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Abstract: An accurate prediction of the hepatotoxicity associated with low-dose methotrexate can
provide evidence for a reasonable treatment choice. This study aimed to develop a machine learning-
based prediction model to predict hepatotoxicity associated with low-dose methotrexate and explore
the associated risk factors. Eligible patients with immune system disorders, who received low-dose
methotrexate at West China Hospital between 1 January 2018, and 31 December 2019, were enrolled. A
retrospective review of the included patients was conducted. Risk factors were selected from multiple
patient characteristics, including demographics, admissions, and treatments. Eight algorithms,
including eXtreme Gradient Boosting (XGBoost), AdaBoost, CatBoost, Gradient Boosting Decision
Tree (GBDT), Light Gradient Boosting Machine (LightGBM), Tree-based Pipeline Optimization Tool
(TPOT), Random Forest (RF), and Artificial Neural Network (ANN), were used to establish the
prediction model. A total of 782 patients were included, and hepatotoxicity was detected in 35.68%
(279/782) of the patients. The Random Forest model with the best predictive capacity was chosen to
establish the prediction model (receiver operating characteristic curve 0.97, accuracy 64.33%, precision
50.00%, recall 32.14%, and F1 39.13%). Among the 15 risk factors, the highest score was a body mass
index of 0.237, followed by age (0.198), the number of drugs (0.151), and the number of comorbidities
(0.144). These factors demonstrated their importance in predicting hepatotoxicity associated with
low-dose methotrexate. Using machine learning, this novel study established a predictive model for
low-dose methotrexate-related hepatotoxicity. The model can improve medication safety in patients
taking methotrexate in clinical practice.
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1. Introduction

Methotrexate (MTX), a folic acid antagonist that inhibits dihydrofolate reductase in the
S-phase cell cycle, was first developed as an anticancer treatment in the 1940s [1,2]. Since
the 1950s, MTX has been prescribed as an immunosuppressant for treating immune system
disorders, including rheumatoid arthritis, psoriasis, psoriatic arthritis, and inflammatory
bowel diseases [3]. The overall prevalence of rheumatoid arthritis is 0.24% to 1.1% [4–6].
Similarly, a population-based study in the United States found that psoriasis rates increased
significantly from 50.8 cases per 100,000 (from 1970 to 1974) to 100.5 cases per 100,000 (from
1995 to 1999) [7]. A worldwide review showed that the prevalence of psoriasis ranged from
0.5 to 11.4% in adults [8]. MTX is now recommended as a first- or second-line treatment for
many immune system diseases [9–15]. Although several biological agents have emerged for
immune system diseases in the last two decades, such as adalimumab [16], infliximab [17],
canakinumab [18], ustekinumab [19], and secukinumab [19], MTX is still widely used due
to its efficacy, low cost, and ease of administration. MTX can be administered orally or
subcutaneously as a weekly treatment regimen [11].

Due to lower doses of MTX, life-threatening adverse drug effects (ADE) are rarely
observed in MTX treatment for immune system diseases. However, severe ADEs can still
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occur, especially hepatotoxicity [20]. Abnormal serum levels of alanine aminotransferase
(ALT) or aspartate aminotransferase (AST) occurred in 23.47% (315/1342) of patients treated
for MTX-treated rheumatoid arthritis [21]. Liver enzyme abnormalities are the leading
cause of dose modification or discontinuation of MTX [22]. Furthermore, a systematic
review indicated that 33% of patients with psoriasis who received low-dose MTX had liver
disease progression, such as liver fibrosis [23]. Therefore, it is crucial to clarify the incidence
of liver ADE in MTX-treated patients. Risk factors can affect MTX therapies. These risk
factors include alcohol use, history of liver disease, obesity, type 2 diabetes, history of
significant exposure to hepatotoxic drugs or chemicals, lack of folate supplementation, and
hyperlipidemia [24,25]. However, current research lacks an assessment of the impact of
these risk factors. Furthermore, there is a lack of research exploring unknown risk factors
and establishing predictive models for hepatotoxicity associated with low-dose MTX.

Machine learning is one of the fastest-growing technical fields [26] and has been widely
used in medical fields, such as medical diagnosis and prediction of disease risks [27–29].
Machine learning can promote data-driven estimation when selecting multiple variables
and processing complex nonlinear relationships among multidimensional variables [30].
Therefore, machine learning can increase the precision of prediction models, especially for
analyzing large datasets with many variables [31,32]. The study aimed to compare eight
machine learning methods to identify the most optimal model to predict hepatotoxicity
and risk factors associated with low-dose MTX.

2. Materials and Methods
2.1. Study Setting and the Study Population

This retrospective study was conducted at the West China Hospital of Sichuan Univer-
sity, a large tertiary teaching hospital in China. This hospital uses an electronic medical
record (EMR) and bar code systems to document medication administrations. The study
inclusion criteria were (1) patients with immune system diseases and (2) treated with
low-dose MTX (≤30 mg per week) [33] during hospital stays at the West China Hospital of
Sichuan University. Patients who were treated with other doses of MTX were excluded.
The study period was from 1 January 2018 to 31 December 2019.

2.2. Data Extraction

A two-stage review process for medical records was conducted to identify the presence
of hepatotoxicity. In the first stage, two trained clinical pharmacists (Hu and Wang) inde-
pendently reviewed each medical record for the presence of hepatotoxicity. The following
sections of the charts were reviewed: basic patient information, diagnostic and progress
notes, medication charts, laboratory data, surgical records, nursing flow sheets, and ad-
mission and discharge documents. In the second stage, a physician reviewed all medical
records identified in the first stage to determine the presence of hepatotoxicity. Disagree-
ments were resolved through a team discussion. Because the clinical interventions usually
preceded patients reaching clinical diagnostic criteria of drug-induced liver injury [34],
hepatotoxicity was defined as elevated liver enzymes > 1.25 of the upper limits of normal
(ULN) and outcomes of liver failure, fibrosis, cirrhosis, or death. The hospital standard
cut-off values for ALT are 40 IU/L for women and 50 IU/L for men. AST values are 35 IU/L
for women and 40 IU/L for men. Alkaline phosphatase (ALP) values are 135 IU/L for
women and 160 IU/L for men. Data collection was carried out from September 2020 to
January 2021.

Based on data from included patients’ records, risk factors were screened from multiple
patient characteristics to establish a prediction model. Specifically, the following variables
were documented: age, gender, height, weight, alcohol use, history of liver diseases
(hepatitis B, hepatitis C, and nonalcoholic fatty liver disease), admission, discharge, blood
lipid level, antibiotics, other immunosuppressive agents, and Chinese patent medicines.
The scores of all risk factors were calculated using the machine learning method and
represented by a ranking figure. The factor with a higher score had a more significant
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impact on the occurrence of hepatotoxicity. Factors with a score of zero were removed
because they did not affect the prediction. A Shapley Additive Explanations (SHAP) figure
demonstrated the positive or negative correlations between risk factors and hepatotoxicity.
Risk factors with a large sample size would affect their impact on the SHAP figure. The
SHAP figure was developed by using Python software (version 3.7, Python Software
Foundation, Wilmington, DE, USA)

2.3. Model Development

Missing data were imputed using the missForest method, and variables with more than
30% missing data were discarded [35]. Patients included were randomly stratified (8:2) into
the training set for modeling development and the testing set to evaluate the performance
of the models. Using the selected risk factors as covariates, eight machine-learning models
were established and analyzed using algorithms including eXtreme Gradient Boosting
(XGBoost), AdaBoost, CatBoost, Gradient Boosting Decision Tree (GBDT), Light Gradient
Boosting Machine (LightGBM), Tree-based Pipeline Optimization Tool (TPOT), Random
Forest (RF), and Artificial Neural Network (ANN). The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, representing the overall ability to classify
and predict, is considered the primary metric for evaluating and comparing models. The
accuracy, precision, sensitivity, specificity, recall, F1 scores, and average precision (AP) of
precision-recall curve were also calculated. These metrics were used to assess the model
performance comprehensively. The best-performing model was selected to establish a
hepatotoxicity prediction model associated with low-dose MTX. The missForest method
and machine learning models were developed and validated with open-source packages in
Python software (version 3.7).

2.4. Statistical Analysis

Categorical variables were summarized using frequency counts and percentages, and
continuous variables were presented as means with standard deviations (SD) or medians
with ranges. Comparisons between the training set and the testing set were made using
the nonparametric Mann–Whitney U test for continuous variables and the χ2 test for
categorical variables. By convention, p values of less than 0.05 were considered statistically
significant. These analyses were performed using the SPSS 25.0 software (IBM Information
Management, Chicago, IL, USA).

3. Results
3.1. Study Population

A total of 2080 medical records were registered in the cohort during the study period,
and 782 patients were enrolled in this study. The following patients were excluded: 171 had
duplicate records, 588 were on high-dose MTX, and 539 had low-dose MTX as discharge
medication (Figure 1). Among the patients enrolled, the mean age was 47.85 ± 15.56 years
(range from 10 to 87 years), and the females represented 54.99% (430/782). The average
body mass index (BMI) was 22.72 ± 3.91 kg/m2 (range from 13.27 to 41.14 kg/m2). A
total of 279 (35.68%) patients experienced hepatotoxicity. Among these variables analyzed,
BMI had 53 missing data points (6.78%) imputed using the missForest method. There
was no significant difference between the processed data and the original data. The
enrolled patients were divided into training and testing sets in a ratio of 8:2, with 625 and
157 patients, respectively. There were no significant differences in any variables between
the training and testing sets (p > 0.05) (Table 1).
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Table 1. The characteristics of patients.

Variable Total
(n = 782)

Training Set
(n = 625)

Testing Set
(n = 157) p

Hepatotoxicity
Yes 279 223 56

1.00No 503 402 101
Gender

Male 352 281 71
1.00Female 430 344 86

Age (years) 47.85 ± 15.56
(10–87)

47.67 ± 15.63
(14–78)

48.58 ± 15.33
(10–87) 0.40

First time taking MTX
Yes 501 400 101

1.00No 272 225 56

Body mass index *
(kg/m2)

Original data
729 586 143

22.72 ± 3.91
(13.27–41.14)

22.78 ± 3.94
(13.27–41.14)

22.45 ± 3.77
(13.74–37.13) 0.71

Processed data
22.68 ± 3.81
(13.27–41.14)

22.77 ± 3.86
(13.27–41.14)

22.38 ± 3.23
(13.74–37.13) 0.37

Alcohol use
Yes 164 130 34

0.83No 618 495 123
History of kidney disease

Yes 6 5 1
1.00No 776 620 156

History of liver disease
Yes 32 23 9

0.26No 750 602 148
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Table 1. Cont.

Variable Total
(n = 782)

Training Set
(n = 625)

Testing Set
(n = 157) p

Number of comorbidities 4.98 ± 2.97
(1–17)

4.90 ± 2.90
(1–17)

5.28 ± 3.23
(1–16) 0.69

Type 2 diabetes
Yes 69 59 10

0.27No 713 566 147
Hyperlipidemia

Yes 41 30 11
0.32No 741 595 146

Folate supplementation
Yes 723 575 148

0.40No 59 50 9

Doses of folic acid/week 9.19 ± 3.33
(0–35)

9.16 ± 3.39
(0–35)

9.29 ± 3.07
(0–15) 0.05

NSAIDs use
Yes 276 231 45

0.06No 506 394 112
Glucocorticoid use

Yes 441 350 91
0.72No 341 275 66

Antibiotics use
Yes 153 117 36

0.26No 629 508 121
Other

immunosuppressive
agent use

Yes 446 351 95
0.37No 336 274 62

Number of medications 5.91 ± 2.93
(0–24)

5.97 ± 2.93
(0–24)

5.67 ± 2.92
(0–18) 0.92

Chinese patent medicines
use
Yes 68 56 12

0.75No 714 569 145
*: The difference between processed data and original data was not statistically significant (p values were 0.88,
0.94, and 0.87 in the total, training set, and testing set, respectively). NSAID: non-steroidal anti-inflammatory
drugs.

3.2. Model Performance

The visual comparisons of the eight models in the total population are shown in
Figure 2, including the precision-recall and the ROC curves. Random Forest achieved the
highest AUC of 0.97, followed by XGboost (AUC = 0.94), Catboost (AUC = 0.91), LightGBM
(AUC = 0.87), and TPOT (AUC = 0.78). The ROC curves of Adaboost, ANN, and GBDT were
low, only 0.69, 0.65, and 0.53, respectively. The precision, accuracy, sensitivity, specificity,
recall, and F1 values of the eight models are shown in Table 2.

Table 2. Model performance.

Models Precision Accuracy Sensitivity Specificity Recall F1

LightGBM 40.00% 59.87% 25.00% 20.79% 25.00% 30.77%
GBDT 50.94% 59.24% 41.07% 30.69% 41.07% 41.82%

Adaboost 51.35% 64.33% 33.93% 17.81% 33.93% 40.86%
Catboost 42.86% 60.51% 32.14% 23.76% 32.14% 36.73%
XGboost 43.18% 60.51% 33.93% 24.75% 33.93% 38.00%

Random Forest 50.00% 64.33% 32.14% 17.82% 32.14% 39.13%
TPOT 43.90% 61.15% 32.14% 22.77% 32.14% 37.11%
ANN 36.36% 62.42% 7.14% 6.93% 7.14% 11.94%
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Adaboost and Random Forest had the highest accuracy (64.33%). Adaboost had the
highest precision value (51.35%), followed by GBDT (50.94%). GBDT had the highest
sensitivity value (41.07%), followed by Adaboost (33.93%) and XGboost (33.93%). GBDT
had the highest specificity value (30.69%), followed by XGboost (24.75%). GBDT had the
highest recall value (41.07%), followed by Adboost (33.93%) and XGboost (33.93%). GBDT
had the highest F1 value (41.82%), followed by Adaboost (40.86%). These results showed
that Adaboost had slight advantages in precision and accuracy with good recall, sensitivity,
and F1 values. Adaboost had a significantly lower AUC than Random Forest (0.69 versus
0.97). After general consideration of the prediction performance, Random Forest was
selected to predict the hepatotoxicity associated with low-dose MTX.

3.3. Hepatotoxicity and Risk Factors

A total of 279 patients experienced hepatotoxicity, with an incidence rate of 35.68%.
The importance score ranking in the Random Forest model is shown in Figure 3. Importance
scores were above zero for all risk factors, indicating that they had a greater or lesser impact
on prediction. Among risk factors, the highest score was BMI (0.237), followed by age
(0.198), number of drugs (0.151), and number of comorbidities (0.144), demonstrating their
importance in hepatotoxicity associated with low-dose MTX.
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The SHAP values of the risk factors are shown in Figure 4. When analyzed by the
following risk factors (the number of comorbidities, the number of drugs, the use of
antibiotics, male gender, the use of alcohol, infectious liver disease, dyslipidemia, and
the history of kidney disease). The color of the dot became redder as the SHAP value
increased. The color was bluer when the SHAP value decreased. The color changes showed
degrees of the positive impact of these factors on the risk of hepatotoxicity. In contrast, risk
factors, including BMI and doses of folic acid, showed negative effects. Type 2 diabetes,
taking MTX for the first time, other immunosuppressive agents, age, and Chinese patent
medicines showed unclear influence.
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4. Discussion

An effective prediction model is necessary to prevent the hepatotoxicity associated
with low-dose MTX. In real-world studies, the variables are not independent but are related
nonlinearly. Multivariate analysis methods are challenging for capturing complex rela-
tionships. Therefore, we innovatively attempted to apply machine-learning methods that
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can capture nonlinear relationships between variables. Machine learning can explore risk
factors and establish a prediction model for hepatotoxicity associated with low-dose MTX
through data learning. Our retrospective study analyzed 15 risk factors for hepatoxicity.
The BMI with missing data was imputed using the missForest method, which has been
shown to successfully handle missing values, particularly in data sets that include different
variables [35]. The results did not show significant differences between the processed and
original data.

The eight machine learning methods, including XGBoost, AdaBoost, CatBoost, GBDT,
LightGBM, TPOT, RF, and ANN, were applied to establish a prediction model. In these
methods, the XGBoost, AdaBoost, CatBoost, GBDT, and LightGBM are boosting algorithms
in machine learning. GBDT can combine the predictions from multiple decision trees
to generate the final predictions, while it can hardly be adapted to dynamic online data
generation, and it tends to be ineffective when facing sparse categorical features [36].
The working procedure of XGBoost is the same as GBDT. XGBoost includes a variety of
regularization techniques that can reduce overfitting and improve overall performance,
which makes XGBoost slightly better than GBDT. LightGBM is a fast, distributed, high-
performance gradient-boosting framework based on a decision tree algorithm. LightGBM
uses a histogram-based algorithm, i.e., it buckets continuous feature values into discrete
bins that fasten the training procedure [37]. CatBoost is also based on GBDT and has the
following two innovations: ordered target statistics and ordered boosting [38]. Therefore,
CatBoost works well with the default set of hyperparameters, and the users do not have
to spend a lot of time tuning the hyperparameters [38]. Adaboost is relatively robust to
overfitting in low-noise datasets. While it is easily defeated by noisy data, the efficiency
of the algorithm is highly affected by outliers as the algorithm tries to fit every point
perfectly [39]. Random Forest is a bagging algorithm that uses bootstrap aggregation of
multiple regression trees to reduce the risk of overfitting and combine the predictions of
many trees to produce more accurate predictions [40]. Therefore, Random Forest has a good
classification effect for most data. TPOT can automatically optimize feature transformation,
feature selection, feature construction, model selection, and parameter optimization via
genetic programming using a tree-based structure [41]. The design of ANNs is based on
the human brain’s neural network. Neurons in the different layers have their own missions
to solve problems, which can be analogous to factory production lines [42]. As a type of
parallel distributed system driven by mass data, ANNs are free from the requirements of
logical or mathematical associations known beforehand [42].

The performance of different machine learning algorithms should be based on the
characteristics of the dataset. Therefore, the choice of models should be based on the
calculation results. The results showed that these machine algorithms performed well,
especially the Random Forest. The Random Forest showed that its AUC was 0.97. The
accuracy and precision were 64.33% and 50.00%, respectively. Both the recall and the F1
scores were satisfactory. Random Forest outperformed other models selected to build the
prediction model for hepatotoxicity associated with low-dose MTX.

Analysis of risk factors showed that all 15 variables helped predict low-dose MTX-
related hepatotoxicity. The top ten significant risk factors included BMI, age, number of
drugs and comorbidities, doses of folic acid, antibiotic use, gender, immunosuppressive
agents, taking MTX for the first time, and alcohol use, suggesting physicians should
pay more attention to these factors and take the corresponding prevention measures.
BMI was considered the most critical risk factor, which had a negative relationship with
hepatotoxicity, demonstrating that patients with lower BMI were more likely to experience
hepatotoxicity. Therefore, the dose of MTX should be individualized based on height and
weight to avoid hepatoxicity. Male gender was also identified as an important risk factor in
our study. However, the causal relationship between gender and hepatotoxicity associated
with low-dose MTX remains controversial [43,44] and requires further research.

The importance of the number of drugs, the number of comorbidities, and the use
of antibiotics was also confirmed. As the primary organ for drug metabolism, the liver
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is more vulnerable to damage by drugs, active metabolites, or drug interactions [45–47].
Multiple drug treatments and comorbid diseases can increase the risks of polypharmacy,
drug interactions, and even medication errors [48,49], increasing the risk of hepatotoxicity.
Antibiotics are the most common cause of liver damage [50]. However, the potential for
liver injury caused by antibacterial drugs was underestimated [51]. Several real-world
studies showed that antibiotic-induced liver injury ranged from 13.5% to 65% [52–54].
Therefore, to avoid hepatotoxicity during MTX therapy, simplifying treatment regimens
should be an important measure for the benefit of patients.

Alcohol consumption is well known to harm the liver, particularly in excess [55]. The
American College of Rheumatology and the British Society of Rheumatology recommend
limiting alcohol intake for patients on MTX treatment [56,57]. Similarly, we found a
positive relationship between alcohol use and hepatotoxicity associated with low-dose
MTX. Although the importance score for alcohol consumption was not high in this study
due to the relatively small number of patients who drank alcohol, we still recommend
limiting or avoiding alcohol intake.

Supplementation with folic or folinic acid during MTX treatment can ameliorate ADEs.
Worldwide guidelines currently support the coadministration of folic acid with MTX. The
recommended doses range from 0.5 to 2 mg per day [57,58]. However, several studies have
suggested that high-dose folinic acid supplementation may reduce the beneficial effects of
MTX [59–61]. In our study, patients taking high-dose folic acid had a high risk of liver injury.
Among patients taking more than 15 mg of folic acid a week, the incidence of liver injury
was 41.94%. In contrast, the incidence of liver injury in patients taking 5–10 mg/week was
only 34.54%. Furthermore, 59 patients in this study did not take folic acid during MTX
treatment, and their liver injury rate was up to 45.76%. Therefore, we recommend daily
supplementation with folic acid during MTX treatment.

Metabolic syndrome is a biochemical and clinical condition characterized by visceral
obesity, dyslipidemia, hyperglycemia, and hypertension [62,63]. Disorders associated
with metabolic syndrome can be significant risk factors for fibrosis and the progression
of liver damage. Type 2 diabetes contributed to the biological processes that drove the
severity of nonalcoholic fatty liver disease, which was the leading cause of developing
chronic liver diseases [64,65]. Several studies showed that nonalcoholic steatohepatitis and
hyperlipidemia contributed to MTX hepatotoxicity in patients with psoriasis [43,66]. These
were consistent with our results that type 2 diabetes and hyperlipidemia were significant
risk factors for hepatotoxicity associated with low-dose MTX.

Hepatitis B and hepatitis C can cause liver damage, increasing the risk of liver toxicity
and even liver fibrosis and cirrhosis in patients taking MTX [67]. Infectious liver disease
was one of the important risk factors for hepatotoxicity in this study, while its importance
score was not high. The reason might be that patients with infectious liver disease were
only 4.1% of the study sample. For health and safety reasons in China, many physicians
choose other alternative treatments for patients with infectious liver disease instead of
MTX. Similarly, only six patients had a history of kidney disease in this study. Therefore,
the importance score for the history of kidney disease was low.

Our study has the following limitations (1) knowledge about specific risk factors is
still lacking in this study. Although factors such as taking MTX for the first time, other
immunosuppressive agents, age, and Chinese patent medicines affected the occurrence
of hepatotoxicity, the direction of influence of these factors was unclear. These factors
could be influenced by other factors, such as drug regimens (the number of drugs and drug
interactions), gender, and BMI; (2) the sample size was small. Future studies should include
more patient data from different health care centers; (3) long-term studies are required to
verify the association of these risk factors with liver fibrosis or cirrhosis.

5. Conclusions

Machine learning can be applied to establish the prediction model for low-dose
hepatotoxicity associated with MTX. The model can help to improve medication safety in
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patients taking methotrexate in clinical practice. However, due to the above limitations,
further studies are required to test our findings.
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28. Gunčar, G.; Kukar, M.; Notar, M.; Brvar, M.; Černelč, P.; Notar, M.; Notar, M. An application of machine learning to haematological

diagnosis. Sci. Rep. 2018, 8, 411. [CrossRef]
29. Qiu, H.; Yu, H.Y.; Wang, L.Y.; Yao, Q.; Wu, S.N.; Yin, C.; Fu, B.; Zhu, X.J.; Zhang, Y.L.; Xing, Y.; et al. Electronic health record

driven prediction for gestational diabetes mellitus in early pregnancy. Sci. Rep. 2017, 7, 16417. [CrossRef]
30. Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [CrossRef]
31. Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying

machine learning to address analytic challenges. Eur. Heart J. 2017, 38, 1805–1814. [CrossRef] [PubMed]
32. Meyer, A.; Zverinski, D.; Pfahringer, B.; Kempfert, J.; Kuehne, T.; Sündermann, S.H.; Stamm, C.; Hofmann, T.; Falk, V.; Eickhoff,

C. Machine learning for real-time prediction of complications in critical care: A retrospective study. Lancet Respir. Med. 2018,
6, 905–914. [CrossRef] [PubMed]

33. Mazaud, C.; Fardet, L. Relative risk of and determinants for adverse events of methotrexate prescribed at a low dose: A systematic
review and meta-analysis of randomized placebo-controlled trials. Br. J. Dermatol. 2017, 177, 978–986. [CrossRef] [PubMed]

34. Chalasani, N.P.; Maddur, H.; Russo, M.W.; Wong, R.J.; Reddy, K.R.; Practice Parameters Committee of the American College
of Gastroenterology. ACG Clinical Guideline: Diagnosis and Management of Idiosyncratic Drug-Induced Liver Injury. Am. J.
Gastroenterol. 2021, 116, 878–898. [CrossRef]

35. Stekhoven, D.J.; Buhlmann, P. MissForest–nonparametric missing value imputation for mixed-type data. Bioinformatics 2012,
28, 112–118. [CrossRef]

36. Zhang, Z.; Jung, C. GBDT-MO: Gradient-Boosted Decision Trees for Multiple Outputs. IEEE Trans. Neural Netw. Learn. Syst. 2021,
32, 3156–3167. [CrossRef]

37. Zhu, J.; Su, Y.; Liu, Z.; Liu, B.; Sun, Y.; Gao, W.; Fu, Y. Real-time biomechanical modelling of the liver using LightGBM model. Int.
J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2433. [CrossRef]

38. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [CrossRef]
39. Wang, C.; Xu, S.; Yang, J. Adaboost Algorithm in Artificial Intelligence for Optimizing the IRI Prediction Accuracy of Asphalt

Concrete Pavement. Sensors 2021, 21, 5682. [CrossRef]
40. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://doi.org/10.1200/JCO.2015.66.0761
http://www.ncbi.nlm.nih.gov/pubmed/27161966
http://doi.org/10.1056/NEJMoa1614160
http://doi.org/10.1136/ard.59.6.428
http://doi.org/10.1111/ced.12759
http://doi.org/10.1002/art.1780380904
http://doi.org/10.1136/ard.2008.101378
http://www.ncbi.nlm.nih.gov/pubmed/19147616
http://doi.org/10.1016/j.jbspin.2010.02.024
http://www.ncbi.nlm.nih.gov/pubmed/20471892
http://doi.org/10.1016/0002-9343(91)90667-M
http://www.ncbi.nlm.nih.gov/pubmed/1828327
http://doi.org/10.1016/j.jaad.2008.11.906
http://www.ncbi.nlm.nih.gov/pubmed/19389524
http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://doi.org/10.1038/nature21056
http://doi.org/10.1038/s41598-017-18564-8
http://doi.org/10.1038/s41598-017-16665-y
http://doi.org/10.1161/CIRCULATIONAHA.115.001593
http://doi.org/10.1093/eurheartj/ehw302
http://www.ncbi.nlm.nih.gov/pubmed/27436868
http://doi.org/10.1016/S2213-2600(18)30300-X
http://www.ncbi.nlm.nih.gov/pubmed/30274956
http://doi.org/10.1111/bjd.15377
http://www.ncbi.nlm.nih.gov/pubmed/28182264
http://doi.org/10.14309/ajg.0000000000001259
http://doi.org/10.1093/bioinformatics/btr597
http://doi.org/10.1109/TNNLS.2020.3009776
http://doi.org/10.1002/rcs.2433
http://doi.org/10.1186/s40537-020-00369-8
http://doi.org/10.3390/s21175682
http://doi.org/10.1023/A:1010933404324


J. Clin. Med. 2023, 12, 1599 12 of 13

41. Wang, G.; Sun, Y.; Chen, Y.; Gao, Q.; Peng, D.; Lin, H.; Zhan, Z.; Liu, Z.; Zhuo, S. Rapid identification of human ovarian cancer in
second harmonic generation images using radiomics feature analyses and tree-based pipeline optimization tool. J. Biophotonics
2020, 13, e202000050. [CrossRef]

42. Cao, B.; Zhang, K.C.; Wei, B.; Chen, L. Status quo and future prospects of artificial neural network from the perspective of
gastroenterologists. World J. Gastroenterol. 2021, 27, 2681–2709. [CrossRef] [PubMed]

43. Yeo, C.M.; Chong, V.H.; Earnest, A.; Yang, W.L. Prevalence and risk factors for methotrexate hepatoxicity in Asian patients with
psoriasis. World J. Hepatol. 2013, 5, 275–280. [CrossRef] [PubMed]

44. Amital, H.; Arnson, Y.; Chodick, G.; Shalev, V. Hepatotoxicity rates do not differ in patients with rheumatoid arthritis and
psoriasis treated with methotrexate. Rheumatology 2009, 48, 1107–1110. [CrossRef] [PubMed]

45. Sanoh, S. In Vitro and in Vivo Assessments of Drug-induced Hepatotoxicity and Drug Metabolism in Humans. Yakugaku Zasshi
2015, 135, 1273–1279. [CrossRef]

46. Ballet, F. Hepatotoxicity in drug development: Detection, significance and solutions. J. Hepatol. 1997, 2, 26–36. [CrossRef]
[PubMed]
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