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Abstract: Postoperative pulmonary edema (PPE) is a well-known postoperative complication. We
hypothesized that a machine learning model could predict PPE risk using pre- and intraoperative data,
thereby improving postoperative management. This retrospective study analyzed the medical records
of patients aged > 18 years who underwent surgery between January 2011 and November 2021 at
five South Korean hospitals. Data from four hospitals (n = 221,908) were used as the training dataset,
whereas data from the remaining hospital (n = 34,991) were used as the test dataset. The machine
learning algorithms used were extreme gradient boosting, light-gradient boosting machine, multilayer
perceptron, logistic regression, and balanced random forest (BRF). The prediction abilities of the
machine learning models were assessed using the area under the receiver operating characteristic
curve, feature importance, and average precisions of precision-recall curve, precision, recall, f1 score,
and accuracy. PPE occurred in 3584 (1.6%) and 1896 (5.4%) patients in the training and test sets,
respectively. The BRF model exhibited the best performance (area under the receiver operating
characteristic curve: 0.91, 95% confidence interval: 0.84–0.98). However, its precision and f1 score
metrics were not good. The five major features included arterial line monitoring, American Society
of Anesthesiologists physical status, urine output, age, and Foley catheter status. Machine learning
models (e.g., BRF) could predict PPE risk and improve clinical decision-making, thereby enhancing
postoperative management.

Keywords: lung; edema; surgery; prediction; machine learning

1. Introduction

Postoperative pulmonary edema (PPE) is a well-known complication with multiple
possible causes [1]. Preexisting cardiac disease, including heart failure, is the most common
cause of PPE. Fluid overload results in increased hydrostatic pressure and worsening left
ventricular function [2]. Regardless of preexisting heart disease, fluid overload itself can
cause PPE. In particular, excessive postoperative fluid administration and transfusions
increase the risk of PPE [1,3]. Neurogenic pulmonary edema is another potential cause
of PPE [4]. Although neurogenic pulmonary edema is sometimes regarded as a form of
acute respiratory distress syndrome, its pathophysiology and prognosis differ from the
characteristics of acute respiratory distress [4,5]. PPE can also be caused by anaphylaxis,
which results in negative pressure and acute lung injury [1,6].

It is often difficult to determine the cause of PPE during its early stages, particularly
in patients with overlapping etiologies [1,6,7]. There is a need to identify patients at high
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risk of PPE to allow prevention and early treatment. Several studies have reported the
causes and risk factors for PPE, but early diagnosis and management are difficult, more so
in patients with overlapping etiologies or uncertain causes [1–10].

Advances in computing have enhanced several key areas of clinical research; artificial-
intelligence-based methods may have additional applications. Machine learning (ML) systems
are widely used in clinical research to analyze big data. Compared to traditional scoring
systems, ML models perform better when predicting various clinical conditions [11–13]. They
have been successfully used to predict postoperative complications [14–19]. However, there is
no reported ML model to predict PPE. In the present study, we hypothesized that ML could
predict PPE risk with good performance, and then developed ML models to predict PPE.

2. Materials and Methods
2.1. Data Collection

This retrospective cohort study protocol was approved by the Clinical Research Ethics
Committee of Chuncheon Sacred Heart Hospital, Hallym University. The need for informed
consent was waived because of the retrospective study design. The medical records of
patients treated between 1 January 2011 and 15 November 2021 were obtained from the
clinical data warehouses of five hospitals affiliated with Hallym University Medical Center.
The hospitals were located in Seoul (Kangnam Sacred Heart Hospital and Hangang Sacred
Heart Hospital), Gyeonggi Province (Hallym University Sacred Heart Hospital and Dongtan
Sacred Heart Hospital), and Gangwon Province (Chuncheon Sacred Heart Hospital).

A clinical data warehouse is a database of medical records, prescriptions, and test
results, which can be used to identify patients based on prescriptions, examinations, and
diagnostic data. The timing and results of investigations, drug administration, transfusions,
and other information were extracted in an unstructured text format. The requested data
were provided in a de-identified format, but the data of specific patients could be extracted
using a key.

2.2. Patients and Pulmonary Edema

The study included adult patients aged > 18 years who did not exhibit preoperative
pulmonary edema. The exclusion criteria and outlier data were missing. Pulmonary edema
was diagnosed by radiologists on the basis of chest radiographs. Patients were presumed
not to have PPE if they lacked perioperative respiratory symptoms and did not undergo
chest radiography.

2.3. Dataset

The dataset involved the following 98 perioperative variables: age, male sex, and
order of surgery; the statuses of preoperative atelectasis, preoperative effusion, preopera-
tive pneumothorax, preoperative pneumonia, preoperative pulmonary thromboembolism,
and preoperative acute respiratory distress; body mass index; the statuses of congestive
heart failure, cardiac arrhythmia, valvular diseases, pulmonary circulation disorders, pe-
ripheral vascular disorders, hypertension (uncomplicated vs. complicated), paralysis,
other neurological disorders, chronic pulmonary diseases, diabetes (uncomplicated vs.
complicated), hypothyroidism, renal failure, liver diseases, peptic ulcer diseases (exclud-
ing bleeding), acquired immune deficiency syndrome/human immunodeficiency virus,
lymphoma, metastatic cancer, solid tumors (without metastasis), and rheumatoid arthri-
tis/collagen vascular diseases; alcohol consumption, current smoking status, smoking
frequency (packs), smoking duration (years), emergency status, American Society of Anes-
thesiologists physical status of >2, use of general anesthesia, maintenance anesthetics
administered, N2O use, anesthesia time (min), surgery time (min), intraoperative blood
and fluid administration, intraoperative urine output, and estimated blood loss; the sta-
tuses of arterial line monitoring, central venous pressure monitoring, Foley catheter, Levin
tube, and patient-controlled analgesia; the administration of intraoperative packed red
blood cells, frozen fresh plasma, platelets (concentration and cryoprecipitate), rocuronium,
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vecuronium, atracurium, cisatracurium, succinylcholine, pyridostigmine, neostigmine, sug-
ammadex, fentanyl, alfentanil, sufentanil, remifentanil, and pethidine; blood urea nitrogen
level, creatinine level, glomerular filtration rate, prothrombin time, activated partial throm-
boplastin time, and platelet count; the levels of sodium, potassium, uric acid, protein, and
albumin; and the statuses of robotic surgery, laparoscopic surgery, heart surgery, abdominal
surgery, breast surgery, ear surgery, endocrine surgery, eye surgery, head and neck surgery,
musculoskeletal surgery, neurosurgery, obstetric and gynecological surgery, spine surgery,
thoracic surgery, transplant surgery, urogenital surgery, vascular surgery, and skin and soft
tissue surgery.

The dataset was divided into training and test sets. The training set included data
from Kangnam Sacred Heart Hospital, Hangang Sacred Heart Hospital, Hallym University
Sacred Heart Hospital, and Dongtan Sacred Heart Hospital. The test set included data from
Chuncheon Sacred Heart Hospital. The training set was used for model learning, whereas
the test set was used to evaluate model performance. Both datasets were standardized
using min.–max. scaling based on the training set.

2.4. Machine Learning

The study used supervised learning, which is an ML paradigm for data consisting of
labeled examples (i.e., each data point contains variables and an associated label). Five ML
algorithms were used: random forest, light-gradient boosting machine, extreme-gradient
boosting machine, multilayer perceptron, and logistic regression [20–24]. Random forest
is a regression tree technique that uses bootstrap aggregation and predictor randomiza-
tion to achieve high predictive accuracy. Various random forest input parameters were
explored [25]. A light-gradient boosting machine continuously divides a leaf node with
maximum data loss without a consideration of tree balance, resulting in a deep and asym-
metric tree [26]. Extreme-gradient boosting machine is an optimized gradient boosting
algorithm that involves parallel processing, tree-pruning, missing value management, and
regularization to avoid overfitting/bias [27]. Multilayer perceptron is a neural network
with ≥1 intermediate layer between the input and output layers. The network is connected
in the direction of the input, hidden, and output layers; there are no connections within the
layers, but the output layer is directly connected to the input layer through a feedforward
network [28]. Logistic regression can solve the binary classification problems associated
with the linear model.

The dataset was imbalanced and may have caused low model performance. Therefore,
we used the synthetic minority oversampling technique for all algorithms except random
forest [29]. After the ratio of pulmonary edema had been balanced, we trained the models
with a training set that included synthetic samples. The random forest algorithm includes a
classifier method known as balanced random forest (BRF); therefore, the synthetic minority
oversampling technique was not used for the random forest algorithm. Data processing
and the ML process are summarized in Figure 1. Feature importance was calculated to
assess the best model using the built-in function in the algorithm package.

2.5. Modified Dataset

An additional carved dataset was used to modify the prediction model based on
the large and complex dataset. This dataset was learned and validated using the best
prediction algorithm from the original data. First, the test dataset was reduced by under-
sampling using the Tomek’s link method to validate our best model [30]. Second, a
simplified prediction model was made using 20 important features of the best model, and
was validated using a test dataset that included these features.

2.6. Metrics and Statistics

Six metrics were calculated for model performance. The primary metric was the area under
the receiver operating characteristic curve. The average precisions of precision-recall curve, best
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threshold, precision, recall and f1 score, and accuracy were calculated. Google Colab (Python
version 3.7; Google, Mountain View, CA, USA) was used to calculate model metrics.
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Figure 1. Data processing and machine learning process. LGBM, light-gradient boosting machine;
LR, logistic regression; ML, machine learning; MLP, multilayer perceptron; XGB, extreme-gradient
boosting machine.

Descriptive analysis was performed to compare the characteristics of patients with
and without PPE. Categorical variables were presented as numbers (%) and compared
using the chi-squared test. Continuous variables were presented as medians (interquartile
ranges) and compared using the Mann–Whitney U test. p-values of < 0.05 were considered
statistically significant.

3. Results
3.1. Patient Characteristics

The study included 287,976 patients aged > 18 years who did not exhibit preoperative
pulmonary edema. After the exclusion of 26,597 patients with missing (n = 26,593) and
outlier (n = 4) data, and 4480 preoperative PPE patients, a total of 256,899 patients were
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included in the analysis. PPE occurred in 5480 (2.8%) patients. The training and test sets
included 221,908 and 34,991 patients, respectively. PPE occurred in 3584 (2.1%) and 1896
(7.4%) patients in the training and test sets, respectively (Tables 1 and 2).

Table 1. Training dataset.

No PPE (n = 218,324) PPE (n = 3584) p-Value

Age 50.0 (37.0, 62.0) 69.0 (56.0, 78.0) <0.001
Male sex 100,552 (46.1) 1739 (48.5) 0.004
Order of surgery 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) <0.001
Preoperative atelectasis 6276 (2.9) 418 (11.7) <0.001
Preoperative effusion 4658 (2.1) 410 (11.4) <0.001
Preoperative pneumothorax 1968 (0.9) 71 (2.0) <0.001
Preoperative pneumonia 1401 (0.6) 176 (4.9) <0.001
Preoperative PTE 178 (0.1) 18 (0.5) <0.001
Preoperative ARDS 19 (0.0) 1 (0.0) 0.754
Body mass index 24.0 (21.8, 26.5) 23.9 (21.5, 26.6) 0.059
Congestive heart failure 4236 (1.9) 467 (13.0) <0.001
Cardiac arrhythmia 6520 (3.0) 353 (9.8) <0.001
Valvular diseases 1170 (0.5) 153 (4.3) <0.001
Pulmonary circulation disorders 921 (0.4) 77 (2.1) <0.001
Peripheral vascular disorders 4399 (2.0) 192 (5.4) <0.001
Hypertension, uncomplicated 24,413 (11.2) 903 (25.2) <0.001
Hypertension, complicated 9025 (4.1) 420 (11.7) <0.001
Paralysis 609 (0.3) 33 (0.9) <0.001
Other neurological disorders 5120 (2.4) 243 (6.8) <0.001
Chronic pulmonary diseases 14,365 (6.6) 394 (11.0) <0.001
Diabetes, uncomplicated 11,051 (5.1) 373 (10.4) <0.001
Diabetes, complicated 14,996 (6.9) 562 (15.7) <0.001
Hypothyroidism 4828 (2.2) 162 (4.5) <0.001
Renal failure 5847 (2.7) 426 (11.9) <0.001
Liver disease 11,293 (5.2) 244 (6.8) <0.001
Peptic ulcer diseases (excluding bleeding) 4055 (1.9) 92 (2.6) 0.002
AIDS/HIV 59 (0.0) 0 (0) 0.640
Lymphoma 744 (0.3) 26 (0.7) <0.001
Metastatic cancer 2261 (1.0) 77 (2.1) <0.001
Solid tumors without metastasis 33,956 (15.6) 991 (27.6) <0.001
Rheumatoid arthritis/collagen vascular
diseases 3176 (1.4) 83 (2.3) <0.001

Alcohol consumption 59,560 (27.3) 698 (19.5) <0.001
Current smoking 37,885 (17.4) 533 (14.9) <0.001
Smoking frequency (packs) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Smoking duration (years) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.014
Emergency 36,571 (16.8) 1057 (29.5) <0.001
ASA-PS > 2 82,608 (37.8) 1053 (0.5) <0.001
General anesthesia 181,268 (83.0) 3210 (89.6) <0.001
Anesthetics (sevoflurane) 124,935 (57.2) 2415 (1.1) <0.001
N2O 10,226 (4.7) 73 (2.0) <0.001
Anesthesia time (min) 105.0 (70.0, 160.0) 190.0 (125.0, 300.0) <0.001
Surgery time (min) 65.0 (35.0, 115.0) 130.0 (75.0, 230.5) <0.001
Intraoperative blood administration 0.0 (0.0, 0.0) 0.0 (0.0, 400.0) <0.001
Intraoperative fluid administration 500.0 (300.0, 900.0) 1500.0 (850.0, 2500.0) <0.001
Intraoperative urine output 0.0 (0.0, 90.0) 215.0 (60.0, 550.0) <0.001
Estimated blood loss 20.0 (0.0, 100.0) 500.0 (100.0, 800.0) <0.001
Arterial line 56,990 (26.1) 3252 (90.7) <0.001
Central venous line 14,362 (6.6) 1649 (46.0) <0.001
Foley catheter 77,786 (35.6) 3097 (86.4) <0.001
Levin tube 3656 (1.7) 277 (7.7) <0.001
Patient-controlled analgesia (intravenous) 83,711 (38.3) 1119 (0.5) <0.001
Intraoperative packed red blood cells 0.0 (0.0, 0.0) 0.0 (0.0, 2.0) <0.001
Intraoperative FFP 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Intraoperative PC 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Intraoperative cryoprecipitate 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Rocuronium 50.0 (0.0, 50.0) 50.0 (25.0, 60.0) <0.001
Vecuronium 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Atracurium 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.214
Cisatracurium 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Succinylcholine 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Pyridostigmine 0.0 (0.0, 15.0) 0.0 (0.0, 15.0) <0.001
Neostigmine 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.026
Sugammadex 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Fentanyl 0.0 (0.0, 0.1) 0.0 (0.0, 0.0) <0.001
Alfentanil 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.171
Sufentanil 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Remifentanil 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) <0.001
Pethidine 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
BUN 13.3 (10.5, 16.6) 16.1 (12.1, 21.6) <0.001
Cr 0.8 (0.6, 0.9) 0.8 (0.7, 1.1) <0.001
GFR 98.0 (83.0, 116.0) 85.0 (63.0, 107.0) <0.001
PT 12.1 (11.3, 12.9) 12.9 (12.0, 13.9) <0.001
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Table 1. Cont.

No PPE (n = 218,324) PPE (n = 3584) p-Value

aPTT 31.6 (27.9, 35.2) 33.2 (28.5, 37.8) <0.001
INR 1.0 (0.9, 1.1) 1.0 (1.0, 1.1) <0.001
PLT 246.0 (206.0, 291.0) 219.0 (171.0, 276.0) <0.001
Na 140.0 (138.0, 141.0) 139.0 (136.0, 141.0) <0.001
K 4.1 (3.9, 4.4) 4.0 (3.7, 4.3) <0.001
Uric acid 4.7 (3.7, 5.8) 4.6 (3.4, 5.9) 0.004
Protein 7.2 (6.7, 7.5) 6.6 (6.0, 7.2) <0.001
Albumin 4.4 (4.1, 4.6) 3.9 (3.3, 4.3) <0.001
Robotic surgery 5022 (2.3) 117 (3.3) <0.001
Laparoscopic surgery 41,921 (19.2) 436 (12.2) <0.001
Heart surgery 970 (0.4) 265 (7.4) <0.001
Abdominal surgery (minor/major) 34,286 (15.7)/6750 (3.1) 434 (12.1)/369 (10.3) <0.001
Breast surgery (minor/major) 7304 (3.4)/20 (0.0) 19 (0.5)/2 (0.1) <0.001
Ear surgery (minor/major) 4270 (2.0)/2 (0.0) 8 (0.2)/0 (0) <0.001
Endocrine surgery (minor/major) 3145 (1.4)/2691 (1.2) 19 (0.5)/7 (0.2) <0.001
Eye surgery 4215 (1.9) 10 (0.3) <0.001
Head and neck surgery (minor/major) 25,006 (11.4)/269 (0.1) 41 (1.1)/8 (0.2) <0.001
Musculoskeletal surgery (minor/major) 50,412 (23.1)/3040 (1.4) 666 (18.6)/306 (8.5) <0.001
Neurosurgery (minor/major) 5837 (2.7)/1707 (0.8) 306 (8.5)/197 (5.5) <0.001
OBGY surgery (minor/major) 33,713 (15.4)/602 (0.3) 128 (3.6)/30 (0.8) <0.001
Spine surgery (minor/major) 4181 (1.9)/2743 (1.3) 144 (4.0)/208 (5.8) <0.001
Thoracic surgery (minor/major) 3130 (1.4)/945 (0.4) 142 (4.0)/71 (2.0) <0.001
Transplantation surgery (minor/major) 64 (0.0)/127 (0.1) 4 (0.1)/37 (1.0) <0.001
Urogenital surgery (minor/major) 19,458 (8.9)/1894 (0.9) 98 (2.7)/118 (3.3) <0.001
Vascular surgery (minor/major) 1610 (0.7)/82 (0.0) 76 (2.1)/25 (0.7) <0.001
Skin and soft tissue surgery (minor/major) 15,406 (7.1)/97 (0.0) 111 (3.1)/7 (0.2) <0.001

AIDS, acquired immunodeficiency syndrome; aPTT, activated partial thromboplastin time; ARDS, acute res-
piratory distress; ASA-PS, American Society of Anesthesiologists physical status; BUN, blood urea nitrogen;
Cr, creatine; FFP, fresh frozen plasma, GFR, glomerular filtration rate; HIV, human immunodeficiency virus;
INR, international normalized ratio; OBGY, obstetric and gynecologic; PC, platelet concentrate; PLT, platelet;
PPE, postoperative pulmonary edema; PT, prothrombin time; PTE, pulmonary thromboembolism.

Table 2. Test dataset.

No PPE (n = 33,095) PPE (n = 1896) p-Value

Age, year 52.0 (39.0, 64.0) 71.0 (60.0, 79.0) <0.001
Male sex 18,038 (54.5) 973 (51.3) 0.007
Order of surgery 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) <0.001
Preoperative atelectasis 788 (2.4) 172 (9.1) <0.001
Preoperative effusion 725 (2.2) 194 (10.2) <0.001
Preoperative pneumothorax 191 (0.6) 25 (1.3) <0.001
Preoperative pneumonia 257 (0.8) 109 (5.8) <0.001
Preoperative PTE 17 (0.1) 6 (0.3) <0.001
Preoperative ARDS 6 (0.0) 0 (0) >0.999
Body mass index 24.4 (22.1, 26.9) 23.9 (21.3, 26.5) <0.001
Congestive heart failure 1168 (3.5) 238 (12.6) <0.001
Cardiac arrhythmias 1438 (4.3) 231 (12.2) <0.001
Valvular disease 231 (0.7) 51 (2.7) <0.001
Pulmonary circulation disorders 239 (0.7) 65 (3.4) <0.001
Peripheral vascular disorders 534 (1.6) 73 (3.9) <0.001
Hypertension, uncomplicated 3896 (11.8) 467 (24.6) <0.001
Hypertension, complicated 2507 (7.6) 264 (13.9) <0.001
Paralysis 282 (0.8) 38 (2.0) <0.001
Other neurological disorders 1021 (3.1) 163 (8.6) <0.001
Chronic pulmonary diseases 4377 (13.2) 380 (20.0) <0.001
Diabetes, uncomplicated 3325 (10.1) 338 (17.8) <0.001
Diabetes, complicated 2067 (6.2) 251 (13.2) <0.001
Hypothyroidism 537 (1.6) 54 (2.9) <0.001
Renal failure 1378 (4.2) 236 (12.4) <0.001
Liver disease 2556 (7.7) 221 (11.7) <0.001
Peptic ulcer diseases (excluding bleeding) 1147 (3.5) 75 (4.0) 0.287
AIDS/HIV 2 (0.0) 0 (0) >0.999
Lymphoma 132 (0.4) 9 (0.5) 0.749
Metastatic cancer 333 (1.0) 57 (3.0) <0.001
Solid tumors without metastasis 4336 (13.1) 595 (31.4) <0.001
Rheumatoid arthritis/collagen vascular
diseases 655 (2.0) 45 (2.4) 0.268

Alcohol consumption 8651 (26.1) 309 (16.3) <0.001
Current smoking 5953 (18.0) 258 (13.6) <0.001
Smoking frequency (packs) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Smoking duration (years) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Emergency 4606 (13.9) 596 (31.4) <0.001
ASA-PS > 2 13,558 (41.0) 829 (2.5) <0.001
General anesthesia 29,306 (88.5) 1886 (99.5) <0.001
Anesthetics (Sevoflurane) 16,024 (48.4) 888 (2.7) <0.001
N2O 18,445 (55.7) 578 (30.5) <0.001
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Table 2. Cont.

No PPE (n = 33,095) PPE (n = 1896) p-Value

Anesthesia time (min) 85.0 (60.0, 130.0) 140.0 (95.0, 215.0) <0.001
Surgery time (min) 55.0 (35.0, 95.0) 100.0 (60.0, 165.0) <0.001
Intraoperative blood administration 0.0 (0.0, 0.0) 0.0 (0.0, 240.0) <0.001
Intraoperative fluid administration 350.0 (200.0, 600.0) 950.0 (500.0, 1750.0) <0.001
Intraoperative urine output 0.0 (0.0, 30.0) 85.0 (20.0, 230.0) <0.001
Estimated blood loss 20.0 (5.0, 50.0) 200.0 (30.0, 600.0) <0.001
Arterial line 7387 (22.3) 1627 (85.8) <0.001
Central venous line 3314 (10.0) 1258 (66.3) <0.001
Foley catheter 10,807 (32.6) 1560 (82.3) <0.001
Levin tube 1070 (3.2) 278 (14.7) <0.001
Patient-controlled analgesia (intravenous) 15,263 (46.1) 490 (1.5) <0.001
Intraoperative packed red blood cell 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) <0.001
Intraoperative FFP 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Intraoperative PC 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Intraoperative cryoprecipitate 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Rocuronium 50.0 (50.0, 75.0) 75.0 (50.0, 150.0) <0.001
Vecuronium 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) >0.999
Atracurium 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Cisatracurium 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
Succinylcholine 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.081
Pyridostigmine 20.0 (0.0, 20.0) 0.0 (0.0, 20.0) <0.001
Neostigmine 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) >0.999
Sugammadex 0.0 (0.0, 0.0) 0.0 (0.0, 200.0) <0.001
Fentanyl 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.056
Alfentanil 0.0 (0.0, 0.5) 0.0 (0.0, 0.2) <0.001
Sufentanil 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.095
Remifentanil 0.0 (0.0, 0.0) 0.0 (0.0, 0.4) <0.001
Pethidine 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) <0.001
BUN 14.1 (11.5, 17.4) 16.4 (12.6, 22.0) <0.001
Cr 0.8 (0.7, 1.0) 0.9 (0.7, 1.1) 0.002
GFR 90.0 (77.0, 104.0) 81.6 (63.0, 100.7) <0.001
PT 11.1 (10.6, 11.7) 11.6 (11.0, 12.5) <0.001
aPTT 31.2 (29.0, 33.7) 30.0 (27.5, 32.8) <0.001
INR 1.0 (1.0, 1.1) 1.1 (1.0, 1.1) <0.001
PLT 247.0 (208.0, 292.0) 218.0 (169.8, 274.0) <0.001
Na 141.0 (140.0, 143.0) 140.0 (138.0, 142.0) <0.001
K 4.2 (3.9, 4.4) 4.1 (3.8, 4.4) <0.001
Uric acid 4.8 (3.8, 5.9) 4.5 (3.4, 5.8) <0.001
Protein 7.0 (6.6, 7.3) 6.5 (6.0, 7.0) <0.001
Albumin 4.4 (4.1, 4.6) 3.9 (3.4, 4.3) <0.001
Robotic surgery 208 (0.6) 73 (3.9) <0.001
Laparoscopic surgery 4240 (12.8) 427 (22.5) <0.001
Heart surgery 24 (0.1) 8 (0.4) <0.001
Abdominal surgery (minor/major) 5113 (15.4)/706 (2.1) 428 (22.6)/268 (14.1) <0.001
Breast surgery (minor/major) 1306 (4.0)/2 (0.0) 5 (0.3)/1 (0.1) <0.001
Ear surgery (minor/major) 855 (2.6) 1 (0.1) <0.001
Endocrine surgery (minor/major) 369 (1.1)/107 (0.3) 8 (0.4)/1 (0.1) 0.002
Eye surgery 606 (1.8) 4 (0.2) <0.001
Head and neck surgery (minor/major) 4087 (12.3)/12 (0.0) 22 (1.2)/3 (0.2) <0.001
Musculoskeletal surgery (minor/major) 11,044 (33.4)/530 (1.6) 353 (18.6)/226 (11.9) <0.001
Neurosurgery (minor/major) 779 (2.4)/231 (0.7) 99 (5.2)/96 (5.1) <0.001
OBGY surgery (minor/major) 1705 (5.2)/24 (0.1) 5 (0.3)/1 (0.1) <0.001
Spine surgery (minor/major) 2050 (6.2)/220 (0.7) 73 (3.9)/44 (2.3) <0.001
Thoracic surgery (minor/major) 272 (0.8)/54 (0.2) 76 (4.0)/19 (1.0) <0.001
Transplantation surgery (minor/major) 0 (0) 0 (0) >0.999
Urogenital surgery (minor/major) 2021 (6.1)/104 (0.3) 62 (3.3)/69 (3.6) <0.001
Vascular surgery (minor/major) 368 (1.1)/2 (0.0) 13 (0.7)/0 (0) 0.208
Skin and soft tissue surgery (minor/major) 1510 (4.6)/14 (0.0) 12 (0.6)/4 (0.2) <0.001

AIDS, acquired immunodeficiency syndrome; aPTT, activated partial thromboplastin time; ARDS, acute res-
piratory distress; ASA-PS, American Society of Anesthesiologists physical status; BUN, blood urea nitrogen;
Cr, creatine; FFP, fresh frozen plasma, GFR, glomerular filtration rate; HIV, human immunodeficiency virus;
INR, international normalized ratio; OBGY, obstetric and gynecologic; PC, platelet concentrate; PLT, platelet;
PPE, postoperative pulmonary edema; PT, prothrombin time; PTE, pulmonary thromboembolism.

3.2. Model Performance

BRF exhibited the best performance for the prediction of PPE risk. As the primary
metric, the area under the receiver operating characteristic curve for BRF was 0.91 (95%
confidence interval: 0.84–0.98). The performances of the remaining models are summarized
in Figure 2. BRF also exhibited the best performance based on the average precision of the
precision-recall curve (0.44). The average precisions of the precision-recall curve for the
remaining models are summarized in Figure 3. BRF had the best recall (0.832) and f1 score
(0.372), whereas the light-gradient boosting machine model had the best precision (0.531)
and accuracy (0.946). The remaining metrics are summarized in Table 3.
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Table 3. Best threshold, precision, recall, f1 score, and accuracy values for each model.

Best Threshold Accuracy Precision Recall F1 Score

BRF 0.42 0.82
Normal 0.99 0.81 0.89

PPE 0.21 0.89 0.34

LGBM 0.048 0.72
Normal 0.98 0.72 0.83

PPE 0.14 0.80 0.24

XGB 0.353 0.76
Normal 0.98 0.77 0.86

PPE 0.14 0.66 0.23

MLP 0 0.93
Normal 0.95 0.98 0.96

PPE 0.07 0.03 0.04

LR 697.8 0.75
Normal 0.98 0.75 0.85

PPE 0.14 0.68 0.23
BRF, balanced random forest; LGBM, light-gradient boosting machine; XGB, extreme-gradient boosting machine;
MLP, multilayer perceptron; LR, logistic regression; PPE, postoperative edema.

3.3. Feature Importance

The evaluation of feature importance in the BRF model revealed that arterial line
monitoring was the most important feature. Ten major features in the BRF model are shown
in Figure 4.
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Figure 4. Ten major features of the balanced random forest model for prediction of postoperative pul-
monary edema risk. A-line, arterial line monitoring; ASA-PS, American Society of Anesthesiologists
physical status; EBL, estimated blood loss; Fluid, fluid administration; Foley, Foley catheter use; GFR,
glomerular filtration rate; Protein, protein level.

3.4. Validation of under-Sampling Test Dataset and Simplified Model

After under-sampling of the test dataset, PPE patients were 1896 and No-PPE patients
were 32,621. In the simplified prediction model, the included features were as follows:
arterial monitoring, American Society of Anesthesiologists physical status, age, urine
output, intraoperative fluid, estimated blood loss, foley catheter, anesthesia time, albumin,
glomerular filtration rate, central venous pressure monitoring, operation time, prothrombin
time, blood urea nitrogen, protein, creatinine, prothrombin time-international normalized
ratio, platelet, body mass index, and intraoperative packed red blood cell. Validation results
are summarized in Table 4.
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Table 4. Validation of the under-sampling test dataset and simplified model using balanced random
forest algorithm.

AUC
(95% CI)

Best
Threshold Accuracy Precision Recall F1 Score

After under sampling
0.911

(0.855–0.972) 0.42 0.83
Normal 0.99 0.82 0.90

PPE 0.22 0.89 0.36

Simplified model
0.901

(0.829–0.978) 0.44 0.82
Normal 0.99 0.81 0.89

PPE 0.21 0.88 0.34

AUC, area under curve; CI, confidence interval; PPE, postoperative pulmonary edema.

4. Discussion

We used ML to develop models for the prediction of PPE. Model training using data
from 221,908 patients was followed by model testing using data from 34,991 patients. Five
algorithms were used to develop the models, whereas six metrics were used to evaluate
their performances. BRF exhibited the best performance in terms of area under the receiver
operating characteristic curve, recall, and accuracy. However, no model had a good
precision or f1 score.

Numerous studies have developed ML models to predict postoperative pulmonary
complications. Peng et al. developed and validated a deep-neural-network model based on
combined natural language data and structured data to predict pulmonary complications
in geriatric patients [15]. Xue et al. developed an ML model to predict postoperative
pulmonary complications after emergency gastrointestinal surgery in patients with acute
diffuse peritonitis [18]. Chen and colleagues developed an ML model to predict postopera-
tive pneumonia in orthotopic liver transplant patients [14]. Although the outcomes of the
above studies included PPE, their findings differed from ours because they also assessed
other complications. An ML model to predict PPE risk after any type of surgery has not
been developed.

PPE has various causes, several of which can occur simultaneously. PPE may be
cardiogenic or noncardiogenic, but it is difficult to distinguish between these etiologies
because of their similar clinical features. In patients with acute myocardial infarction,
cardiogenic pulmonary edema may be complicated by noncardiogenic edema related to the
aspiration of gastric contents, syncope, or cardiac arrest. Conversely, in patients with severe
trauma or infections accompanied by noncardiogenic pulmonary edema, fluid resuscitation
may cause pulmonary edema through volume overload and increased pulmonary vascular
hydrostatic pressure [1,6,31]. Therefore, PPE prediction and the preemptive management
of risk factors are important.

The present study investigated the important features of the best model for the pre-
diction of PPE risk. Ten major PPE risk factors were included, primarily those related to
fluid and hydrostatic pressure rather than the other causes of PPE. This means that the
PPE prediction model could mainly predict cardiogenic and hydrostatic pulmonary edema.
However, the evidence is not conclusive because the etiologies of PPE in this study were
not known.

The most important feature was arterial line monitoring, which is required in pa-
tients who need continuous blood pressure monitoring or multiple blood sampling during
surgery [32]. Arterial line monitoring is the standard of care for patients at risk of rapid
hemodynamic changes. Patients with a poor preoperative status and those who undergo
major surgeries can develop rapid hemodynamic changes and often need multiple sam-
pling [33]. American Society of Anesthesiologists physical status and age also indicate
preoperative patient condition. Patients with high American Society of Anesthesiologists
physical status grades may develop heart, lung, kidney, and brain problems [34,35]. Old
age is generally associated with compromised organ function, resulting in a greater risk of
PPE [36]. Urine output, fluid volume, EBL, albumin, and glomerular filtration rate directly
and indirectly affect body fluid status, which is associated with hydrostatic pressure [37–41].
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To the best of our knowledge, our model is the first to predict PPE risk, and its
performance was better than the previous PPE models. However, the present study had
some limitations. First, the overall performance of the model was good, but its precision
and f1 scores were low, even for the best threshold. Because recall (sensitivity) was good,
the proportion of false positives may be high, presumably because of the low proportion of
patients with pulmonary edema in the overall dataset. Thus, our model interpreted the
normal state as PPE in many cases. There were similar results in the validation with the
under-sampling dataset. Second, our model requires many features to predict PPE, which
reduces its practicality. Although the performance was not significantly worse in the model
with twenty features, this limitation of the model could not be resolved. A prediction model
based on fewer features while maintaining the performance may be needed in the future.
To resolve the first two limitations, additional datasets should be acquired and learned,
or features with better predictive values should be selected. Third, our model could not
distinguish between cardiogenic and noncardiogenic PPE. Additional studies are needed
to develop models that can distinguish between the two PPE types and predict the risk of
each type.

In conclusion, we developed an ML model that could predict PPE risk in patients
undergoing surgery. The model was superior to previously reported prediction models for
postoperative pulmonary complications. Our ML model may improve clinical decision-
making, thereby enhancing postoperative management. However, further improvements
are needed to reduce the false positive rate and enhance the practical usefulness.
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