femoral tunnel position
depth (shallow femoral tunnel position) was significantly correlated with femoral TW (adjusted
R2 = 0.134). The femoral TW ≥ 3 mm group showed greater STSD of anterior translation than the
femoral TW < 3 mm group. The shallow position of the femoral tunnel was correlated with the
femoral TW after ACL reconstruction using a tibialis anterior allograft. A femoral TW ≥ 3 mm
showed inferior postoperative knee anterior stability.

Keywords: anterior cruciate ligament; reconstruction; tunnel widening; risk factor; laxity

1. Introduction

Tunnel widening (TW) after anterior cruciate ligament (ACL) reconstruction is a well-
known phenomenon. The incidence of TW after single-bundle ACL reconstruction is
reportedly between 30.1–100% on the femoral side and 20.9–73.9% on the tibial side [1–3].
TW might lead to two-stage surgery in revision ACL reconstruction [4,5]. Moreover, TW
adversely affects patients’ postoperative outcomes [6–8].

Several studies have attempted to identify the risk factors for TW [3,9–11]. It is gener-
ally accepted that TW is caused by a complex interplay between biological and mechanical
factors. The biological factors include patient age, bone quality, cell necrosis induced by
drilling, or inflammatory mediators [12–16]. Mechanical factors include the femoral fixation
method, tibial slope, graft position, graft tension, and aggressive rehabilitation [3,17–19].
Among mechanical factors, non-anatomical femoral tunnel position is a highly debated
factor associated with TW [20–22]. Ko et al. [21] reported that a more anterior and higher lo-
cation of the femoral tunnel could be a risk factor for femoral TW. In contrast, Choi et al. [20]
demonstrated that the femoral tunnel position is not a major factor associated with TW.
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The graft of choice remains autograft for ACL reconstruction. Allografts have some
advantages, including better cosmetic outcomes, lesser postoperative pain-related graft
harvest, and faster recovery; however, they also have disadvantages, such as high cost and
risk of TW [23,24]. Numerous studies have compared the postoperative outcomes between
autografts and allografts [23,25,26]. However, only a few studies have investigated the risk
factors for TW after ACL reconstruction using tibialis anterior allografts.

The present study aimed to identify potential factors for both femoral and tibial TW
and to investigate the effect of TW on postoperative outcomes after ACL reconstruction
with a tibialis anterior allograft. It was hypothesized that the tunnel position was associated
with TW.

2. Materials and Methods
2.1. Study Design and Patients

This study was a retrospective comparative study. This study was approved by the
ethics committee of our institution (SMC 2022-05-056), and written informed consent was
obtained from all patients. The study enrolled patients who underwent arthroscopic ACL
reconstruction at a single institution between February 2015 and October 2017 (Figure 1).
The inclusion criteria were presented in Table 1. Overall, 123 patients were screened.
Among them, a total 75 patients (75 knees) were enrolled after applying inclusion and ex-
clusion criteria. The demographic, preoperative, and intraoperative findings are presented
in Table 2. According to previous study results, the mean TW was 2.8–3.3 mm [11,27,28].
The patients were divided twice into two groups depending on whether the femoral or
tibial TW was over or less than 3 mm on anteroposterior (AP) view radiographs.
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Table 1. Inclusion and exclusion criteria of the study.

Inclusion Criteria

(1) total ACL rupture diagnosed during magnetic resonance imaging or arthroscopic examination
(2) ACL reconstruction using a tibialis anterior allograft
(3) follow-up for more than 24 months

Exclusion criteria

(1) revision ACL reconstruction
(2) concomitant ligament surgery
(3) history of contralateral knee surgery
(4) lack of clinical or radiographic data

Table 2. Demographic, preoperative, and intraoperative data for enrolled patients.

Number of Patients 75
Age, year 31.5 ± 12.0 (18–60)
Sex, M:F 61:14:00
Body mass index, kg/m2 24.9 ± 3.7 (18.5–34.7)
Side of injury, Right:Left 42:33:00
Combined meniscus injury, n (%)

Medial 33 (44%)
Lateral 10 (13.3%)

Both 7 (9.3%)
HKA angle, degree 0.5 ± 2.56 (−5.8–9.2)
Tibial slope, degree 10.8 ± 3.3 (3.1–17.8)
Femoral tunnel length, mm 29.5 ± 4.8 (20–40)
Tibial tunnel length, mm 35.0 ± 5.2 (24–48)
Femoral tunnel position, %

Depth 29.6 ± 7.0 (17–53)
Height 33.3 ± 8.7 (5–48)

Tibia tunnel position, %
Anteroposterior 44.0 ± 2.6 (36–51)

Mediolateral 42.8 ± 6.6 (29–54)
Data are presented as mean ± standard deviation (range); HKA, hip-knee-ankle.

2.2. Surgical Technique

All surgeries were performed by a single senior surgeon, one of the authors (D.H.L).
Arthroscopic portal formation and examinations were performed initially. Upon identifying
a meniscal injury, an appropriate surgical procedure was performed depending on the tear
characteristics before ACL reconstruction. After diagnosing an ACL injury, a femoral tunnel
was created. The transanteromedial (AM) portal method was used to create the femoral
tunnel at the anatomical position. A standard AM portal was used as the viewing portal,
and the far AM portal was used as the working portal. A guide pin (2.4 mm) was inserted
with knee flexion at 120◦, and a 4.5 mm EndoButton drill (Smith & Nephew, Andover, MA,
USA) was inserted to drill through the far cortex of the femur. After measuring the length,
the femoral tunnel was created using a cannulated reamer. Subsequently, a tibial tunnel
was created on the tibial footprint of the ACL. The allogeneic tibialis anterior tendon was
prepared and grafted (Figure 2). An EndoButton (Smith & Nephew, Andover, MA, USA)
was used for femoral side graft fixation. Hybrid fixation, which combines intra-tunnel
aperture and extracortical suspensory fixation, was used for tibial side fixation [29].
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Figure 2. The allogenic tibialis anterior tendon (A) before and (B) after the preparation.

Crutch-assisted walking was initiated 1 d after surgery. Full weight-bearing walking
was permitted at six weeks. Range of motion (ROM) exercises were started from 0◦ to
90◦ 2 days after surgery, and full flexion was achieved by 6 weeks. Closed kinetic chain
exercises were started two weeks postoperatively. Sports activity, including pivoting,
jumping, or side-stepping, was allowed 9 months postoperatively.

2.3. Clinical and Radiographic Assessments

Clinical data were gathered in terms of ROM and patient-reported outcomes. The
Lysholm score [30,31] and International Knee Documentation Committee (IKDC) score [32]
were evaluated preoperatively and 2 years postoperatively. The pre- and postoperative
clinical assessments were compared. Clinical outcomes were also compared between the
groups divided into femoral or tibial TW ≥ 3 mm or <3 mm on AP radiographs.

Postoperative plain radiographic outcomes were obtained from 2-year follow-up data.
The preoperative hip-knee-ankle (HKA) angle was measured as the angle subtended by a
line drawn from the center of the femoral head to the center of the knee, and a line drawn
from the center of the knee to the center of the talus on whole-leg standing radiographs,
with a positive and negative HKA angle indicating varus and valgus, respectively [33,34].
The tibial slope was measured as the angle between the mid-diaphysis line of the tibia and
the line depicting the posterior inclination of the tibial plateau in the lateral view [35]. An-
teroposterior knee joint stability was assessed using Telos Stress radiographs [36] (Figure 3).
Preoperative and postoperative Telos Stress radiography (150 N on the tibia at 20–30◦

of knee flexion) was evaluated. A reference line was drawn parallel to the medial tibial
plateau joint. The perpendicular lines from the reference line were drawn tangentially to
the most posterior contour of the femoral condyle and the most posterior contour of the
tibial plateau. The distance between the two lines was defined as anterior tibial transla-
tion. The side-to-side difference (STSD) was calculated to analyze native laxity, defined as
the difference in anterior tibial translation between the knees. The STSD was measured
preoperatively and at 2 years postoperatively, and the results were compared between
each other.
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Figure 3. Measurement of pre- and postoperative anterior tibial translation on Telos stress radio-
graphs. A reference line (black line) was drawn parallel to the tibial plateau joint line. Perpendicular
lines (white lines) from the reference line were drawn tangentially to the most posterior contour of
the femoral condyle and tibial plateau. The anterior tibial translation was defined as the distance
between two lines (arrow line).

The tunnel widths of the femur and tibia were measured on both knee AP and lateral
radiographs, as described in previous reports [28,37]. Immediately and 2 years postoper-
atively, radiographs were used to measure tunnel widths. The femoral and tibial tunnel
widths on the AP (FT-AP and TT-AP, respectively) and lateral views (FT-Lat and TT-Lat,
respectively) were measured (Figure 4). The average values of the three different mea-
surement points were used for analysis [9]. Femoral and tibial TWs were defined as the
measurement difference between immediate and postoperative results after 2 years on
the AP view. The patients were divided into two groups according to femoral and tibial
TWs > 3 mm.

Computed tomography (CT) was performed 3 days postoperatively. Three-dimensional
CT images were used to measure the femoral and tibial tunnel positions. The center of
the femoral and tibial tunnel apertures was measured on the standardizeds grid system as
described previously [20]. In terms of the femoral tunnel, the higher limit of the grid was
located on the femoral notch roof, and the anterior, posterior, distal, and proximal sides of
the grid were located on the articular cartilage margin. The height and depth of the femoral
tunnel were measured. With respect to the tibial center, a rectangular grid was located at
each end edge of the tibial plateau. The AP and mediolateral (ML) tibial tunnel positions
were then calculated (Figure 5).

CT was also used to measure the femoral and tibial tunnel lengths. Images of the
oblique plane which best visualized the long axis of the tunnels were analyzed using the
Horos medical image viewer (version 3.3.5; Horos Project, New York, U.S.) [11] (Figure 6).
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All radiographic parameters were measured twice by two orthopedic surgeons with at
least 4-week intervals between each measurement using a picture archiving and communica-
tion system (Centricity PACS Viewer; GE Healthcare, Chicago, IL, USA). Intraclass correlation
coefficients (ICC) were used to determine intraobserver and interobserver reliabilities.

2.4. Statistical Analysis

The Shapiro–Wilk test was used to evaluate the normality of the distribution. Paired
t-tests for continuous variables and chi-square tests for categorical variables were used
to compare the preoperative and postoperative outcomes. To compare the demographic
data as well as preoperative, intraoperative, and postoperative outcomes between the
two groups, Student’s t-test or the chi-square test was used. Stepwise multiple regression
analysis was performed to identify which of the following factors were correlated with
changes in the femoral and tibial TW on AP and lateral radiographs from the initial to 2-year
follow-up. The independent factors were patient age, sex, body mass index, concomitant
meniscal injury, HKA angle, tibial slope, femoral and tibial tunnel positions, and the length
of both tunnels. All data were analyzed using IBM SPSS Statistics (version 27.0; IBM,
Armonk, NY, USA), and statistical significance was set at p < 0.05. Our study allocated
37 and 38 patients to the femoral TW ≥ 3 mm and <3 mm groups, respectively. It would
take 89% statistical power to detect a difference of at least 1 mm with a standard deviation
of 1.5 mm in STSD between the femoral TW ≥ 3 mm and <3 mm groups (α = 0.05).

3. Results

All inter- and intraobserver ICCs showed good agreement with respect to the reliability
of the radiographic measurements (>0.80).

Mean differences in femoral and tibial tunnel widths on AP and lateral radiographs
between the immediate and 2-year postoperative periods were 3.0, 2.5, 2.9, and 2.9, re-
spectively, in the following order: femoral tunnel on AP, femoral tunnel on the lateral,
tibial tunnel on AP, and tibial tunnel on lateral. Detailed tunnel widths are summarized in
Table 3.

Table 3. Tunnel widths on anteroposterior and lateral knee radiographs at immediate and 2-year
post-operation.

Immediately after Operation 2-Year after Operation p Value

Femoral tunnel width on AP radiograph, mm 10.1 ± 1.0 13.1 ± 1.8 <0.001
Femoral tunnel width on lateral radiograph, mm 9.9 ± 1.2 12.4 ± 1.8 <0.001
Tibial tunnel width on AP radiograph, mm 10.3 ± 0.9 13.2 ± 1.4 <0.001
Tibial tunnel width on lateral radiograph, mm 10.7 ± 1.1 13.6 ± 1.5 <0.001

When the patients were divided into two groups according to femoral TW ≥ 3 mm or
<3 mm, 37 and 38 patients were classified into femoral TW ≥ 3 mm and <3 mm groups,
respectively. Most preoperative, immediate, and postoperative outcomes were similar
between the groups, except for the depths of the femoral tunnel position and postoperative
STSD (Table 4).

The femoral tunnel position was significantly shallower in the femoral TW of ≥ 3 mm
group. Postoperative STSD was significantly greater in the femoral TW ≥ 3 mm group. In
terms of dividing groups as tibial TW ≥ 3 mm or <3 mm, 34 and 41 patients were classified
as tibial TW ≥ 3 mm group and or < 3 mm group, respectively. No significant intergroup
differences were observed in any outcome (Table 5).

In terms of the correlation between femoral TW on AP radiographs and potential pre-
dictive factors, the depths of femoral tunnel position (shallow position of the femoral tunnel)
were significantly correlated with femoral TW on AP radiographs (adjusted R2 = 0.134,
Table 6). The correlation between femoral TW on lateral radiograph and potential factors
showed similar results; a shallower femoral tunnel is the most critical predictive factor
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for femoral TW on the lateral radiograph (adjusted R2 = 0.176, Table 7). Regarding the
correlation between tibial TW on AP and lateral radiographs and potential predictive
factors, all factors were not significantly related to tibial TW.

Table 4. Comparison of preoperative, immediate and postoperative outcomes between femoral
tunnel widening ≥3 mm group and <3 mm group.

Femoral TW ≥ 3 mm Femoral TW < 3 mm p-Value

Number of patients 37 38
Age, year 33.1 ± 13.5 29.9 ± 10.3 0.257
Sex, male:female 30:07:00 31:07:00 0.956
Body mass index, kg/m2 24.9 ± 3.9 24.9 ± 3.5 0.975
Direction, right:left 21:16 21:17 0.896
Combined meniscal injury, n

Medial meniscus 17 16 0.902
Lateral meniscus 5 5 0.831

Both medial and lateral 3 4 0.978
Hip-knee-ankle angle, ◦ 0.8 ± 2.6 0.1 ± 2.5 0.218
Tibial slope, ◦ 11.2 ± 3.6 10.4 ± 3.0 0.272
Femoral tunnel length, mm 29.5 ± 5.0 29.5 ± 4.7 0.98
Tibial tunnel length, mm 35.8 ± 5.5 33.9 ± 4.7 0.105
Femoral tunnel position—Depth, % 31.7 ± 7.3 27.6 ± 6.3 0.014
Femoral tunnel position—Height, % 32.8 ± 8.8 33.6 ± 8.8 0.638
Tibia tunnel position—AP, % 43.6 ± 6.9 42.0 ± 6.3 0.288
Tibia tunnel position—ML, % 44.1 ± 2.6 44.0 ± 2.6 0.751
Preoperative ROM, ◦ 130.7 ± 15.5 128.2 ± 15.2 0.546
Preoperative Lysholm score 62.0 ± 24.0 55.7 ± 17.8 0.33
Preoperative IKDC subjective score 44.9 ± 20.1 42.6 ± 14.3 0.671
Preoperative STSD, mm 6.4 ± 2.7 6.5 ± 3.6 0.949
Postoperative 2-year ROM, ◦ 138.4 ± 9.3 136.5 ± 8.5 0.44
Postoperative 2-year Lysholm score 84.1 ± 12.1 87.0 ± 11.8 0.318
Postoperative 2-year IKDC
subjective score 78.4 ± 12.3 76.6 ± 14.6 0.583

Postoperative 2-year STSD, mm 3.7 ± 2.0 2.4 ± 2.3 0.013
AP, anteroposterior; ML, mediolateral; ROM, range of motion; STSD, side-to-side difference.

Table 5. Comparison of preoperative, immediate, and postoperative outcomes between tibial tunnel
widening ≥3 mm group and < 3 mm group.

Tibial TW ≥ 3 mm Tibial TW < 3 mm p-Value

Number of patients 34 41
Age, year 21.2 ± 12.0 30.9 ± 12.1 0.651
Sex, male:female 26:08:00 35:06:00 0.381
Body mass index, kg/m2 24.8 ± 4.2 25.0 ± 3.2 0.849
Direction, right:left 19:15 23:18 0.985
Combined meniscal injury, n

Medial meniscus 15 18 0.598
Lateral meniscus 5 5 0.786

Both medial and lateral 2 5 0.813
Hip-knee-ankle angle, ◦ 0.7 ± 2.3 0.3 ± 2.7 0.494
Tibial slope, ◦ 11.4 ± 3.8 10.3 ± 2.9 0.153
Femoral tunnel length, mm 29.5 ± 3.3 29.5 ± 5.8 0.96
Tibial tunnel length, mm 34.8 ± 5.5 34.9 ± 4.9 0.971
Femoral tunnel position—Depth, % 29.0 ± 6.9 30.1 ± 7.3 0.544
Femoral tunnel position—Height, % 34.1 ± 8.7 32.6 ± 8.7 0.465
Tibia tunnel position—AP, % 44.0 ± 6.6 41.8 ± 6.5 0.15
Tibia tunnel position—ML, % 44.1 ± 2.6 44.0 ± 2.7 0.88
Preoperative ROM, ◦ 131.7 ± 12.6 127.5 ± 15.5 0.324
Preoperative Lysholm score 62.5 ± 24.4 55.2 ± 17.0 0.258
Preoperative IKDC subjective 44.0 ± 19.5 43.5 ± 15.3 0.932
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Table 5. Cont.

Tibial TW ≥ 3 mm Tibial TW < 3 mm p-Value

Preoperative STSD, mm 6.7 ± 4.0 6.2 ± 2.3 0.426
Postoperative 2-year ROM, ◦ 136.6 ± 8.9 138.3 ± 8.9 0.489
Postoperative 2-year Lysholm score 83.5 ± 13.9 87.4 ± 9.9 0.184
Postoperative 2-year IKDC
subjective score 76.3 ± 13.5 78.4 ± 13.5 0.535

Postoperative 2-year STSD, mm 3.6 ± 2.1 2.6 ± 2.3 0.055
AP, anteroposterior; ML, mediolateral; ROM, range of motion; STSD, side-to-side difference.

Table 6. Multiple regression analysis of potential predictive factors correlated with the femoral tunnel
widening observed on the anteroposterior radiograph.

Dependent Variable Independent Variables
Non-Standardized Coefficients Standardized Coefficients

p-Value
B SE B

Femoral tunnel
widening on AP

radiograph
(Initial→2 years)

Age 0.014 0.018 0.238
Sex −0.146 0.649 0.567
Body mass index 0.001 0.061 0.696
Medial meniscus injury −0.085 0.434 0.751
Lateral meniscus injury −0.225 0.597 0.635
Hip-knee-ankle angle 0.081 0.085 0.173
Tibial slope −0.012 0.073 0.724
Femoral tunnel length −0.007 0.051 0.981
Tibial tunnel length 0.007 0.059 0.536
Femoral tunnel
position—Depth 8.813 3.798 0.387 0.003

Femoral tunnel
position—Height 1.355 2.597 0.485

Tibia tunnel position—AP 0.54 9.384 0.613
Tibia tunnel position—ML 3.527 4.272 0.39

AP, anteroposterior; ML, mediolateral.

Table 7. Multiple regression analysis of potential predictive factors correlated with the femoral tunnel
widening observed on the lateral radiograph.

Dependent Variable Independent Variables
Non-Standardized Coefficients Standardized Coefficients

p-Value
B SE B

Femoral tunnel
widening on the

lateral radiograph
(Initial→2 years)

Age −0.009 0.015 0.524
Sex −0.456 0.538 0.401
Body mass index 0.002 0.051 0.972
Medial meniscus injury −0.097 0.36 0.789
Lateral meniscus injury −0.204 0.495 0.681
Hip-knee-ankle angle 0.129 0.071 0.077
Tibial slope −0.044 0.061 0.478
Femoral tunnel length −0.054 0.042 0.21
Tibial tunnel length −0.039 0.049 0.435
Femoral tunnel
position—Depth 8.462 2.348 0.437 0.001

Femoral tunnel
position—Height 0.221 2.153 0.919

Tibia tunnel position—AP −5.223 7.779 0.506
Tibia tunnel position—ML 2.672 3.541 0.455

AP, anteroposterior; ML, mediolateral.

The Lysholm and IKDC subjective scores significantly improved postoperatively.
STSD on Telos stress radiographs was significantly less postoperatively compared to pre-
operation (Figure 7).
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4. Discussion

The principal finding of the present study was that the shallow position of the femoral
tunnel was correlated with femoral TW after ACL reconstruction using a tibialis anterior
allograft. Moreover, the femoral TW ≥ 3 mm group showed inferior postoperative anterior
stability than the femoral TW < 3 mm group.

TW after ACL reconstruction was widely reported in the early 1990s [14,38]. Despite
its wider recognition and numerous previous studies, there is little information available
on the origin and reason for bone TW. Clatworthy et al. [2] suggested a multifactorial
etiology of tunnel enlargement. It is generally agreed that TW after ACL reconstruction
occurs because of a complex interplay between mechanical and biological factors. In terms
of mechanical factors, the key terms were ‘motion of grafts’ and ‘strain of grafts’ in the
tunnels. For example, cortical suspensory device fixation provided greater graft motion
at the aperture area, such that TW could be greater than aperture fixation [7,39]. Young
age and male sex were reportedly risk factors for TW in previous studies, suggesting that
greater activity might induce greater motion of grafts in tunnels [9,12]. A greater tibial
slope was reported as a risk factor for tibial TW in a previous study [40]. They guessed that
an increased tibial slope induced anterior translation of the tibia during weight-bearing
activities, potentially placing more strain on the graft, resulting in increased TW. In a
brief review of previous studies investigating biological factors, Zijl et al. [28] compared
tunnel enlargement between bone-patellar tendon-bone (BPTB) autografts and allografts.
The average tunnel enlargement was found to be 2.2 mm ± 2.5 mm for autografts and
2.8 mm ± 2.1 mm for allografts without a statistically significant difference. Fahey et al. [14]
also compared BPTB autografts and allografts; the average TW was 0.26 mm for autografts
and 1.2 mm for allografts with significance (p > 0.0002). Zhang et al. [41] compared the
ratio of tibial tunnel enlargement (compared to initial tunnel width) between hamstring
autograft and soft tissue allograft, including tibialis and hamstring. The ratio of tibial
tunnel enlargement was 26.7% ± 4.0% for autografts and 29.7% ± 5.3% for allografts,
which was statistically significant (p = 0.009). Amano et al. [42] compared the ratio of
femoral tunnel enlargement between hamstring autografts and BPTB autografts. The ratio
of femoral tunnel enlargement was 41.9% ± 22.2% for the hamstring tendon and 16.0% ±
12.4% for the allografts, with a statistically significant difference (p < 0.05). Kim et al. [43]
compared the ratio of femoral tunnel enlargement between Achilles tendon allografts and
tibialis anterior allografts. The ratio of femoral tunnel enlargement was 38.4% ± 35.8%
for the tibialis anterior allografts and 16.1% ± 17.6% for the tibialis anterior allografts
(p = 0.017). The results so far imply that allografts have a slight disadvantage for TW
compared to autografts, and TW mainly occurred in bone-soft tissue contact surfaces rather
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than bone-bone contact surfaces in both allo- and autografts. Therefore, it is important to
investigate the predictive factors of TW after ACL reconstruction using hamstring or tibialis
allografts. Only a few studies have investigated predictive factors for TW after surgery
with hamstring or tibialis allografts. Moon et al. [11] studied 91 patients who underwent
ACL reconstruction using a tibialis anterior allograft with suspensory femoral fixation.
They conducted multiple regression analyses between the potential independent factors
and femoral TW. They concluded that a short graft insertion length (β = −1.724, p < 0.001)
and shallow femoral tunnel position (β = 0.407, p = 0.008) were associated with femoral
TW. The relationship between the femoral TW and femoral tunnel position was consistent
with our results. However, the femoral tunnel length, similar to the graft insertion length
in the study by Moon et al., was not correlated with the femoral TW in our study. Our
study and the study by Moon et al. were relatively small-volume investigations; therefore,
a large-volume study is needed to identify risk factors for TW after ACL reconstruction
using allografts more precisely.

The importance of ACL reconstruction in anatomical tunnel positions is widely known.
Parkinson et al. [44] reported that the femoral center of the ACL footprint was defined
as 29.3% ± 3.5% in the anteroposterior plane (shallow–deep) and 34.7% ± 4.5% in the
proximal-distal plane (high–low). Previous biomechanical cadaveric studies suggested
that knees with grafts placed anterior and proximal to the anatomic femoral footprint
experienced more anterior tibial translation and less rotational stability [45,46]. Similar
to the results of biomechanical studies, previous studies demonstrated that anatomical
femoral tunnel position was correlated with better anterior and rotational stability than
non-anatomical ACL reconstruction [10,22,47]. Moreover, Byrne et al. [48] reported that
non-anatomical femoral tunnel position was an independent risk factor for revision ACL
reconstruction. It remains unclear whether the non-anatomical femoral tunnel position,
especially in shallow and high positions, is correlated with femoral TW [11,20,21]. In
our study, the shallow femoral tunnel position was correlated with femoral TW. Previous
studies demonstrated that ACL grafts were positioned eccentrically to shallow and high
positions and filled 52.0–55.3% of the femoral tunnel when femoral fixation was performed
using a cortical suspensory device [7,49]. Despite these inconsistent findings, we believe
the femoral tunnel position would be an independent risk factor for femoral TW after ACL
reconstruction using the cortical suspensory device aspect of graft motion and strain.

Whether TW is associated with knee laxity after ACL reconstruction remains controver-
sial [6,8]. The femoral TW ≥ 3 mm group showed inferior knee anterior stability compared
to the <3 mm group in the present study. The femoral tunnel position was also significantly
shallower in the femoral TW of ≥ 3 mm group. Therefore, it is challenging to determine
TW as an independent relative factor for postoperative knee instability by analyzing our
results. We believe that TW, non-anatomic tunnel position, and knee laxity may be related
to each other. A large-volume study is needed to further identify the relationship between
TW and postoperative knee laxity.

Our study has several limitations. First, the strength of this study is that all surgeries
were performed by a single surgeon using the same graft, fixation method, and tunnel
formation technique. However, our results cannot be applied to other graft selections,
tunnel formation methods, or fixation methods. Second, the patients were divided into
TW ≥ 3 mm and TW < 3 mm groups according to the change in tunnel width from the
initial to 2-year postoperatively. Furthermore, the number of patients varied if the follow-
up period was different. Therefore, a causal relationship may not be strong. Third, the
tunnel width was measured using plain radiographs; therefore, the measurements could be
inaccurate compared with those obtained from CT or magnetic resonance imaging. Fourth,
this study had a retrospective design; therefore, selection or information biases may exist.

5. Conclusions

The shallow position of the femoral tunnel was correlated with femoral TW after
ACL reconstruction using a tibialis anterior allograft. A femoral TW ≥ 3 mm showed
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inferior postoperative knee anterior stability. However, postoperative clinical outcomes
were similar between both groups. Postoperative clinical outcomes were significantly
improved compared to those of preoperation.
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