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Abstract: Background: In the process of mechanical ventilation, the problem of patient-ventilator
asynchrony (PVA) is faced. This study proposes a self-developed remote mechanical ventilation
visualization network system to solve the PVA problem. Method: The algorithm model proposed
in this study builds a remote network platform and achieves good results in the identification of
ineffective triggering and double triggering abnormalities in mechanical ventilation. Result: The
algorithm has a sensitivity recognition rate of 79.89% and a specificity of 94.37%. The sensitivity
recognition rate of the trigger anomaly algorithm was as high as 67.17%, and the specificity was
99.92%. Conclusions: The asynchrony index was defined to monitor the patient’s PVA. The system
analyzes real-time transmission of respiratory data, identifies double triggering, ineffective triggering,
and other anomalies through the constructed algorithm model, and outputs abnormal alarms, data
analysis reports, and data visualizations to assist or guide physicians in handling abnormalities,
which is expected to improve patients’ breathing conditions and prognosis.

Keywords: patient-ventilator asynchrony; ICU mechanical ventilation; remote network platform;
double triggering; ineffective triggering

1. Introduction

Mechanical ventilation (MV), which more than one-third of patients in the intensive
care unit (ICU) receive, is the most important form of respiratory support for critically ill
patients [1]. Patient-ventilator asynchrony (PVA), defined as a mismatch between demands
of the patient respiratory system and the ventilator, is very common during mechanical
ventilation [2,3]. PVA often brings a series of adverse effects, including discomfort, air
hunger, increased respiratory effort, muscle injury, decreased sleep quality, and increased
sedation or muscle relaxant demands, which can lead to aggravation of ventilator-related
lung injury, prolonged mechanical ventilation, difficulty in weaning, and even increased
mortality [4–7]. Timely recognition and treatment of PVA will improve patient comfort
and, potentially, outcomes. The incidence of PVA may be largely underestimated due to in-
adequate monitoring or inexperience of physicians [8]. To improve the recognition of PVA,
we developed a remote mechanical ventilation visualization network system and, simulta-
neously, a related automatic recognition algorithm for PVA. The system can accurately and
quickly identify several types of PVA in real time, provide real-time feedback through the
cloud platform, and, finally, form a report of mechanical ventilation for clinical reference.
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2. Materials and Methods
2.1. Design Framework

Aiming at the above problems, this study proposes a remote monitoring (Remote-
VentilateView) platform for ICU mechanical ventilation. The Remote-VentilateView plat-
form architecture is mainly divided into three layers: the data source layer, the data
processing layer, and the data application layer, as shown in Figure 1. The data source
layer, located at the base of the architecture, is the data source of the overall architecture
and is responsible for importing, desensitizing, encrypting, compressing, and forwarding
the original data of the ventilator. The data processing layer is the core layer of the overall
architecture and the key to embodying data intelligence. This layer mainly uses cloud
computing for big data processing of massive ventilator data. The data on the ventilator
are summarized, sorted, stored, parsed, and restored on the cloud platform. After that,
data will be cleaned, segmented, and aggregated. The data application layer is the link
that directly reflects the value and application side of the data. It can aggregate a variety of
ventilator data for centralized visual display. It is a comprehensive evaluation of long- and
short-term data to generate a dynamic detection report.
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The specific process is that the real-time data generated by the patient are transmitted
to the Remote-VentilateView platform server through the ventilator, Data Transfer Unit
(DTU, Jinan Usr IOT Technology Limited), switch, desensitization encryption server, and
Virtual Private Network (VPN). To improve the security of data transmission, ventilator
data are transmitted through the VPN and provide security protection capabilities through
security gateways, firewalls, intrusion detection and prevention systems (IDPS), and other
equipment. The Remote-VentilateView platform can store data and perform data classifica-
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tion, data analysis, and other processing, providing data support for event alarms, data
analysis reports, data visualization and other data applications.

This study takes severe mechanical ventilation as a practical application scenario and
uses the Remote-VentilateView platform to practically solve the most common patient-
ventilator asynchrony problem in mechanical ventilation—the identification and alarm of
double triggering and ineffective triggering.

2.2. Software and Hardware Equipment

The ventilator models involved in this study include Mindray-SV300 (Shenzhen Min-
dray Bio-Medical Electronics Co., Ltd.), Mindray-SV800 (Shenzhen Mindray Bio-Medical
Electronics Co., Ltd.), Vyaire-TBird (Vyaire Medical Products (Shanghai) Co., Ltd.), Covi-
dien Puritan Benett 840 (Covidien (China) Medical Devices Technology Co., Ltd.), Maquet
Servo-s (Maquet (Shanghai) Medical Equipment Co., Ltd.), and other common ventilators
on the market. The pressure (Paw)/time waveform, flow rate (flow)/time waveform, vol-
ume (volume)/time waveform, etc., displayed by the ventilator are stored in the database
as raw data. The sampling frequency of data is 50 Hz, the unit of Paw is cmH2O, the unit
of flow is L/min, and the unit of volume is mL. The DTU involved in this study is the
USR IOT-G771/G781, and the data transmission method adopts 4G wireless transmission
communication and RS232 communication. The front-end PC involved in this research is
configured as CPU: 4 cores and 8 threads, main frequency 2.8 GHz; memory: 16 G; hard
disk: 256 G. The operating systems involved in this study are CentOs-7.5 and Ubuntu-18.04.

Alibaba/China Mobile Cloud is the cloud computing service provider involved in
this study. Other cloud computing services include MySQL, TableStore/Hbase, Nginx,
Redis, Object Storage Service, Kafka, MQTT, firewall, load balancing, etc. The development
languages involved in this research are Java-1.8, Python3.8, and TypeScript-3.9, and the
components include OpenVPN-2.5, OpenSSL-3.0, Spring Cloud-1.0, Spring Boot-2.2, Vue-
2.0, Numpy-1.23, Pandas-1.5, etc.

2.3. Data Source Processing and Data Labeling

We extracted historical data or real-time data, and performed data preprocessing,
including, but not limited to, data normalization (Z-score normalization, Min-max nor-
malization, normalization, etc.), data cleaning (data smoothing, denoising, etc.), and data
labeling. The purpose of data normalization is to eliminate the differences between features
to facilitate data analysis and comparison and balance the weights learned by algorithms.
Data cleaning filters the noise of original data to obtain higher-quality data. Data noise
affects the accuracy of the algorithm recognition results.

The purpose of data annotation is to help machine learning algorithms to learn data
features. At present, most of the data are raw data without labels; to obtain labeled
data, some data need to be labeled. The data and the corresponding labels constitute a
labeled dataset, which can be used for model training and model evaluation of supervised
learning algorithms.

Users can obtain historical data from the annotation service of the Remote-VentilateView
platform every day and visualize it with optional lengths such as 1 min and 3 min. Res-
piratory specialists manually annotate the data, and annotations are divided into point
annotation, event annotation, and whole segment annotation, which correspond to the
patient-ventilator asynchrony annotation corresponding to the single time point, the start
and end of the event, and the whole annotation of a segment. The annotation type supports
ineffective triggering, double triggering, and other types of patient-ventilator asynchrony,
such as delayed switching and flow insufficient.

2.4. Construction of the Remote Network

Each piece of hospital equipment is connected to the Remote-VentilateView platform
through a data communication link, which consists of three parts: business cluster, commu-
nication cluster, and data support cluster. Data desensitization refers to the transformation
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of some sensitive information through desensitization rules to achieve reliable protection
of sensitive private data. Data encryption refers to the transformation of plaintext into
ciphertext through encryption algorithms and encryption keys. It is a reliable method for
computer systems to protect information. In view of the protection of data privacy, the
platform will desensitize and encrypt sensitive patient data to maximize the protection of
patient privacy. The Remote-VentilateView platform is connected to massive data devices
or databases and can perform analysis and processing in real time, discover high-risk data,
issue event alarms, remind medical staff to intervene quickly, and automatically generate
electronic data analysis reports and visualize real-time respiratory waveforms. The Remote-
VentilateView platform reminds clinicians in real time through the alarm function, strives
for early identification of abnormal patient-ventilator asynchrony events, and optimizes
mechanical ventilation treatment.

2.5. Statistical Methods

Sensitivity, also known as the true positive rate, is the ability of the model algorithm
to identify abnormal data. The higher the sensitivity, the lower the probability of missed
diagnosis. Specificity, also known as the true negative rate, is the probability that the model
algorithm recognizes “normal” data in normal data. The higher the specificity, the lower
the misdiagnosis rate. Positive predictive value is the probability that the model is correct
in predicting all outcomes for which the predicted outcome is positive. Negative predictive
value is the probability that the model predicts incorrectly for all outcomes for which the
predicted outcome is negative. This study mainly focused on ineffective triggering and
double triggering. In this study, manual annotation is used as the gold standard for model
training and model validation, and the results of the recognition algorithm are compared
with manual annotation.

3. Result
3.1. Data Source Layer Construction

The equipment mainly involved in this study includes ventilators, routers, DTUs,
network cables, switches, gateways, servers, etc. The main communication methods used
by the ventilator of this platform are serial and network communication.

As shown in Figure 2, the ventilator is connected to the switch or router through
wired transmission, WIFI, mobile network, and other wireless transmissions through
DTU, network cable direct connection, serial port to network cable, etc. At present, most
ventilators have a real-time transmission function. In this case, the ventilator can use the
wired network in the hospital to transmit data to the Remote-VentilateView platform in real
time. Traditional ventilators do not support real-time transmission. In this case, you need
to connect the ventilator through serial communication by DTU and use DTU’s wired and
wireless connection to the superior switch and router to realize the Remote-VentilateView
platform connection.

The ventilator data transmitted by DTU can be sent to the Remote-VentilateView
platform by the front-end machine or the server in the hospital via the network. As a
network conversion device, the front-end computer is managed by the hospital and can be
used to deploy visualization monitoring, event alarms, dynamic reports, and other intranet
application services separately in the hospital network. Data desensitization services shall
be deployed on front-end computers and hospital servers to avoid exposing patient privacy,
and then security components, such as VPN and firewall, to prevent potential security risks
such as data leakage and data tampering will be deployed.
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3.2. Data Processing Layer

The data processing layer relies on the distributed CAP (Consistency, Availability,
Partition Tolerance) theory and uses stream processing, Subscribers/Publishers (Sub/Pub)
services, MapReduce, consistency/locality-sensitive hash, and other technologies to ana-
lyze massive ventilator waveforms. Data analysis, data standardization, data cleaning, data
labeling, event alarms, data analysis reports, and data visualization are output through
the algorithm model, as shown in Figure 3. The process of data standardization is very
important because different brands of ventilators often have different data formats. After
parsing and decompressing the datagram transmitted over the network, the ventilator data
waveform is reconstructed. Data standardization is used to unify the features to better
train a machine learning algorithm. Data cleaning is performed using machine learning
methods such as range constraints, mean/median filling, and anomaly detection. Machine
learning algorithms have better learning effects on labeled data, but the original data of
ventilators are unlabeled, so this study professionally labeled certain data. The processed
data are distributed and converted according to actual business needs, provided to doctors,
nurses, and analysts, and displayed in the form of event alarms, data analysis reports,
visualization, etc. A feedback loop is provided at the same time, allowing us to save, modify,
and mark the history of event alarm and ventilator waveform/numerical parameters. Data
export, scientific research software import, etc., are provided for scientific research and the
experimental needs of mechanical ventilation.

The patient-ventilator asynchrony anomalies we focus on are double triggering and
ineffective triggering. The data in the database include created time, Paw, flow, volume,
ventilation mode, PEEP configuration, etc. Among them, Paw, flow, and volume are
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waveform data related to time. Some parts of data fed into the algorithm model are the
main dependent data for judging the event alarm.
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The discriminant rule for double triggering is that the volume–time curve falls verti-
cally to the baseline; there is no expiratory waveform between two ventilations, or there is
an expiratory phase, and the expiratory time is less than half of the average inspiratory time.

The judgment rule for ineffective triggering is to identify the “flow rate deflection”
characteristic of the expiratory flow velocity curve that first rises and then falls by cal-
culating the first derivative function curve of the expiratory flow–time curve and then
determining the local maximum and minimum values. The time position of the value
corresponds to the flow rate value. When the amplitude (maximum value–minimum value)
of “flow velocity deflection” is greater than the set threshold (5 L/min) and the time of
“flow velocity deflection” (the time interval between the maximum value and the minimum
value) is greater than the preset value threshold (0.12 s), the algorithm recognizes this “flow
rate deflection” as an ineffective triggering event.

3.3. Patient Identification

As shown in Figure 4, (a) is a typical waveform diagram of double triggering, and
(b) is a typical waveform diagram of ineffective triggering. Double triggering refers to
two consecutive ventilator cycles with an expiratory time less than half of the average
inspiratory time [2]. Double triggering is characterized by incomplete exhalation between
breaths, followed by a rapid increase in the second flow rate after the initial trigger, and the
expiratory time is less than half of the average inspiratory time [2]. Ineffective triggering
refers to the patient’s inhalation. Inspiratory effort fails to trigger ventilator delivery [9].
Ineffective triggering is manifested as ineffective inspiratory effort in the expiratory phase,
positive changes in flow, and negative changes in pressure [9].

This study involved four patients’ ventilator waveforms, which contained a total
monitoring time as high as 1284.39 h (Table 1). The two anomalies involved in this study
are double triggering and ineffective triggering. The accuracy results are shown in Table 2,
with a total of 4496 breaths, of which 716 were double triggering events. The experimental
results of the ineffective triggering algorithm are shown in Table 3, with a total of 4496
breaths, of which 910 were ineffective triggering events.

Table 1. Basic information and monitoring information of 4 patients.

Attribute Value

Gender Male Male Male Male

Age 84 62 70 63

Data duration (h) 880.12 115.97 66.6 221.7

Ventilation mode CMV CPAP/PSV V-A/C V-A/C

Tidal volume (mL) 440 ± 14.8 400 ± 14.8 420 ± 14.8 430 ± 14.8

Peak pressure (cmH2O) - 19 ± 9.5 21 ± 9.5 40 ± 9.5
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Table 1. Cont.

Attribute Value

Mean airway pressure (cmH2O) 10 ± 2.2 8 ± 2.2 12 ± 2.2 14 ± 2.2

Fraction of inspiration O2 (%) 40 ± 26.0 40 ± 26.0 40 ± 26.0 100 ± 26.0

Positive end expiratory
pressure (cmH2O) - 5 5 5
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Table 2. Experimental results of the double triggering algorithm.

Gold Standard (Manual Marking Method)

Positive
n = 716

Negative
n = 3780

positive
n = 484

true positive
A = 481

false positive
B = 3

positive predictive
value

PPV = 99.38%

negative
n = 4012

false negative
C = 235

true negative
D = 3777

negative predictive
value

NPV = 94.14%

sensitivity
Sv = 67.18%

specificity
Sp = 99.92%
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Table 3. Experimental results of the ineffective trigger algorithm.

Gold Standard (Manual Marking Method)

Positive
n = 910

Negative
n = 3586

positive
n = 929

true positive
A = 727

false positive
B = 202

positive predictive
value

PPV = 78.26%

negative
n = 3567

false negative
C = 183

true negative
D = 3384

negative predictive
value

NPV = 94.87%

sensitivity
Sv = 79.89%

specificity
Sp = 94.37%

Among the 4496 breaths, there were 716 actual positive events and 3780 actual negative
events of double triggering, and 484 predicted positive events and 4012 predicted negative events
for the double triggering algorithm. According to the experimental results, there were 481 true
positives, 3 false positives, 235 false negatives, and 3777 true negatives. From this calculation,
sensitivity = 481/716 = 67.18%, specificity Sp = 3777/3780 = 99.92%, positive predictive value
PPV = 481/484 = 99.38%, and negative predictive value NPV = 3777/4012 = 94.14%.

Among the 4496 breaths, there were 910 actual positive events and 3586 actual nega-
tive events of ineffective triggering, and 929 predicted positive events and 3567 predicted
negative events for the ineffective triggering algorithm. According to the experimen-
tal results, there were 727 true positives, 202 false positives, 183 false negatives, and
3384 true negatives. From this calculation, sensitivity Sv = 727/910 = 79.89%, specificity
Sp = 3384/3586 = 94.37%, positive predictive value PPV = 727/929 = 78.26%, and negative
predictive value NPV = 3384/3567 = 94.87%.

At present, the sensitivity recognition rate of the ineffective triggering algorithm is
79.89%, and the sensitivity recognition rate probability of the double triggering algorithm is
67.17%. Among the two types of anomaly detection, the algorithm for ineffective triggering
has a higher recognition sensitivity and recognition rate, which is 12.72% higher than the
recognition sensitivity rate of the double triggering algorithm.

3.4. Data Analysis Report

In the data application layer, the data analysis report is one of the important applica-
tions. The data analysis report shown in Figure 5 includes basic information, diagnostic
reference, prompts and findings, parameters of the mechanical ventilation ventilator, and
the respiratory waveform. The basic information is for doctors to identify the patient’s
identity and clarify the hardware parameters of the ventilator, including the basic infor-
mation of the patient and the hospitalization information of the patient. The diagnostic
reference gives the reason for the alarm, where the severity of patient-ventilator asynchrony
is represented by the asynchrony index, which (expressed as a percentage) = number of
asynchrony events/total respiratory rate (number of ventilator cycles + ineffective trigger
times) × 100% [2,10,11]. The patient-ventilator asynchrony index is calculated on the
patient’s ventilator data in real time. The sliding time window is 3–6 min, and the sliding
step is 1 s. Severe patient-ventilator asynchrony is defined as an asynchrony index ≥ 10%.
Within the sliding window range, when the patient-ventilator asynchrony index is greater
than the threshold, an abnormal event warning will be performed, and the data analysis
report will be generated and pushed to the clinic. As shown in the report in Figure 5, the
asynchrony index reached 13% in 4 min. The real-time monitoring report will be gener-
ated immediately and pushed to the clinic. Prompts and findings are used to display the
analysis, description, and conclusions of the mechanical ventilation treatment data and
will give treatment suggestions to the alarm, which need to be signed and confirmed by
the doctor. The parameters of mechanical ventilation ventilators include peak pressure,
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positive end-expiratory pressure, total respiratory rate, tidal volume, minute ventilation,
oxygen concentration, etc. A respiratory waveform graph is a detailed analysis report
showing one or more mechanical ventilation treatment data in the form of graphs, including
a pressure–time graph, flow–time graph, volume–time graph, volume–pressure graph, and
flow–volume graph, according to different anomalies showing different characteristics on
the waveform, to judge whether these waveforms are normal or not.
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4. Discussion

In this study, we established Remote-VentilateView, an intelligent, efficient, and visu-
alized real-time alarm monitoring system for mechanical ventilation driven by big data
technology and algorithms. The system provides monitoring of mechanical ventilation
parameters and waveforms, PVA event alarming, and dynamic analysis reports to improve
the safety of mechanical ventilation. Through internal validation, our system showed
relatively high accuracy in identifying double triggering and ineffective triggering.

Mechanical ventilation is the most common respiratory support in the ICU [12]. Inten-
sivists could choose fully ventilator-controlled modes, relieving the patient’s respiratory
load or, partially assisted mode, allowing the existence of breathing effort, according to
the severity and duration of lung injury [13]. Perfect patient-ventilator interaction should
minimize excessive respiratory load and retain moderate spontaneous breathing effort
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to prevent atrophy of the diaphragm muscle. However, this balance is fragile, and it is
difficult to avoid PVA during the process [14]. PVA refers to the phenomenon of inco-
ordination between the patient and the ventilator caused by the mismatch between the
patient’s neural inspiratory time and the ventilator’s inspiratory time or the mismatch be-
tween the ventilator support and demand during the entire respiratory cycle [15–17]. Data
showed that the incidence of PVA varied between 10% and 85% [8]. The reported broad
range of incidence rate was due to differences regarding the definition of PVA, physician
experience, observation timing, etc. [11,18]. In clinical practice, PVA is usually identified
based on a patient’s breathing state and the ventilator waveform. However, studies have
shown that the accuracy of nonexpert intensivists in identifying PVA through the ventilator
waveforms at the bedside was rather poor [3]. An international research study showed that
participation in specific mechanical ventilation-related training and a training time of more
than 100 h can improve the accuracy of physicians in identifying PVA [19]. Nonetheless,
such training was not perfect and applicable everywhere. Esophageal pressure or electrical
activity of the diaphragm monitoring does help in the recognition of PVA [3]. However,
these are semi-invasive procedures that are quite complex to perform, requiring placement
of a dedicated tip balloon catheter, which is mostly for research use [20]. Ramsay et al.
found that, in 28 patients with obstructive and restrictive lung disease given noninva-
sive ventilation, the addition of parasternal electromyography significantly increased the
recognition of PVA [21]. This study proposes to build a Remote-VentilateView platform to
solve various PVA problems. This platform can partly solve the needs of doctors in critical
care medicine for the use of mechanical ventilation and lays the foundation for large-scale
clinical application in the later stage.

Various PVA algorithms select trending real-time waveform data and automatically
combine the ventilation mode and other setting parameters to establish complete rule
decision logic by deriving mathematical formulas, fitting curve characteristics, and cross-
validation thresholds. We used mapping regulations of waveform performance and change
with significant differences in different PVA events, and mining deeply regulations of
waveform performance and change without significant difference in order to eliminate
interference between events, therefore realizing long-term monitoring of respiratory wave-
forms and accurate recognizing of PVA events. Events are precisely identified. In this study,
the algorithm, using expert experience combined with morphological observation, can
achieve good results in the recognition of double triggering and ineffective triggering. By
using the Remote-VentilateView platform and the intelligent algorithm to automatically
label and accumulate data, a large amount of high-quality data can be established. In
summary, there are few available products that have been released regarding machine
learning algorithms for mechanical ventilation. Based on the foundation of our current
algorithms, we can accumulate a large amount of labeled data and provide large samples
for the research of machine learning algorithms. Our study integrates the experience of
professionals in manual identification and develops relevant algorithms to automatically
identify abnormal clinical situations including double triggering and ineffective triggering.
At the same time, remote network and cloud platform technology are used to realize the
tasks of continuous and dynamic real-time monitoring and alarming of these identification
algorithms. It has the potential for large-scale clinical application.

In addition, using machine learning algorithms to identify and predict PVA is a feasible
method to replace tedious manual labor and improve accuracy. By analyzing 4.26 million
breaths in 62 mechanically ventilated patients at risk for or diagnosed with ARDS, Sottile
et al. applied Python and SciPy scientific stack (an open-source programming and scientific
analysis toolset that includes machine learning algorithms and a cross-sectional verification
method) technology to develop algorithms to identify PVA [5]. Through this technology, a
set of data is analyzed, and the characteristics of each breath are used to determine whether
there are the following two types of PVA: double triggering and ineffective triggering.
Then, we iteratively developed a machine-learning model to classify each breath as normal
or asynchrony. The overall accuracy of the above two types of PVA identification was 91%,
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and the area under the ROC curve was 0.92. The accuracy and area under the ROC curve
were 97% and 0.95, and 79% and 0.80 for the double triggering and ineffective triggering.
In the verification experiment, the accuracy and ROC of double triggering and ineffective
triggering have achieved the expected results. Although the accuracy of the machine
learning algorithm in identifying PVA is relatively high from the data, it is still limited to
specific types of PVA. For the types with less obvious waveform features, such as early or
delayed cycling and delayed triggering, the accuracy needs to be further improved. The
algorithms we developed for the two most common types of PVA have also shown high
accuracy, reaching a level that can be used in clinical practice. However, its sensitivity still
needs to be optimized.

The anomaly algorithm model provided in this study has the advantages of strong
interpretability, adaptive feature matching, and fast algorithm identification. There are still
the following shortcomings in this study: (1) the database used for training the model is
currently small, and, if the algorithm recognition ability is enhanced, the database needs
to be expanded; (2) more validation datasets are used to obtain better and more accurate
thresholds for generalization ability; and (3) to dynamically adapt to the learning dataset,
a design that dynamically adjusts the threshold according to the dataset can be added.
At present, we are also continuously optimizing and adjusting the response recognition
capabilities of related algorithms and platforms.

5. Conclusions

This study focuses on the problem of insufficient recognition of PVA in mechanical
ventilation in critically ill patients. By building a remote network cloud platform for
mechanical ventilation, the real-time transmission of the waveform data of the ventilator
is realized and an artificial intelligence algorithm is constructed to automatically identify
the types of double triggering and ineffective triggering. PVA is detected, and a real-time
alarm is issued through the cloud platform to guide clinicians to identify and address PVA
at an early stage to improve the prognosis of mechanically ventilated patients.
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