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Abstract: Residency training in medicine lays the foundation for future medical doctors. In real-
world settings, training centers face challenges in trying to create balanced residency programs, with
cases encountered by residents not always being fairly distributed among them. In recent years,
there has been a tremendous advancement in developing artificial intelligence (AI)-based algorithms
with human expert guidance for medical imaging segmentation, classification, and prediction. In
this paper, we turned our attention from training machines to letting them train us and developed
an AI framework for personalised case-based ophthalmology residency training. The framework is
built on two components: (1) a deep learning (DL) model and (2) an expert-system-powered case
allocation algorithm. The DL model is trained on publicly available datasets by means of contrastive
learning and can classify retinal diseases from color fundus photographs (CFPs). Patients visiting
the retina clinic will have a CFP performed and afterward, the image will be interpreted by the DL
model, which will give a presumptive diagnosis. This diagnosis is then passed to a case allocation
algorithm which selects the resident who would most benefit from the specific case, based on their
case history and performance. At the end of each case, the attending expert physician assesses the
resident’s performance based on standardised examination files, and the results are immediately
updated in their portfolio. Our approach provides a structure for future precision medical education
in ophthalmology.

Keywords: diagnosis of retinal conditions; precision education machine learning; contrastive learning

1. Introduction

As with numerous other medical and surgical specialties, ophthalmology residency
training is also reliant on an apprenticeship education model, which was introduced by
Halsted in the late 19th century. The competencies during this apprenticeship, which are
passed on from the teaching physician to the trainee, include theoretical knowledge, clinical
skills, and surgical training.

With the emergence of technological advances in ophthalmology, there is an increase
in the number of investigations a patient undergoes and thus in the time per patient
consultation. This technological improvement grows parallel with a rise in the medical
gained knowledge, with the doubling time of medical knowledge having been predicted
to skyrocket from 50 years in 1950 to an astonishing 73 days in 2020 [1]. These advances,
both in terms of technology and knowledge, further extend the physician’s and trainee’s
workload. While these advancements favor patient care, the educational time between the
trainee and the attending physician reviewing the investigations and discussing the cases
is limited, threatening the apprenticeship education model.
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Artificial intelligence (AI) has started to play an important role in medicine, from sim-
pler tasks, such as screening and diagnosing various conditions, to more complex assign-
ments, such as predicting disease evolution and structure-function correlation. Taking into
consideration the rapid advancements mentioned before, we can observe in this grand
puzzle of the apprenticeship model a place for AI-guided education.

During ophthalmology residency training, it is important for residents to be exposed to
as many eye conditions as possible. Since medical knowledge advances quickly with tech-
nology by its side, numerous subspecialties have emerged in ophthalmology, with physi-
cians specializing in subdomains such as cornea and external disease, refractive surgery,
glaucoma, medical retina, vitreoretinal surgery, pediatric ophthalmology and strabismus,
orbital surgery and oculoplastics, neuro-ophthalmology, uveitis, and low vision rehabilita-
tion. In the near future, we might observe a further subdivision of these subdomains. In
many instances, the time residents spend in various subspecialties is unfortunately short in
comparison to the expected learning outcomes, and in some training centers, residents do
not have access to all of these subspecialties. Medical retina rotation is considered to be
one of the toughest, due to the challenging examination of the eye fundus and the various
methods of the presentation of retinal conditions (RCs).

In this paper, we propose a solution for enhancing medical retina rotation. In order for
residents to make the most of their time in this rotation, patients presenting to the retina
clinic should be referred to them based on the residents’ educational needs. Thus, we
view this as a matchmaking problem, where we need to match a known set of residents
having different training experiences with an unknown set of patients, which is gradually
constructed during the rotation.

In order to tackle this matchmaking problem, we developed an AI-based framework
that personalizes the cases residents encounter. The framework is built on two components,
(1) a deep learning (DL) model and (2) an expert-system-powered case allocation algorithm.
Patients visiting the retina clinic will first have a color fundus photograph (CFP) performed
and the fundus image will then be computed by the DL model, which will choose a
presumptive diagnosis. The diagnosis is then passed to the case allocation algorithm,
which uses an expert system to select the resident who would most benefit from the case,
based on their case history and performance.

This approach helps standardize the retina rotation and leads to a more tailored
residency experience, with all residents achieving the expected educational competencies.

2. Classifying Color Fundus Photographs with Deep Learning
2.1. Building the Resident Dataset

To develop the learning model, we collected, combined, and curated CFPs from three
publicly available online datasets: (1) Ocular Disease Intelligent Recognition (ODIR) [2,3],
(2) Retinal Fundus Multi-Disease Image Dataset (RFMID) [4], and (3) the public part
(1000 CFPs) of the Joint Shantou International Eye Centre (JSIEC) dataset [5].

Ocular Disease Intelligent Recognition is a structured database containing CFPs from
5000 patients with diagnostic keywords annotated by trained readers with quality control
management. Shanggong Medical Technology Co., Ltd. collected the CFPs from “real-life”
patients visiting different hospitals and medical centers in China. The CFPs were captured
using different fundus cameras available in the market, such as Canon, Zeiss, and Kowa.
Since the images are for both the left and the right eye, there are annotations on a patient
level and also on an individual eye level. On a patient level, each subject (both eyes) was
classified into one or more of the following eight labels: normal (N), diabetes (D), glaucoma
(G), cataract (C), age-related macular degeneration (A), hypertension (H), pathological
myopia (M), and other diseases/abnormalities (O). On an eye level, there are keywords
that refer to the diagnosis or retinal finding of each eye separately. We are using these
keywords in building our Resident dataset.

Retinal Fundus Multi-Disease Image Dataset is a public dataset containing 3200 CFPs
with annotations from two independent ophthalmologists which were validated by a team
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leader. Images were captured with three different fundus cameras: TOPCON 3D OCT-2000,
TOPCON TRC-NW300, and Kowa VX-10α. The images are classified into one or more of
the 45 different retinal conditions found in Appendix B, Table A2.

The publicly available 1.000 CFPs from the Joint Shantou International Eye Centre were
collected from the institution’s Picture Archiving and Communication Systems (PACS). The
CFPs were captured with a ZEISS FF450 Plus IR Fundus Camera between 2009–2013 and a
Topcon TRC-50DX Mydriatic Retinal Camera between 2013 and 2018. The fundus images
were manually labelled by 10 teams, each having 2 licensed ophthalmologists, a senior
with more than 7 years of experience and an unspecialised ophthalmologist with 3 years
of training. When there was a disagreement inside a team or the image was reported as
non-classifiable, the image was sent to a panel of five retinal experts for a final decision.
When the 10 teams labelled the images in different retinal conditions, they also added a
referable label (observation, routine, semi-urgent, or urgent). The CFPs were classified into
39 categories.

The combined Resident dataset for resident training was built by ophthalmologists
with medical retina experience who mapped the categories and keywords from each of the
three public datasets from Table 1 as follows:

Table 1. Combining public datasets.

Dataset CFPs Device Conditions

ODIR 10,000 Canon, Zeiss, Kowa 8
RFMID 3200 TOPCON 3D OCT-2000, TOPCON TRC-NW300 and Kowa VX-10α 45
JSIEC 1000 ZEISS FF450 Plus IR Fundus, Topcon TRC-50DX Mydriatic Retinal Camera 39

Resident 9693 19

First, we perform an initial mapping, resulting in 10,592 CFPs images classified into
39 classes. The mapping rules appear in Table 2. The first column shows the resulting
classes. The second column includes the ODIR keywords used for mapping, while the
last two columns mention the original classes from RFMID and JSIEC. In some cases,
the mapping is straightforward, e.g., the branch retinal vein occlusion is present in all
three datasets and it corresponds to the new class C11, while in other cases, there are small
differences in the specificity of the class; e.g., in the new class C1, the Maculopathy class
from JSIEC is combined with different forms of age-related macular degeneration from
ODIR. Some of the retinal conditions present in the three original datasets were not included
in the Resident dataset, and some of the images from the selected categories/keywords
were removed due to bad quality. Furthermore, in the Resident dataset, only the images
that belong to at least one of the selected classes were included.

Second, to have sufficient images for testing and to avoid an extremely imbalanced
dataset, we only keep the classes containing more than 50 images. The filtered dataset
contains 9693 images: 7754 in the train set and 1939 in the test set (Table 3). There are
22 categories containing the main retinal conditions, backed by sufficient data for training
the model (50 or more images): normal (C0), age-related macular degeneration (C1),
diabetic retinopathy (DR) (C2—mild nonproliferative, C3—moderate nonproliferative,
C4—severe nonproliferative, C5—proliferative), glaucoma (C6), hypertensive retinopathy
(C7), pathological myopia (C8), tessellated fundus (C9), vitreous degeneration (C10), branch
retinal vein occlusion (C11), large optic cup (C13), drusen (C14), epiretinal membrane (C15),
optic disc edema (C18), myelinated nerve fibers (C19), rhegmatogenous retinal detachment
(C22), refractive media opacity (C25), central serous chorioretinopathy (C27), laser spots
(C29), and central retinal vein occlusion (C32). Due to the fact that the RFMID dataset
includes only a single class for all the stages of diabetic retinopathy, C2, C3, C4, and C5
have been grouped together in the single class DR.
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Table 2. Mapping rules for combining ODIR, RFMID, and JSIEC into 39 classes (C0–C38). Classes
indicated with Gray have been removed since they contain too few instances (<50).

New Class ODIR Keywords RFMID Class JSIEC Class

C0 Normal fundus 0.0.Normal

C1
Age-related macular degeneration

Dry age-related macular degeneration
Wet age-related macular degeneration

ARMD 6.Maculopathy

C2 Mild nonproliferative retinopathy 0.3.DR1

C3 Moderate non proliferative retinopathy 1.0.DR2

C4 Severe nonproliferative retinopathy

C5 Proliferative diabetic retinopathy
severe proliferative diabetic retinopathy 1.1.DR3

C6 Glaucoma

C7 Hypertensive retinopathy

C8 Pathological myopia MYA 9.Pathological myopia

C9 Tessellated fundus TSLN 0.1.Tessellated fundus

C10 Vitreous degeneration AH 18.Vitreous particles

C11 Branch retinal vein occlusion BRVO 2.0.BRVO
C12 5.1.VKH disease
C13 ODC 0.2.Large optic cup
C14 Drusen DN

C15
Epiretinal membrane

Epiretinal membrane over the macula
Macular epiretinal membrane

ERM 7.ERM

C16 TD 13.Dragged Disc
C17 14.Congenital disc abnormality
C18 Optic disc edema ODE 12.Disc swelling and elevation
C19 Myelinated nerve fibers MNF 17.Myelinated nerve fiber
C20 15.1.Bietti crystalline dystrophy

C21 16.Peripheral retinal
degeneration and break

C22 Rhegmatogenous retinal detachment 4.Rhegmatogenous RD
C23 Macular hole MHL 8.MH

C24 Chorioretinal atrophy CB 24.Chorioretinal
atrophy-coloboma

C25 Cataract
Refractive media opacity MH 29.0.Blur fundus without PDR

C26 29.1.Blur fundus with suspected
PDR

C27 Central serous chorioretinopathy CSR 5.0.CSCR
C28 19.Fundus neoplasm
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Table 2. Cont.

New Class ODIR Keywords RFMID Class JSIEC Class

C29 Post laser photocoagulation, laser spot LS 27.Laser Spots
C30 28.Silicon oil in eye

C31 Central retinal artery occlusion
Branch retinal artery occlusion (BRAO)

CRAO
BRAO 3.RAO

C32 Central retinal vein occlusion CRVO 2.1.CRVO
C33 Retinitis pigmentosa RP 15.0.Retinitis pigmentosa
C34 PRH 25.Preretinal hemorrhage
C35 EDN 20.Massive hard exudates
C36 21.Yellow-white spots-flecks
C37 CWS 22.Cotton-wool spots
C38 TV 23.Vessel tortuosity

Table 3. Resident dataset: Numerical description of the train and test sets.

Train Set Test Set

# Label ODIR RFMID JSIEC Total ODIR RFMID JSIEC Total

1 C0 2270 0 28 2298 601 0 10 611
2 C1 88 138 0 226 23 31 0 54
3 C2 441 0 0 441 95 0 0 95
4 C3 756 0 38 794 180 0 11 191
5 C4 129 0 0 129 28 0 0 28
6 C5 25 0 29 54 4 0 10 14
7 C6 209 0 0 209 48 0 0 48
8 C7 157 0 0 157 30 0 0 30
9 C8 195 126 40 361 48 35 14 97
10 C9 1 204 9 214 0 47 4 51
11 C10 53 18 11 82 14 1 3 18
12 C11 21 89 29 139 4 27 15 46
13 C13 0 304 36 340 0 69 14 83
14 C14 248 174 0 422 51 53 0 104
15 C15 294 19 22 335 74 5 4 83
16 C18 1 76 12 89 1 20 1 22
17 C19 77 3 10 90 14 0 1 15
18 C22 0 0 44 44 0 0 13 13
19 C25 288 382 84 754 57 104 27 188
20 C27 0 42 9 51 0 19 5 24
21 C29 33 17 16 66 8 4 4 16
22 C32 1 34 15 50 0 10 7 17

One observation is that the Resident dataset is not limited to images presenting
only one retinal condition. For instance, both glaucoma and wet age-related macular
degeneration may simultaneously occur in the same image. Technically, the problem is
framed as a multilabel task in which for each image, the model provides a probability for
each of the 19 classes without the constraint of having their sum equal to 1. In order to
show the conditions which co-occur in ODIR examples, Table A1 presents for each new
class the ODIR keywords which characterize the images included in that class. For each
keyword, the occurrence number is included. Along with the keywords specific to each
class, there are keywords that identify other classes. For example, in the ODIR images
from C1, there are 58 occurrences of dry age-related macular degeneration, 30 of wet age-related
macular degeneration, but also 5 of glaucoma, meaning that in 5 CFPs there is both AMD
and glaucoma.
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2.2. Applying Contrastive Learning on the Resident Dataset

The classification model is based on supervised contrastive learning [6] (Figure 1).
One reason in favor of using contrastive learning is the fact that it enables learning not only
from labelled data but also from unlabelled data. Another reason is the fact that contrastive
learning has, as a result, an embedding space where images are clustered based on not only
their intra-class similarity but also their inter-class similarity, meaning that conditions that
have similar aspects are closer—e.g., drusen (C14) is closer to AMD (C1) than to glaucoma
(C6).

Figure 1. Supervised contrastive learning.

The encoder is a ReSNeXt50_32x4d [7]. The projection network consists of one dense
layer with a ReLU activation function and another linear layer of size 128. The contrastive
loss is adapted to the multilabel setting: when the selected anchor is an image with more
than one class {Ci}, the positive examples include all the samples from the batch which
belong to any of the classes from the set {Ci}. For example, if the anchor belongs to both
C1 and C6, then any image of type C1 or C6 is considered a positive sample for this anchor,
including the ones which are C1 but not C6, or C6 but not C1.

The input images of size 224 × 224 were preprocessed by following the steps of
Cen et al. [5]. First, the borders of the fundus images were removed, then the eye area was
identified with HoughCircles, and finally the image was cropped to that area. Additionally
to the preprocessing steps of Cen et al., we applied the Contrast Limited Adaptive His-
togram Equalisation (CLAHE) transform. With CLAHE, we aimed to prevent the limitation
of the AHE method to over amplify noise in relatively homogeneous regions.

For enhancing training, basic random augmentations are used: scale with range
[0.9,1.1], horizontal and vertical flip, rotations, and grayscale transform. Increasing the
range of the scaling is not beneficial in our case since biomarkers of some retinal conditions
can be localised anywhere. For instance, microaneurysms can appear anywhere in mild di-
abetic retinopathy. Additionally, more invasive cropping could result in losing the relevant
area. With CLAHE as a preprocessing step, we observed that the training performance
decreases when the color jitter or Gaussian blur are considered as random augmentations.

The training on the contrastive loss is run for 500 epochs on 4 GPUs Tesla V100 with
a batch size of 512 per device. The initial learning rate is 0.0005 and the temperature is
0.1. The training of the classification layer was conducted for 30 epochs with a batch size
of 128.
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Applying contrastive learning with the above settings on the Resident dataset leads to
the performance metrics in Table 4. Note that the model correctly classifies myopia (C8),
vitreous degeneration (C10), branch retinal vein occlusion (C11), rhegmatogenous retinal
detachment (C22), cataract (C25), central serous chorioretinopathy (C27), and central retinal
vein occlusion (C32), for which the precision is higher than 0.84. We observed that the
majority of misclassified examples belong to the mild nonproliferative diabetic retinopathy
(part of the DR class), for which the model predicts them to be normal. We observe a
higher error rate between AMD (C1) and drusen (C14). One possible explanation is that
drusen is the main biomarker in AMD, and hence there is strong association of AMD with
different types of drusen, such as hard, soft, small, or large drusen. The worst performance
is achieved for laser spots (C29) and tessellated fundus (C9), with one plausible explanation
being the fact that they tend to appear together with other pathological conditions.

Table 4. Applying contrastive learning on the Resident dataset. The diabetic retinopathy class (DR)
collects all 4 stages of the disease from classes C2, C3, C4, and C5.

Label Precision Recall F1-Score Support

C0 0.75 0.79 0.77 611
C1 0.67 0.74 0.70 54
C6 0.41 0.29 0.34 48
C7 0.38 0.10 0.16 30
C8 0.87 0.85 0.86 97
C9 0.51 0.55 0.53 51

C10 0.86 0.67 0.75 18
C11 0.90 0.78 0.84 46
C13 0.69 0.86 0.76 83
C14 0.60 0.50 0.54 104
C15 0.63 0.40 0.49 83
C18 0.75 0.68 0.71 22
C19 0.75 0.60 0.67 15
C22 1.00 0.92 0.96 13
C25 0.84 0.84 0.84 188
C27 0.86 0.79 0.83 24
C29 0.43 0.75 0.55 16
C32 1.00 1.00 1.00 17
DR 0.73 0.67 0.70 328

2.3. Assessing Model Performance

There are several possible causes of variable performance of the classification model.
One source of the various levels of diagnostic accuracy is the fact that three datasets

are integrated into the Resident dataset. Even though the mapping between classes is
conducted by ophthalmologists, there is no perfect alignment between the datasets. For
example, the large optic cup (C13) is not among the keywords from ODIR; this does not
necessarily mean that there are not any CFPs from the ODIR dataset which have a large
optic cup, but all CFPs from ODIR will be considered without C13 in the Resident dataset.
A similar situation is for C9 (tessellated fundus), which appears only once in ODIR, while
in the RFMID dataset it appears 251 times. C14 (drusen) is missing from JSIEC but it is
present in RFMID and ODIR. Glaucoma has positive examples only from ODIR, since in
the other two it was considered glaucoma together with suspected glaucoma. Furthermore,
in the ODIR and JSIEC datasets, the normal class is present, while it is missing from RFMID
dataset. The fact that none of the considered conditions are present does not mean that the
CFP is normal, since other unconsidered conditions could be present.

Another source is the diversity of the classes: some of them are pathological conditions
(e.g., AMD, glaucoma), while others are only changes of the normal aspect without being
pathological conditions (e.g., tessellated fundus, laser spots). These tend to appear together
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with other conditions: for example, in the subset from the ODIR for the training set, out of
33 CFPs with laser spots, 27 are also with moderate non proliferative retinopathy (Table A1).

A third source is the overlapping between two pathological classes, as it happens for
C1 (AMD/maculopathy) and C14 (drusen). This adds to the already mentioned problem of
the C14 (drusen) class being absent from JSIEC. Consequently, the majority of the errors on
these two classes are: (i) either CFPs annotated as only C1 are identified by the model as
only C14, or (ii) CFPs annotated as C14 are considered normal or without any condition.

Lastly, there are conditions easy to be identified from the image (e.g., pathological
myopia), but also conditions that strongly depend on structure (e.g., glaucoma identifica-
tion relies on optic disc structure). In literature, glaucoma is usually detected with deep
learning only after first applying optic disc [5] or blood vessel segmentation. Furthermore,
the difference between normal and mild diabetic retinopathy can stand in only one mi-
croaneurysm. For this task, Cen et al. have used images with a double size [5]. Even so,
the performance of mild diabetic retinopathy is smaller compared to the other stages of
diabetic retinopathy.

To overcome possible classification errors, for the first phase of the implementation,
we plan to have an expert physician in the loop, who will validate the DL model’s diagnosis
before it is passed to the expert-system-powered case allocation algorithm. In this way,
we can evaluate the DL model’s performance and assure a proper assignment of the cases.
As real patients come to the retina clinic, their CFPs will be recorded and the DL model
will be retrained once more data is available.

Even in the presence of the classification error, residents can benefit more from the
case allocation compared to a random allocation of cases, since the largest errors tend to
be present in classes that do not represent pathological conditions. Moreover, when the
ophthalmologist assesses the answer of the resident, they also diagnose the case. When
this correct diagnostic is updated in the system, the case allocation algorithm will take
into consideration that the resident has not actually received a case of that type. Hence,
the chances of residents receiving all cases are not affected by such misclassifications of the
deep learning model. Furthermore, the evaluation of the resident’s performance is based
on the diagnosis made by the expert physician, not the diagnosis given by the model.

2.4. Automatically Assessing Difficult Cases

To better match residents with cases, one needs to have an a priori estimation of how
difficult it would be for the resident to diagnose an image. To assess the case difficulty, we
introduce a metric based on two components. The first component (prob_difficulty) considers
how confident the model is about the predicted classes and to what extent the signs of
other classes are identified without enough confidence to predict that class. Let pC(x) be
the model prediction, for example x, to belong to the class C. If pC(x) ≥ 0.5 then x belongs
to class C. An image x can belong to more than one class (i.e., multi-label classification). In
case more than one class is predicted, the difficulty starts from 1. Otherwise, it starts from
0. For each predicted class, the difference between 1 and the predicted probability pC is
added to the difficulty. For each other class predicted with 0 ≤ pC ≤ 0.5, the probability pC
is added to the difficulty.

prob_di f f iculty(x) = several + ∑
pC(x)≥0.5

(1− pC(x)) + ∑
pC(x)≤0.5

pC(x) (1)

The second component (neigbors_difficulty) is based on neighbor images, and it assesses
the variety of the images most similar to the classified one (i.e., do they all belong to
the same class or to other classes?). The similarity between images is computed as the
cosine similarity between embeddings built by the encoder network. This neighbor-based
component is inspired by the Silhouette metric, usually used for assessing the quality of
clusters. For one image x, we identify the most similar k images from the Resident test
set. In our experiments, we consider k = 9. Let us consider that the predicted class for
image x is C. If all the neighbors belong to C, then we consider x an easy example. If none
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of the neighbors belong to C and they are very close to x, the image x has a maximum
difficulty. If there are examples among neighbors which belong to C, but also examples
from other classes, the difficulty depends on how well these are examples split into clusters:
if the mean distance from x to neighbors from the same class is smaller than the distance
to neighbors from other classes, it means that even though there is a diversity among
the neighbors, the dominant ones are from C and the example is rather easy. In contrast,
if the mean distance from x to neighbors from the same class is larger than the distance to
neighbors from other classes, the example is rather difficult.

To formalize this, let NC be the set of neighbor examples that have a common class
with the predicted ones, while NCj are neighbors which belong to class Cj but do not belong
to the predicted classes. The value a is the mean of distances from x to neighbors which
have common classes with x:

a =
1
|NC| ∑

e∈NC

d(x, e) (2)

The value b is the minimum mean of distances from x to neighbors with different
classes:

b = minCj /∈C
1

|NCj | ∑
e∈NCj

d(x, e) (3)

Hence, the neighbor-based component is given by the following equation, with Cmin
as the class at distance b to x:

Neighbors_di f f iculty(x) = −|N
C| ∗ b− |NCmin | ∗ a
|NCmin | ∗max(b, a)

(4)

We changed the Silhouette metric to include the dimension of the “positive” cluster
and the “negative” closest cluster, where the “positive” cluster includes the neighbors with
the same classes as the predicted ones. A good “split” means a large distance between
the positive and the negative cluster, but also more positive examples than negative exam-
ples. A “good” split of neighbors means a smaller difficulty, hence the minus sign from
Equation (4).

In order to compute the difficulty of one example, both difficulties are normalised to
the interval [0,1]. Their sum gives the difficulty of one example. If Di f f iculty(x) ≤ 0.5 then
the example is easy, if 0.5 ≤ Di f f iculty(x) ≤ 1.5, then the difficulty is medium, and finally,
if 1.5 ≤ Di f f iculty(x) then the example is difficult.

Di f f iculty(x) = normalized(prob_di f f iculty) + normalized(neighbors_di f f iculty)

Having (i) a model trained on the pedagogical Resident dataset to classify new cases
in 19 retinal conditions, and (ii) a metric to assess the case difficulty, we next describe the
algorithm that allocates cases to residents.

3. Case Allocation Algorithm
3.1. Problem Statement

The task to solve is: “Given a case (i.e., patient with a retinal condition), which resident
would benefit the most from it?”. For matching residents with the available cases during the
retinal study module, we devised a case allocation algorithm. The algorithm is based on
the following assumptions:

First, based on the previous years’ history we assume an expected number of 1.000
patients with retinal conditions visiting the Ophthalmology Department of the Emergency
County Hospital, Cluj-Napoca, Romania during one year. These patients need to be
assigned fairly to a number of 10 residents within the retinal study module.

Second, we assume 19 main retinal conditions encountered by residents during the
training, ordered by their support in the Resident dataset: normal (C0), age-related macular
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degeneration (C1), diabetic retinopathy (DR—from C2, C3, C4, and C5), glaucoma (C6),
hypertensive retinopathy (C7), pathological myopia (C8), tessellated fundus (C9), vitreous
degeneration (C10), branch retinal vein occlusion (C11), large optic cup (C13), drusen
(C14), epiretinal membrane (C15), optic disc edema (C18), myelinated nerve fibers (C19),
rhegmatogenous retinal detachment (C22), refractive media opacity (C25), central serous
chorioretinopathy (C27), laser spots (C29), and central retinal vein occlusion (C32) (recall
Table 2).

Third, based on the pathologically involved structures and the localisation on the CFP,
we group these retinal conditions in six educational topics (see Table 5). We expect that
during one year each resident encounters at least three cases from each of the 19 retinal
conditions in the Resident dataset. To distribute these three cases during the entire year,
we rely on the behaviorist and cognitive learning theories. Note that if residents have
difficulties in handling a case, they should receive more cases of the same retinal condition
or educational topic.

Table 5. Educational topics in the retina study module.

# Educational Topic Retinal Condition

T1 Normal Normal (C0), tessellated fundus (C9)

T2 Macular conditions Age-related macular degeneration (C1), pathological myopia (C8), drusen (C14),
epiretinal membrane (C15), central serous chorioretinopathy (C27)

T3 Vascular conditions Diabetic retinopathy (DR), hypertensive retinopathy (C7), branch retinal vein
occlusion (C11), central retinal vein occlusion (C32)

T4 Optic nerve conditions Glaucoma (C6), large optic cup (C13), optic disc edema (C18), myelinated nerve
fibers (C19)

T5 Peripheral retina conditions Rhegmatogenous retinal detachment (C22), laser spots (C29)
T6 Transparent media conditions Vitreous degeneration (C10), refractive media opacity (C25)

Fourth, residents should receive a fair number of easy, medium, or difficult cases. We
rely on deep learning machinery and on the difficulty function to pre-assess each case
according to its difficulty level.

Fifth, the cases are allocated based on the resident’s case history and previous perfor-
mance. For each case, residents are assigned to examine patients, to make the diagnosis
and differential diagnosis (i.e., to explain and support their decisions based on the relevant
fundus features), and to make the therapeutic plan.

3.2. The Assignment Flow

The retina module lasts 12 months. In the first 2 months (the initiation period),
residents become familiar with the CFPs from the Resident dataset and the Objective
Structured Clinical Examination (OSCE) checklists for all of the 19 RCs. During this
initiation period, the residents are not evaluated. In the following 10 months, every resident
will be assigned to examine at least one patient every day (at least 240 patients/year). The
performance of residents is evaluated by the expert physician using an OSCE checklist. The
checklist evaluates four parameters: (1) current diagnosis Dr, (2) list of signs (identified and
missed) Sr, (3) list of differential diagnoses (identified and missed) DIF r, and (4) patient
managementMr. If residents state the correct diagnosis, they receive one point for each
box checked. If residents fail to indicate the correct diagnosis, they receive 0 points. The
expert physician then calculates the percentage of correct answers and scores the resident’s
performance: 0–20% = 1 ; 21–40% = 2; 41–60% = 3; 61–80% = 4; 81–100% = 5. At the end of
the encounter, the expert physician offers feedback and learning suggestions. The OSCE
for diabetic retinopathy is exemplified in Table 6. Note that there is such a checklist for
each retinal condition in the Resident dataset. The residents’ grades are recorded in their
teaching files and used for assigning future cases. The case difficulty will be decided by the
DL model and will be scored as follows: 1 = easy; 3 = medium; 5 = difficult.
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Table 6. Diabetic retinopathy OSCE evaluation file. The performance score corresponds to the
following percentages: 1 for 0–20%; 2 for 21–40%; 3 for 41–60%; 4 for 61–80%; 5 for 81–100%.

Resident: Date:
OSCE DR

Correct Diagnosis Pass (Calculate Score) 2� Wrong Diagnosis Fail (0 Points) 2

Clinical fundus signs (each box = 1 point)
Microaneurysms 2� Neovascularisation of the disc 2�
Dot-blot hemorrhages 2� Neovascularisation elsewhere 2
Hard exudates 2� Preretinal hemorrhage 2
Cotton-wool spots 2� Vitreous hemorrhage 2
Venous beading 2� Tractional retinal detachment 2
Intraretinal microvascular anomalies 2� Laser spots 2
Differential diagnosis of macular edema (each box = 1 point)
Hypertensive retinopathy 2� Macular edema secondary to epiretinal membrane 2
Central retinal vein occlusion 2 Ruptured microaneurysm 2
Branch retinal vein occlusion 2� Irvine gass syndrome 2�
Choroidal neovascular membrane 2 Post uveitic macular edema 2�
Differential diagnosis of retinopathy (each box = 1 point)
Central retinal vein occlusion 2� Valsalva retinopathy 2
Hemiretinal vein occlusion 2� Sickle cell retinopathy 2
Branch retinal vein occlusion 2� Post-traumatic retinal bleed 2�
Hypertensive retinopathy 2� Retinal macroaneurysm 2
Ocular ischemic syndrome 2� Retinopathy in thalassemia 2
Terson syndrome 2�
Management of macular edema (each box = 1 point)
Observation 2 Intravitreal anti-VEGF 2�
Management of retinopathy (each box = 1 point)
Observation 2 Intravitreal anti-VEGF 2�
Panfundus laser photocoagulation 2� Vitrectomy 2
Resident scored (29) points of a total of 37
Physician: Score: (4)

The educational goal is that by the end of the retina study module, each resident
obtains at least a score of 4 or 5 for each of the 19 RCs on a case with a difficulty of 3. That
would equal to a final grade of ≥7, which is calculated based on the resident’s performance
score (1 to 5) added to the case difficulty score (1, 3, or 5).

We employ the following case assignment flow (Figure 2):

1. Patients arriving at the retina clinic are examined by a technician, who performs a
CFP.

2. The resulting image is analysed by the deep learning algorithm, which generates a
presumptive diagnosis and a difficulty score.

3. The diagnosis is validated by the expert physician.
4. The case is sent to the expert system-powered allocation algorithm which will assign

the case to a resident.
5. In case of patient shortage addressing to the retina clinic, the allocation algorithm will

select a CFP from the test set from the pedagogical Resident dataset, so that every
resident is assigned at least one patient or case per day.

6. The resident examines the patient, and based on the clinical signs, elaborates the
diagnosis, differential diagnosis, and therapeutic plan.

7. The resident’s performance is evaluated and scored by the expert physician.
8. Residents’ performances are recorded in their teaching file for the specific retinal

condition.
9. The pedagogical Resident dataset is extended with the case.
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Figure 2. The assignment workflow.

3.3. Allocation Rules

For choosing whether to assign real cases (patients from the retina clinic) or virtual
cases (CFPs from the pedagogical Resident dataset), the allocation algorithm follows the
flow in Figure 3. The top level requirement is to assign to each resident at least one case
per day. Algorithm A1 prioritises the assignment of real cases, and in case of a shortage,
virtual cases from the Resident dataset. If there are more real cases than residents, some
residents may receive more than one case. For real cases, we apply the subsequent rules
from Tables 7 and 8 displayed in Figure A1, while for virtual cases, the following rules in
Table 9 are visible in Figure A2. If the educational goals are not met at certain time points,
supplementary virtual cases are assigned based on the rules from Table 10 and shown in
Figure A3. The classes with retinal conditions removed for insufficient cases will be labelled
as “supplementary rare”. Residents who meet the three educational goals set within the
paper will receive one virtual supplementary case from these “supplementary rare” classes
daily until they have seen one case from each class.

Figure 3. Rules for assigning real or virtual cases (A = assign; C = case; R = resident; RealC = real
cases; VirtC = virtual cases).

The resident’s grade for a correct diagnosis is composed of the performance score
evaluated by the expert physician (1 to 5) plus the difficulty score evaluated by the DL
model (1, 3, or 5). The resident’s grade for an incorrect diagnosis is 0.

The resident teaching file records the following information for each of the 19 RCs: (1)
number of cases examined, (2) grades for every case encountered and average grade for a
retinal condition, (3) time since last encounter of the retinal condition. After every patient,
the resident teaching file is immediately updated. Each resident has access to the personal
information in the teaching file.

The patients with a RC not contained within the 19 RCs will be assigned following the
rules in Appendix A.1, Figure A1, right side of the figure. First, the algorithm takes into
consideration the resident with the fewest seen cases of any RC that day. If the rule applies
to more than one resident, the second rule is followed, which considers the resident with
the fewest seen cases overall from all RCs. If the rule applies to more than one resident, it is
randomly assigned between them. The case will also be assigned as a virtual case to all
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the other residents in the program, since we consider it a rarer case. The case will not be
evaluated and it will not have a difficulty score, neither for real nor for virtual assignments.

Table 7. Assignment rules for real cases with a diagnosis contained in the 19 RCs.

# Rule

r1 Assign at least one case/day to each resident

r2
Assign with priority patients presenting to the retina clinic, then, in case of shortage, CFPs from the Resident
dataset

r3 Assign one case from each of the 19 retinal conditions to each resident
r4 Assign the case to the resident which has seen fewer cases from this retinal conditions, up to 3 cases

r5
Assign the case to the resident with the lowest grade (performance score + difficulty score) until all residents
obtain a grade ≥ 7 for every retinal condition

r6 Assign the case to the resident with the oldest encounter for that specific condition
r7 Assign the case to the resident with the lowest number of cases from that specific educational topic
r8 Assign the case to the resident with the lowest number of cases from that specific retinal condition
r9 Assign the case to the resident with the lowest number of cases from all the 19 retinal conditions

Table 8. Assignment rules for real cases with a diagnosis not contained in the 19 RCs.

# Rule

rb
3 Assign the case to the resident who has seen fewer cases overall that day and at the same time, add the case to

virtual cases and supplementary assign it as a virtual case to each resident
rb

4 Assign the case to the resident with the lowest number of cases from all retinal conditions

Table 9. Assignment rules for virtual cases.

# Rule

rv
3 Assign one case from each of the 19 RCs

rv
4 Assign the resident a case from the RCs with fewer encountered cases, up to 3 cases

rv
5 Assign the resident a case from to the RC with the lowest grade (performance score + difficulty score) until a

grade ≥ 7 for all retinal conditions
rv

6 Assign the resident a case from the RC with the oldest encounter
rv

7 Assign the resident a case from the RC with the fewest cases seen

Table 10. Assignment rules for supplementary virtual cases.

# Rule

rs
1 If after month 5, there are still residents who have not seen 1 case from each of the 19 conditions, start

supplementarily assigning 1 virtual case each day for every resident until the criteria is met
rs

4 If after month 7, there are still residents who have not seen 3 cases from each of the 19 retinal conditions, start
supplementarily assigning 1 virtual case each day for every resident until the criteria is met

rs
5 If after month 9, there are still residents who have not achieved a grade of 7 or higher on every one of the

19 retinal conditions, start supplementarily assigning 1 virtual case each day for every resident until the criteria
is met.

If a classification error occurs and for example, a resident receives a case the DL model
pre-assessed as hypertensive retinopathy, which in reality is diabetic retinopathy, we have
the following scenario: after the evaluation by the expert physician which states that it was
correctly identified as diabetic retinopathy, the case is filed in the resident’s teaching file
and recorded as a diabetic retinopathy case (updating the number of cases seen, the last
case seen, and average performance). Therefore, the expert-system-powered case allocation
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algorithm looks at the teaching file when assigning cases and will also record it as a diabetic
retinopathy case.

3.4. Running Scenario

The rules listed above will be used by the allocation algorithm’s expert system. We
exemplify here a running scenario of the expert system matching algorithm. The rules
were implemented in CLIPS (C Language Integrated Production System [8]). CLIPS is a
multi-platform rule-based programming language developed by NASA and made available
as public domain software. This choice was made based on the level of complexity of the
rules involved in the proposed algorithm, as well as on the need to accommodate future
developments. We assume a number of patients present themselves at the hospital during
a specific day, one at a time. No knowledge about the order of their arrival is available.
A number of residents should take care of them. Each patient will be referred to one of
the residents. In this process, we will take into consideration the presumptive diagnosis
obtained via the DL component and also the residents’ grade for each condition.

The rule-based system is run for each patient and results in assigning one resident to
each patient, according to the algorithm above. We assume three residents, eight patients,
and one condition. We start by defining the templates to store data about the available
cases and residents (Listing A1).

We also need to store data about the assignments made so far (Listing A2).
Then, we formalise the allocation rules, with an example in Listing A3. The priorities

among rules are handled by the salience construct of the CLIPS language. For all current
cases (?fcc variable in line 102) and residents (?fm variable in line 104), the system checks
whether the number of assignments ?na is less than the maximum value for the current
instance. If there is no resident with fewer cases of the given retinal condition, an assignment
is asserted in the knowledge base (line 110). The assignment matches the four variables:
the case, data, the resident, and the patient. The current case is retracted from the set of
non-allocated cases (line 111), while the system keeps track of the number of cases of a
specific retinal condition assigned to the resident.

Let the case in which the learned model has computed a presumptive condition
c (line 200 in Listing A4). Assume the three residents from lines 201–206. Note that
resident m503 already has three assignments but only one for the current condition c.
Resident assignments for each patient appear in lines 208-205. The case 1001 is allocated to
resident m503.

4. Discussion and Related Work
4.1. Case Allocation

At the moment, we designed and implemented a prototype of the system. The ongoing
action aims to operationalize the system through a pilot program at the Ophthalmology
Department of the Emergency County Hospital in Cluj-Napoca. We consider implementing
the following protocol: to enroll 10 to 15 residents in the program and follow them over a
period of one year. Every 3 months, evaluate them and listen to their feedback regarding
the program through a questionnaire. We should keep in mind that they are also evaluated
in the program, after each case with a RC within the 19 RCs. At the end of the one-year
program, we compare their performance with that of non-participating residents, through
a theoretical and practical evaluation. We will encourage residents not participating in the
program to keep records of the cases encountered in the clinic and compare the distribution
of their cases with that of the residents involved in the program.

Real patients are an invaluable resource for learning; thus, we decided to fairly assign
them to the residents. Virtual cases fill the gap left open by the shortage of real patients.
This might also help dealing with rarer RCs not encountered during the rotation.

Our case allocation algorithm integrates the spacing principle. The “spacing effect”
phenomenon, identified by the German psychologist Hermann Ebbinghaus in 1885, shows
that learning is more effective when practice sessions are spaced out [9]. Spaced repetition
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algorithms are used to make practices more effective by learning applications such as
Duolingo (language learning) or Anki (flash card learning). Duolingo and Anki use the
spacing effect by increasing or decreasing the interval between practices based on the user’s
performance in that particular area of study. In other words, the learning application will
present information to a user more or less frequently if they do or do not show difficulty in
remembering it, respectively. In order for the information to be retained longer, there should
be a proportional increase in the time between the spaced intervals [10]. Spaced repetition
is indeed more beneficial than the massed practice, as shown by this meta-analysis, which
takes in consideration 839 assessments [11]. When looking at intersession lags, increasing
the space between study sessions helps in long-term retention.

When asked about their study methods, the majority of medical students who took
the United States Medical Licensing Examination (USMLE) Step 1 exam reported us-
ing self-initiated retrieval practices often accompanied by spaced repetition. Those who
reviewed more cards in the flashcard learning program Anki; performed better on the
examination [12]. Although the outcomes of spaced repetition were studied mostly on
undergraduates, there is evidence of its value for trainees, as well. Spaced repetition testing
on osteoporosis care and fracture prevention showed not only better results in residents’
long-term information retention but also an improvement in their patients’ outcomes [13].
In the case of resident training, the spaced repetition algorithm could be used by assigning
a particular case to a trainee who has had trouble in providing the correct diagnosis for
similar cases in the past. This way, each trainee will be chosen to work more on the areas in
which they do not excel.

The allocation algorithm proposed here gradually assigns to every resident 1, 2, and 3
cases of every retinal condition. Afterwards, the residents are assigned cases with retinal
conditions where they failed. After meeting the educational goal (i.e., grade ≥ 7), the cases
are assigned by taking into account the time of encounter of different retinal conditions.

Kornell and Bjork have looked at the outcomes of massed versus interleaved category
learning. Even though participants preferred learning one category at a time, they retained
more by learning examples from multiple categories in the same session. For our current re-
search, this would be reproduced as having the resident/trainee encounter different retinal
conditions during a working day to improve their long-term information retention [14].

Larsen et al. have compared the effects of spaced repetition studying vs. spaced
repetition testing with feedback from a randomised clinical trial, looking at residents’
retention of information 6 months after a didactic conference [15]. It seems spaced repetition
testing, when accompanied by feedback, yields better results in long-term retention.

In our retina study module, we apply both principles, spaced repetition and spaced
testing. Residents are tested and receive feedback after each case. Even though spaced
learning and spaced testing are two valuable tools which are recognised to provide a more
robust long-term memory, when learners were evaluated, they were often not aware of
which strategies could benefit their memory in the long run [16].

The optimal lag-time between training sessions and testing sessions remains an open
question. Similar to the approach of Morin et al. [17], our system has access to the OSCE
grading files, and therefore one can monitor the performance of each individual. With such
data available on performance tracking, a learning system can determine the efficacy of
the allocation task both in terms of the allocated cases and allocation time. Hence, one can
determine the ideal number of allocation cases and the lag-time between review sessions.

Increasing the number of cases that radiology residents are exposed to correlates with
a boost in their performance. However, once a certain volume is passed, Agarwal et al.
have observed that the performance starts to decline [18]. This has also been demonstrated
by Liebman et al. with surgical exposure in cataract surgery [19]. AI methods could help in
finding the optimal exposure balance. Our case allocation algorithm first aims to meet the
educational goal and then to fairly allocate cases of different variety and difficulty to boost
the resident performance on all retinal conditions.
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The current matchmaking task is somewhat different from the classical fair matchmak-
ing tasks, which assume that items are given in advance. In our retina clinic, the patients
arrive at the clinic one by one with different retinal conditions. This allocation problem is
similar to selecting donor organs to patients, donating food to charities, connecting electric
vehicles to charging stations, and distributing water rights to farmers [20].

A similar approach for the personalised case distribution for residents was suggested
in the sphere of radiology. Duong et al. [21] proposed as a future solution an AI-based
model which could supervise the distribution of imaging cases to residents based on their
learning profiles, help them with drafting reports, and file the imaging studies inside their
teaching file.

4.2. Resident’s Evaluation and Teaching File

During residency training, numerous post-graduate programs require case logs to
evaluate the resident’s experience. We view our retinal teaching file as an enhancement to
resident case logs, where, in addition to assessing the experience and performance, they
also provide grounds for personalised case assignment.

The OSCE examination is a valuable tool for the standardised evaluation of clinical
performance. It is largely used in medical education for both undergraduate and post-
graduate evaluation [22]. The residents’ performance after each case is evaluated and
scored from 1 to 5 by an expert physician using an OSCE file. The final grade is calculated
by adding the case difficulty score (1 = easy, 3 = medium, or 5 = difficult) appreciated
by the DL model. The educational goal is that by the end of the retina study module,
each resident receives a grade ≥ 7 for all the 19 RCs, i.e., a score of 4 or 5 on a case of
medium or high difficulty. Grading residents using the OSCE files is based on both the
behaviorist learning theory and the cognitive learning theory. The OSCE score is 0 when the
correct diagnosis is missed. If the diagnosis is correct, the score is calculated in light of the
cognitive theory based on the percentage of correctly identified clinical signs, differential
diagnosis, and therapeutic management in the OSCE file (0–20% = 1 ; 21–40% = 2; 41–60%
= 3; 61–80% = 4; 81–100% = 5).

There is numerous evidence [23–25] which shows the power of self-testing or retrieval-
based learning during individual study. This produces the most effective long-term re-
tention of the material. For instance, during a retrieval-based learning with flashcards,
answering correctly more than once, also known as high criterion learning, shows stronger
short- and long-term recall capacities [24]. In the same vein, our database is accessible
for self-training and self-testing until the end of the residency program. The CFPs of
the patients visiting the retina clinic for diagnosis and treatment are analysed by the DL
model. The model outputs a presumptive diagnosis and a case difficulty score, which is
then validated by the expert clinician. Finally, the patients’ CFPs along with metadata are
included in the Resident dataset.

4.3. AI for Education

The learning model’s diagnostic capacity is limited to the data found in the publicly
available datasets. We therefore selected the most commonly encountered RCs, with the
highest educational impact and supported by sufficient data. Future work involves expand-
ing the model’s training set, both in terms of class variety and size, by using public and
also in-house datasets. Unfortunately, there still are not sufficient public datasets globally
for public access. Khan et al. [26] have made a substantial effort in collecting and reviewing
those available to the public. Therefore, the European Health Data Space is expected to
boost AI applications in the medical domain, including those for residency training and
precision education.

In order for trainees to fully grasp the potential of AI-guided medical education, future
medical school curricula and residency programs will need to integrate an introductory
basic understanding of AI [27].
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The base use case of our AI system for education is to use a DL algorithm (i.e.,
contrastive learning) to provide a presumptive diagnosis and difficulty score, based on
which the case is assigned to a resident. However, the current AI technology can go beyond
this base case, by addressing more fancy cases:

(i) Can AI (e.g., machine learning or Bayesian networks) identify the most similar cases?
(ii) Can data augmentation generate more cases to train the resident?
(iii) Can AI identify clinical features?
(iv) Can AI provide a differential diagnosis (e.g., ranking diagnosis based on their proba-

bility?)
(v) Can AI assess how incomplete input (e.g., missing features) may lead to erroneous

interpretations?

4.4. Towards Compliance with the Artificial Intelligence Act

The Artificial Intelligence Act (AI Act) is a pioneering regulatory approach from the
European Commission to ensure that AI systems are developed in-line with European
values. The AI Act has a risk-based approach, in which the AI systems are classified
within four classes: (i) prohibited practices, (ii) high-risk areas, (iii) low risk, and (iv)
minimal risk. Four practices will be prohibited within the European Union: (i) Remote
biometric identification in publicly accessible spaces; (ii) Social scoring of natural persons;
(iii) AI-enabled manipulative techniques; (iv) Exploit vulnerabilities of children and people
from a specific group of persons. High-risk AI systems listed in Annex III of the AI Act
include eight areas: (i) Biometrics; (ii) Critical infrastructure; (iii) Education and vocational
training; (iv) Employment or workers management; (v) Access to essential private and
public services; (vi) Law enforcement; (vii) Migration, asylum, and border control; (viii)
Administration of justice. Note that the third area refers to AI systems applied to education
training, and our system for improving residents’ training is in this area.

At the time of our system’s development, the text from the AI Act is updated and
negotiated with the member states and stakeholders. The current version (3 November
2022), representing the fifth compromise proposal of the AI Act, has the following text
regarding AI systems for education and vocational training: (1) “AI systems intended to
be used to determine access, admission or to assign natural persons to educational and
vocational training institutions or programmes at all levels”; (2) “AI systems intended to
be used to evaluate learning outcomes, including when those outcomes are used to steer
the learning process of natural persons in educational and vocational training institutions
or programmes at all levels”. First, our system is an AI system since it relies on machine
learning and expert systems, and these two technologies are explicitly mentioned by the
AI Act as AI technologies. Second, the system does not seem to be referred to by the text
from the AI Act, for it does not evaluate the learning outcomes of residents. In our design,
the expert ophthalmologist is responsible for the grading of the student, while the AI
system is used only to allocate the cases. Nevertheless, we are aware that in order to be
used in practice for resident training, the system needs to pass various validation tests for
performance, fairness, and trust. With this aim, we continue to follow the guidelines for
the high-risk AI systems for education and vocational training.

The high-risk systems will follow a conformity assessment procedure by a third party
or certification body. During this procedure, the high-risk systems will require to prove
conformance with the AI Act requirements and implementation guidelines regarding risk
management, data governance and quality, technical documentation, human oversight,
post market monitoring, logs, quality management, transparency, accuracy, or robustness.
We aim to address part of these aspects as follows.

Post market monitoring is relevant to our system across two dimensions, at least. First,
the educational Resident dataset is continuously enriched with new real cases diagnosed
by residents and validated by expert ophthalmologists. This enrichment will propagate
through the contrastive learning step and case difficulty assessment. Hence, there is a need
to check that the system will meet the initial quality specifications. Second, the devices
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used to take images are continuously improving. Hence, there is the need to assure that the
newly added images can be correctly classified by the updated model.

An argument for the robustness of the model is that the Resident dataset was obtained
by combining three different datasets in which the images were collected from different
time periods, with different cameras, from different institutions, and were annotated
with different protocols. The test set is also a combination from the three public datasets.
However, further experiments are needed to assess the vulnerabilities of the model and to
compute robustness evaluation metrics.

Transparency is partly achieved by the fact that the allocation algorithm uses rules
formalised in the CLIPS expert system. Hence, the reasoning steps can be traced and
explained to the human agent.

Since the technical documentation should facilitate the verification of algorithm perfor-
mance, it can be based on assurance argumentative patterns. These assurance patterns
are adopted for the medical domain in line [28] and they can be modelled with the Goal
Structuring Notation (GSN) [29]. The GSN language provides six types of nodes: (i) Goals
to state what to assure; (ii) Contexts to specify state, environment or conditions of the
system; (iii) Strategies to describe how to break down a goal into subgoals; (iv) Evidence to
assure the goal can be reached; (v) Monitoring to represent evidence available at runtime;
(vi) Undeveloped nodes to indicate the status of no evidence or monitoring supporting
the goal. Safety cases built with the GSP standard are helpful to structure evidence and
therefore to facilitate the technical audit of AI systems in the medical domain.

5. Conclusions

AI has been applied for optimizing the clinical training of ophthalmology residents
during the retina study module. During this module, we proposed an expert-system-
powered allocation algorithm for matching cases with residents. The algorithm interleaves
pedagogical instruments (e.g., OSCE checklists) with clinical constraints, aiming to achieve
precision education in healthcare. Technically, the allocation algorithm relies on deep
learning and expert systems. The learning component uses contrastive learning to compute
the presumptive diagnosis and its difficulty. The expert component is used to formalise
rules for matching residents with cases.

We advanced the state of the art in the following directions:
First, we built the pedagogical Resident dataset for retinal conditions. The Resident

dataset was built by combining three public datasets (ODIR, RFMID, and JSIEC) containing
CFPs. To handle the heterogeneity among the three datasets, mapping rules were devised
by expert ophthalmologists. To meet the quality criteria required by machine learning
algorithms, the dataset has filtered such data to contain a relevant number of training
and testing instances for each class. The resulting Resident dataset contains 9.693 fundus
images, classified in 19 retinal conditions.

Second, we apply contrastive learning to compute a presumptive diagnosis. Learning
from and validating 7.754 images from the Resident dataset, the performance on the testing
set of 1939 instances indicated that out of 19 conditions, 11 conditions can be predicted
with precision above 0.7, and 10 conditions with a recall above 0.7 in a multilabel setting.

Third, we defined a function to automatically assess the difficulty of a case. The func-
tion considers both global and local aspects since it combines the model’s confidence in its
prediction with a measure of the diversity of examples that are in close proximity to the
classified example.

Fourth, we designed a fair allocation algorithm to match the residents with the cases.
The expert system algorithm takes into account the resident’s case history and grades,
and its main priority is to help each resident achieve their educational goals. It assures
equal exposure to cases and leads residents to improve their performance in diagnosing
and managing patients with RCs. Technically, the algorithm has implemented production
rules from expert systems.
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Interested researchers can extend or improve the current version at least on the follow-
ing lines: (1) One line would be to improve the DL model to output the list of signs present
in an image, facilitating both the resident (who could use it as an aid) and the physician
(who could save time during the OSCE evaluation); (2) Another line would be to consider
an algorithm that automatically grades the resident, instead of the physician, as in our
approach. The algorithm could be designed to include elements from the constructivist
learning theory. For instance, it could consider the time it takes residents to complete the
OSCE files. In this scenario, we still think it would be valuable to have feedback from the
expert physician.

The proposed solution avoids some drawbacks in the current trainee education in
healthcare. The residents benefit by receiving: (i) A daily case (real or from the Resident
dataset) to solve; (ii) Personalised cases based on their needs with better coverage of the
disease spectrum; (iii) Cases with a level of difficulty adapted to their current performance;
(iv) A more uniform distribution of similar cases during the one year of practice; (v)
Feedback from the expert physician.

In order to have global acceptance and implementation of AI precision education
in ophthalmology trainee education, further work is needed to evaluate the trainees’
experience to prove its efficacy. In the proposed educational model based on AI, two
processes intertwine: training and testing of residents and training and testing of the
DL model.

Author Contributions: G.A.M., Conceptualisation, Methodology, Writing—original draft, Data
Curation, and Writing—review and editing; A.G., Conceptualisation, Software, Methodology, Writ-
ing—original draft, Writing—review and editing, and Resources; A.M., Conceptualisation, Method-
ology, Software, Data Curation, Writing—original draft, and Writing—review and editing; R.R.S.,
Conceptualisation, Software, Methodology, and Writing—Original Draft; M.G.S., Conceptualisa-
tion, Software, Methodology, and Writing—Original Draft; V.M., Conceptualisation, Methodology,
Writing—Original Draft, and Writing—Review and Editing, S.D.N., Conceptualisation, Methodology,
Writing—review and editing, and Supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by a grant of the Ministry of Research, Innovation and Digitiza-
tion, CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-2709, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Resident dataset was built from three publicly available online
datasets: Ocular Disease Intelligent Recognition (ODIR) [2,3]: https://www.kaggle.com/datasets/
andrewmvd/ocular-disease-recognition-odir5k. Retinal Fundus Multi-Disease Image Dataset (RFMID) [4]:
https://ieee-dataport.org/open-access/retinal-fundus-multi-disease-image-dataset-rfmid. The pub-
lic part (1000 CFPs) of the Joint Shantou International Eye Centre (JSIEC) dataset [5]: https://www.
kaggle.com/datasets/linchundan/fundusimage1000. The CSV file for the Resident dataset can be
found at: https://github.com/ancamarginean/personalized_ophthalmology_residency_training, all
accessed on 27 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://ieee-dataport.org/open-access/retinal-fundus-multi-disease-image-dataset-rfmid
https://www.kaggle.com/datasets/linchundan/fundusimage1000
https://www.kaggle.com/datasets/linchundan/fundusimage1000
https://github.com/ancamarginean/personalized_ophthalmology_residency_training


J. Clin. Med. 2023, 12, 1825 20 of 26

Appendix A. Case Allocation Algorithm

Appendix A.1. Case Allocation Rules

Figure A1. Rules for assigning real cases (A = assign; C = case; ET = educational topic; R = resident;
RA = randomly assign; RCs = retinal conditions; RealC = real Cases; t = time; VirtC = virtual cases).
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Figure A2. Rules for assigning virtual cases (A = assign; C = case; R = resident; RA = randomly
assign; RCs = retinal conditions; t = time).

Figure A3. Rules for assigning supplementary virtual cases (C = case; m = months; R = resident;
RCs = retinal conditions; SA = supplementary assign; VirtC = virtual case).
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Appendix A.2. Case Allocation Algorithm

Algorithm A1: Assigning at least one case/day to each resident

Data: Cd - the set of cases in day d,Rd - the set of residents,RT - the educational
dataset

Result: A - vector of allocation pairs of 〈 case,residents 〉
A← Cd

n ← Cd ; /* Cd
n - set of non-allocated cases for day d */

Rd
n ← Rd ; /* Rd

n - set of non-allocated residents for day d */
while |Cd

n | 6= 0 ; /* Assign real cases with priority */
do
〈cd

i , rd
i 〉 = allocate(Cd

n ,Rn);
A← A + 〈cd

i , rd
i 〉;

Cd
n ← Cd

n \ {cd
i };

Rd
n ← Rd

n \ {rd
i };

ifRd
n = ∅ ; /* If there are more cases then residents */

then
Rd

n ← Rd ; /* Continue to allocate cases to the initial set of
residents */

end
end
while |Rd

n| 6= 0 ; /* Assign a virtual case to the remaining residents */
do
〈cd

i , rd
i 〉 = allocate(RT d

n,Rn) ; /* Assign cases from the training
dataset */

A← A + 〈cd
i , rd

i 〉;
end

Appendix A.3. Case Allocation Listings

Listing A1. Templates for storing data on availble cases and residents.

1000 ( deftemplate case
( s l o t id_case ) ; p a t i e n t present ing id ( unique )

1002 ( s l o t data_case ) ; date of p a t i e n t present ing
( s l o t i d _ p a t i e n t ) ; p a t i e n t id

1004 ( s l o t type_case ( type SYMBOL)
( allowed−symbols p t ) ) ; p a t i e n t / t e s t case

1006 ( s l o t diagnost ic_pred_ ) ; d i a g n o s t i c predic ted by~ML

1008 ( deftemplate physic ian
( s l o t id_physic ian ) ; physic ian id

1010 ( s l o t type_physic ian ( type SYMBOL)
( allowed−symbols r s ) ) ; r e s i d e n t / s p e c i a l i s t

1012 ( s l o t nr_assignments ) ; no . of cases assigned to the r e s i d e n t
in the current day

( s l o t max_assignments ) ; maximum number of cases assigned to
the physic ian in the current day

1014 ( s l o t nr_assignments_cond ) ) ; no . of cases with a RC assigned to the
r e s i d e n t in the whole module

Listing A2. Storing data about the current assignment.

1000 ( deftemplate assignment
( s l o t id_case ) ; case id ( unique )

1002 ( s l o t data_case ) ; date of p a t i e n t present ing
( s l o t i d _ p a t i e n t ) ; p a t i e n t id

1004 ( s l o t id_physic ian ) ) ; r e s i d e n t id
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Listing A3. Example of a CLIPS rule for assigning cases to residents.

1000 ( d e f r u l e a s s i g n m e n t _ p h y s i c i a n _ l a _ p a t i e n t _ c o n d i t i e _ r e t i n i a n a
( dec lare ( s a l i e n c e ?* pr_ leve l_100 * ) )

1002 ? f c c <− ( copie_case ( id_case ? i c ) ( data_case ? dc ) ( i d _ p a t i e n t ? ip ) (
type_case ? tp )

( diagnost ic_pred c ) ) ; r e t i n a l
condi t ion

1004 ?fm <− ( physic ian ( id_phys ic ian ?im ) ( type_physic ian r ) ( nr_assignments ?
na )

( max_assignments ?ma) ( nr_assignments_cond ? nac ) )
1006 ( t e s t ( < ?na ?ma) )

( minalloccond ?minc ) ; there i s no physic ian with fewer cases of
r e t i n a l condi t ion seen

1008 ( t e s t ( eq ?minc ? nac ) )
=>

1010 ( a s s e r t ( assignment ( id_case ? i c ) ( data_case ? dc ) ( i d _ p a t i e n t ? ip ) (
id_physic ian im ) ) )

( r e t r a c t ? f c c )
1012 ( modify ?fm ( nr_assignments (+ 1 ?na ) ) )

( modify ?fm ( nr_assignments_cond (+ 1 ? nac ) ) ) )

Listing A4. Running example.

1000 ( case ( id_case 1001) ( data_case 20221205) ( i d _ p a t i e n t p201 ) ( type_case p ) (
diagnost ic_pred c ) )

( physic ian ( id_physic ian m501 ) ( type_physic ian r ) ( nr_assignments 2 )
1002 ( max_assignments 3 ) ( nr_assignments_cond 1) )

( physic ian ( id_physic ian m502 ) ( type_physic ian r ) ( nr_assignments 3 )
1004 ( max_assignments 3 ) ( nr_assignments_cond 2) )

( physic ian ( id_physic ian m503 ) ( type_physic ian r ) ( nr_assignments 3 )
1006 ( max_assignments 3 ) ( nr_assignments_cond 1) )

1008 ( assignment ( id_case 1001) ( data_case 20221205) ( i d _ p a t i e n t p201 ) (
id_physic ian m503 ) )

( assignment ( id_case 1002) ( data_case 20221205) ( i d _ p a t i e n t p203 ) (
id_physic ian m502 ) )

1010 ( assignment ( id_case 1003) ( data_case 20221205) ( i d _ p a t i e n t p205 ) (
id_physic ian m501 ) )

( assignment ( id_case 1004) ( data_case 20221205) ( i d _ p a t i e n t p207 ) (
id_physic ian m503 ) )

1012 ( assignment ( id_case 1005) ( data_case 20221205) ( i d _ p a t i e n t p209 ) (
id_physic ian m502 ) )

( assignment ( id_case 1006) ( data_case 20221205) ( i d _ p a t i e n t p211 ) (
id_physic ian m502 ) )

1014 ( assignment ( id_case 1007) ( data_case 20221205) ( i d _ p a t i e n t p213 ) (
id_physic ian m503 ) )

( assignment ( id_case 1008) ( data_case 20221205) ( i d _ p a t i e n t p215 ) (
id_physic ian m501 ) )

Appendix B. Histogram of Keywords from ODIR Dataset

Table A1. Keywords from ODIR dataset which appear in train dataset.

C0 Normal fundus: 2271, lens dust: 46,

C1 Dry age-related macular degeneration: 58, wet age-related macular degeneration: 30, glaucoma: 5, mild nonprolifera-
tive retinopathy: 2, myopia retinopathy: 2, diffuse chorioretinal atrophy: 1,

C2
Mild nonproliferative retinopathy: 444, glaucoma: 2, macular pigmentation disorder: 1, macular epiretinal membrane:
17, drusen: 6, vitreous degeneration: 6, myelinated nerve fibers: 4, epiretinal membrane: 8, dry age-related macular
degeneration: 2, hypertensive retinopathy: 11, cataract: 2, lens dust: 2, laser spot: 1, retinal pigmentation: 1,
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Table A1. Cont.

C3

Moderate non proliferative retinopathy: 758, laser spot: 27, lens dust: 7, macular epiretinal membrane: 16, cataract:
9, epiretinal membrane: 25, hypertensive retinopathy: 29, drusen: 7, spotted membranous change: 2, glaucoma: 5,
myelinated nerve fibers: 11, abnormal pigment : 1, chorioretinal atrophy: 1, epiretinal membrane over the macula: 2,
retinitis pigmentosa: 1, pathological myopia: 4, tessellated fundus: 1, white vessel: 1, branch retinal vein occlusion: 2,
retina fold: 1, old branch retinal vein occlusion: 1, vitreous degeneration: 1, refractive media opacity: 1, optic disc
edema: 1, atrophic change: 2, retinal pigment epithelial hypertrophy: 1, age-related macular degeneration: 1, central
retinal artery occlusion: 1, post laser photocoagulation: 1,

C4 Severe nonproliferative retinopathy: 129, hypertensive retinopathy: 9, white vessel: 2, macular epiretinal mem-
brane: 1,

C5 Proliferative diabetic retinopathy: 16, hypertensive retinopathy: 4, severe proliferative diabetic retinopathy: 9, laser
spot: 2, epiretinal membrane: 1,

C6

Glaucoma: 209, mild nonproliferative retinopathy: 2, macular pigmentation disorder: 1, hypertensive retinopathy: 4,
central retinal vein occlusion: 1, wet age-related macular degeneration: 2, dry age-related macular degeneration:
8, myopia retinopathy: 7, myelinated nerve fibers: 1, moderate non proliferative retinopathy: 5, lens dust: 2, optic
nerve atrophy: 2, old central retinal vein occlusion: 1, diffuse retinal atrophy: 1, macular epiretinal membrane: 7,
intraretinal hemorrhage: 2, vitreous degeneration: 1, laser spot: 1,

C7

Hypertensive retinopathy: 157, moderate non proliferative retinopathy: 29, glaucoma: 4, proliferative diabetic
retinopathy: 4, severe nonproliferative retinopathy: 9, branch retinal vein occlusion: 2, vitreous opacity: 1, age-
related macular degeneration: 2, mild nonproliferative retinopathy: 11, cataract: 3, macular epiretinal membrane: 1,
suspected diabetic retinopathy: 1, optic nerve atrophy: 1,

C8 Pathological myopia: 195, suspected moderate non proliferative retinopathy: 1, moderate non proliferative retinopa-
thy: 4, refractive media opacity: 4, lens dust: 3, suspected macular epimacular membrane: 1,

C9 Moderate non proliferative retinopathy: 1, tessellated fundus: 1,

C10 Cataract: 1, vitreous degeneration: 55, mild nonproliferative retinopathy: 6, glaucoma: 1, moderate non proliferative
retinopathy: 1, lens dust: 1,

C11 Branch retinal vein occlusion: 21, lens dust: 1, hypertensive retinopathy: 2, vitreous opacity: 1, moderate non
proliferative retinopathy: 2, drusen: 1,

C13

C14

Dry age-related macular degeneration: 104, drusen: 140, lens dust: 9, macular epiretinal membrane: 1, glaucoma: 5,
moderate non proliferative retinopathy: 8, mild nonproliferative retinopathy: 8, hypertensive retinopathy: 2, age-
related macular degeneration: 3, epiretinal membrane: 3, myelinated nerve fibers: 2, branch retinal vein occlusion: 1,
wet age-related macular degeneration: 1, atrophic change: 1, cataract: 1,

C15

Macular epiretinal membrane: 147, moderate non proliferative retinopathy: 43, laser spot: 6, epiretinal membrane:
135, drusen: 4, mild nonproliferative retinopathy: 25, epiretinal membrane over the macula: 13, lens dust: 14, atrophic
change: 1, glaucoma: 7, hypertensive retinopathy: 1, chorioretinal atrophy: 1, severe nonproliferative retinopathy: 1,
white vessel: 1, myelinated nerve fibers: 2, post laser photocoagulation: 1, severe proliferative diabetic retinopathy: 1,
vessel tortuosity: 1,

C18 Moderate non proliferative retinopathy: 1, optic disc edema: 1,

C19
Myelinated nerve fibers: 77, lens dust: 2, glaucoma: 1, moderate non proliferative retinopathy: 11, mild nonprolifera-
tive retinopathy: 4, old branch retinal vein occlusion: 1, drusen: 2, laser spot: 1, macular epiretinal membrane: 1,
epiretinal membrane: 1,

C22

C25
Cataract: 239, moderate non proliferative retinopathy: 10, refractive media opacity: 49, lens dust: 12, vitreous
degeneration: 1, laser spot: 2, mild nonproliferative retinopathy: 2, pathological myopia: 4, hypertensive retinopathy:
3, suspected cataract: 1, drusen: 1,

C27

C29
Moderate non proliferative retinopathy: 27, laser spot: 31, lens dust: 2, macular epiretinal membrane: 4, epiretinal
membrane: 3, cataract: 2, myelinated nerve fibers: 1, severe proliferative diabetic retinopathy: 2, glaucoma: 1, mild
nonproliferative retinopathy: 1, post laser photocoagulation: 2,

C32 Glaucoma: 1, central retinal vein occlusion: 1,
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Table A2. RFMID dataset classes (conditions from similar categories grouped together, excepting
those from third column and last row, grouped as miscellaneous).

Age-related macular degeneration (ARMD) Diabetic retinopathy (DR) Media haze (MH)
Drusens (DN) Branch retinal vein occlusion (BRVO) Asteroid hyalosis (AH)
Myopia (MYA) Central retinal vein occlusion (CRVO)

Tessellation (TSLN) Central retinal artery occlusion (CRAO) Retinitis (RS)
Epiretinal membrane (ERM) Branch retinal artery occlusion (BRAO) Chorioretinitis (CRS)

Macular hole (MHL) Hemorrhagic retinopathy (HR) Vasculitis (VS)
Central serous retinopathy (CSR) Macroaneurysm (MCA)
Cystoid macular edema (CME) Tortuous vessels (TV) Vitreous hemorrhage (VH)
Parafoveal telangiectasia (PT) Collateral (CL) Preretinal hemorrhage (PRH)

Macular scar (MS) Plaque (PLQ)

Post-traumatic choroidal rupture (PTCR) Optic disc cupping (ODC) Retinal traction (RT)
Choroidal folds (CF) Optic disc pallor (ODP) Myelinated nerve fibers (MNF)

Optic disc edema (ODE) Laser scars (LS)
Retinal pigment epithelium changes (RPEC) Anterior ischemic optic neuropathy (AION) Cotton-wool spots (CWS)

Retinitis pigmentosa (RP) Optic disc pit maculopathy (ODPM) Coloboma (CB)
Hemorrhagic pigment epithelial detachment (HPED) Optociliary shunt (ST) Exudation (EDN)

Tilted disc (TD)
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