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Abstract: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in
women of reproductive age. This syndrome not only impairs female fertility but also increases the
risk of obesity, diabetes, dyslipidemia, cardiovascular diseases, psychological diseases, and other
health problems. Additionality, because of the high clinical heterogeneity, the current pathogenesis of
PCOS is still unclear. There is still a large gap in precise diagnosis and individualized treatment. We
summarize the present findings concerning the genetics, epigenetics, gut microbiota, corticolimbic
brain responses, and metabolomics of the PCOS pathogenesis mechanism, highlight the remaining
challenges in PCOS phenotyping and potential treatment approaches, and explain the vicious circle
of intergenerational transmission of PCOS, which might provide more thoughts for better PCOS
management in the future.
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1. Introduction

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders
in women of reproductive age. It is characterized by oligo or anovulation, hyperandro-
genism, and polycystic ovarian changes. This not only leads to female infertility but also
affects the patient’s metabolic health. Furthermore, with the recognition of the “Devel-
opmental Origins of Health and Disease” (DOHaD) theory, the emphasis on the origin
of adult diseases has been further shifted to gametogenesis and embryonic development.
The metabolic disturbance of PCOS mothers before conception will increase the risk of
PCOS in their offspring, leading to a “vicious cycle”. However, due to its strong clinical
heterogeneity, the pathogenesis of PCOS is still unclear, which brings great challenges to
clinicians concerning the correct diagnosis and treatment. What are the current trends in
PCOS etiology exploration and remaining challenges in diagnosis or treatment? This paper
reviews this issue.

2. Challenges and Possible Solutions of PCOS
2.1. Global Prevalence Trends of PCOS

The global prevalence of PCOS ranges from 6% to 21% [1], related to different diag-
nostic criteria, ethnicities, and regions. There were 1.55 million new instances of PCOS
in women of reproductive age worldwide in 2017 [2], and 17.23% of these cases were
women between the ages of 21–30 [3]. During the past 30 years, there have been significant
increases in age-standardized incidences of PCOS in Asia. According to the 2003 Rotterdam
criteria, the prevalence of PCOS in China was 10.01% in 2003, one of the countries with the
highest increases in age-standardized incidence rates (73.53/100,000) [4].

PCOS is characterized by high risks of concurrent metabolic disturbances. Almost 50%
of PCOS patients have obesity [5], 31.1% have impaired glucose regulation, and 7.5% have
type 2 diabetes (T2DM) [6]. The relative risk of impaired glucose tolerance (IGT) in PCOS
patients was 3.26 times higher, whereas the related risk of T2DM was 2.87 times higher
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than in healthy people [7]. Compared with non-obese PCOS patients, obese PCOS patients
had a higher prevalence of metabolic syndrome (15.9% vs. 47.9%) and insulin resistance
(7.1% vs. 27.8%) [8]. Under the subgroup analysis, Asian women with PCOS are more
vulnerable to metabolic disturbances than other races, with a 5.2-fold increased risk of IGT
and a 4.4-fold increased risk of T2DM compared with healthy women [7].

In conclusion, the global prevalence of PCOS has increased over the years. Its high
risk of concomitant metabolic disorders may place a significant burden on the life-long
health of PCOS women.

2.2. Deepening Understanding of the Etiological Mechanism of Polycystic Ovary Syndrome

In recent years, with the fast development in molecular genetics, high-throughput
sequencing, transcriptomics, and proteomics, researchers have made great progress in
genetics, epigenetics, gut microbiota, corticolimbic brain response, and metabolomics
factors in PCOS pathogenesis (Figure 1).

Figure 1. The pathological mechanisms of polycystic ovary syndrome. Great progress has been
made in the etiological mechanism of PCOS, including genetics, epigenetics, microbiota, corticol-
imbic brain response, and metabolomics. Abbreviations: BCCA, branched-chain amino acid; DNA,
Deoxyribonucleic acid; DNMT3A, DNA methyltransferases 3A; FFA, free fatty acid; FSHR, follicle-
stimulating hormone receptor; INSR, insulin receptor; PCOS, polycystic ovary syndrome; TET,
translocation methylcytosine dioxygenases. Components of this figure were created using Servier
Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported
license (https://smart.servier.com).

2.2.1. Genetic Variants

The biggest breakthrough in PCOS in the last decade has been genetics. A grow-
ing number of candidate gene studies have been performed. Analysis of Chinese Han
genome-wide association data (GWAS) [9,10] showed 11 candidate loci for PCOS, including
THADA, LHCGR, DENND1A, C9ordf3, YAP1, RAB5B, HMGA2, TOX3, INSR, SUMO1P1,
and FSHR. The phenotype–genotype study showed that susceptibility variants in THADA
and INSR conferred risk for metabolic syndrome, and variants of DENND1A and TOX3
were associated with insulin resistance in PCOS women [9,10]. INSR and TOX3 are sig-
nificantly correlated to insulin resistance or metabolic syndrome [11]. Xia et al. [12,13]
reported obesity and T2DM shared a common genetic basis to PCOS through serval loci
(ERBB3, FTO, PROX1, GIPR, and MC4R for obesity [12], and ADCY5, FTO, GIPR, and
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PPARG for T2DM [13]). These findings provide rich information for the future prediction
of reproductive outcomes and long-term complications in PCOS patients.

2.2.2. DNA Methylation in Epigenetics

Although some PCOS patients show a high degree of familial aggregation, current
GWAS analysis shows that the proportion of heritability accounted for by the PCOS loci
is less than 10% [14]. This suggests that environmental and epigenetic mechanisms may
play an important role in the etiology of PCOS. Epigenetic changes caused by adverse
intrauterine or postnatal environments may trigger PCOS-like symptoms after birth, and
such phenotypic changes are often inherited across three generations [15]. Lambertini
et al. [16] used RNA-sequencing and genome-wide DNA methylation to analyze third-
generation PCOS rats and found that ovarian DNA hypomethylation regulates key genes
associated with inflammation, insulin signaling, and glucose metabolism. Furthermore,
treatment of these third-generation prenatal Anti-Mullerian Hormone (AMH) exposed
mice female offspring with methylating medication can reverse their PCOS-like neuroen-
docrine and metabolic alterations [16]. Sagvekar et al. [17] revealed that the alternation in
transcriptional regulation of translocation methylcytosine dioxygenases (TETs) and DNA
methyltransferases 3A (DNMT3A) may contribute to DNA methylation changes in cumu-
lus granulosa cells of PCOS women. Nowadays, an increasing number of genome-wide
association studies on prenatal hyperandrogenism-induced methylation in the ovarian
tissue of PCOS rats are emerging, which will provide a more experimental basis for future
PCOS treatment. This also has important implications for pregnancy counseling in PCOS
women. Early identification of hyperandrogenism, treatment of their metabolism dysfunc-
tion to make them fit to have healthy offspring, and genetic diagnosis of the offspring for
early prevention of possible subsequent metabolic problems will become a new area for the
diagnosis and treatment of PCOS.

2.2.3. Gut Microbiota Alternation and Brain-Gut Axis

The gut microbiota is particularly important for the impact of metabolic diseases.
A previous study found that PCOS patients are more likely to have a high-sugar and
high-fat diet [18], which can easily lead to microbiota disturbances. After the first finding
of decreased α-diversity and β-diversity of PCOS patients [19], the relevance of PCOS
pathogenesis to the gut microbiota was further investigated. A systemic review noted that
the most common bacterial alterations in PCOS patients included Bacteroidaceae, Copro-
coccus, Bacteroides, Prevotella, Lactobacillus, Parabacteroides, Escherichia/Shigella, and
Faecalibacterium prausnitzii [20]. Evidence showed that hyperandrogenism was negatively
correlated to α diversity [21], while β diversity was reduced particularly in obese patients
with PCOS [22]. The gut microbiota may alter the brain–gut axis, leading to appetite and
energy metabolism dysfunction. Current research suggests that gut microbiota dysfunction
disrupts the intestinal mucosal barrier, activates chronic inflammation, and produces vari-
ous molecule metabolites that are involved in the development of PCOS [19]. However, the
causal relationship between microbiota and PCOS is still unclear, and further studies are
required to clarify it. In recent years, intestinal microbial preparations such as prebiotics
have been increasingly used. A meta-analysis showed that prebiotics had the effect of
reducing fasting insulin and triglycerides and increasing high-density lipoprotein (HDL)
in PCOS patients, but these findings still lack a highly evidenced level of randomized
controlled trial to identify [23]. Wang et al. [24] found that a 12-week high-fiber dietary in-
tervention could reshape the gut microbiota of PCOS patients by enriching Bifidobacterium
and Lactobacillus and effectively alleviate the PCOS clinical phenotypes. With the further
development of gut microbiota sequencing technology and the maturation of germ-free
mouse model technology, the gut microbiota may provide an effective way to carry out
mechanism research and clinical treatment of PCOS in the future.
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2.2.4. Corticolimbic Brain Responses

As the various potential corticolimbic brain responses in the development of PCOS
become better understood, exploring changes in the central nervous system in PCOS
patients and their relationship with hyperandrogenism and hyperinsulinemia will provide
more information for PCOS management in the future. Structural and functional brain
imaging may play an important role [25]. Previous studies have shown that alterations in
the white matter microstructure in PCOS patients are associated with eating patterns, mood
disorders, cognitive dysfunction, and cerebral vascular disease [26–28]. While sex hormone
levels have a broad impact on brain structure and activity, insulin resistance can affect the
brain’s ability to respond to visual food cues [29]. However, these studies are limited to
small samples. Future research advances may provide new clues to the possibility of new
pharmacological targets for neuroendocrine dysfunction of PCOS patients.

2.2.5. Metabolome Changes

Metabolites are small molecules that act as mediators and products of metabolism,
which may provide new insight into many areas of disease. Serval studies have observed
that PCOS symptoms are closely related to abnormal metabolites, such as glycerophospho-
lipids [30], bile acids [31], branched-chain amino acids [32], and ceramides [33]. In addition
to plasma samples, many metabolomics studies noted changes in the ovary and follicular
fluid. Rice et al. [34] found that insulin-dependent lactate production was significantly
impaired in granulosa-lutein cells from anovulatory PCOS women, whereas Sun et al. [35]
demonstrated that there are significantly increased in free fatty acids, 3-hydroxynonanoyl
carnitine, and eicosapentaenoic acid in the follicular fluid samples of PCOS patients who
were undergoing in-vitro fertilization (IVF). In addition, Wang et al. [36] identified gan-
glioside GM3, ceramide, and pentacosatriene in fecal metagenomics as the predictivity of
PCOS. It is hoped that advances in metabolomics knowledge will allow the identification
of biomarkers to predict the future progression and complications of PCOS.

2.3. The Phenotype in PCOS

The most commonly used classification of PCOS is based on clinical manifestations.
According to the Rotterdam criteria, the patient can be diagnosed with PCOS if any two
of the three features are present: hyperandrogenism (HA), ovulatory dysfunction (OA),
and polycystic ovarian morphologic features (PCO). There are four subtypes through the
permutation of these three symptoms: OA + PCO, OA + HA, HA + PCO, and OA + HA +
PCO. Patients with both OA and HA manifestations are so-called classic PCOS patients (OA
+ HA and OA + HA + PCO) [37]. Classic PCOS patients have the most severe problems,
with more significant luteinizing hormone (LH) elevation, more severe hyperandrogenism
manifestations, insulin resistance, dyslipidemia, a higher failure rate of ovulation induction,
and a lower cumulative live birth rate after IVF and intracytoplasmic sperm injection (ICSI).
In contrast, non-hyperandrogenic PCOS patients (OA + PCO) are the mildest. In some
studies, the body mass index (BMI), homeostasis model assessment of insulin resistance
(HOMA-IR), lipid metabolism, and other indicators of non-hyperandrogenic PCOS showed
non-significant differences in healthy women.

In China, the classification of PCOS is more focused on the metabolic status of patients.
Three phenotypes are classified according to other metabolism dysfunction: (1) the presence
of obesity or central obesity; (2) the presence of impaired glucose tolerance, diabetes, or
metabolic syndrome; (3) the presence of hyperandrogenism (classic PCOS as mentioned
above). In addition, BMI-based classification is commonly used. Based on different diagnos-
tic criteria for obesity, PCOS is classified as obese and non-obese PCOS. It is widely accepted
that the pathological features of obese and non-obese PCOS are different. Non-obese PCOS
patients tend to have more severe primary androgen metabolism dysfunction. Thus, a
small amount of visceral fat accumulation can induce the occurrence of PCOS. Usually,
such patients will have more pronounced clinical manifestations of hyperandrogenism, but
the incidence of glucose and lipid metabolism disorders and cardiovascular diseases is rela-
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tively low compared to obese PCOS patients. On the other hand, the major abnormalities
of androgen metabolism are relatively mild in PCOS patients with the obesity phenotype.
Hyperandrogenism in obese PCOS patients is mainly caused by insulin resistance. Obese
PCOS patients usually have more severe diabetes and hyperlipidemia, with a relatively
higher risk of hypertension, fatty liver, and cardiovascular disease. The lean and obese
phenotype is convenient for clinicians to differentiate. It is also a simple tool to predict the
outcome of assisted reproduction and the risk of long-term metabolic complications.

Using biochemical and genotype data from the GWAS study of PCOS patients, Dapas
et al. [38] investigated a new phenotypic subtype approach of PCOS. They revealed two
distinct PCOS phenotypes: a “reproductive” group characterized by higher LH and sex
hormone binding globulin (SHBG) levels with relatively low BMI and insulin levels, and
a “metabolic” group characterized by higher BMI, glucose, and insulin levels with lower
SHBG and LH levels. Furthermore, these subtypes were associated with novel and sus-
ceptibility PCOS candidate genetic loc. These findings fill the gap that the common-used
phenotype approach of PCOS does not identify genetic subtypes and demonstrate that
grouping all PCOS patients based on clinical presentation alone is insufficient to provide
effective therapy in long-term outcomes.

2.4. The Advancement in PCOS Treatment

PCOS is a disease that affects women throughout their lifespans. As far as current
management is concerned, the disease can only go into remission and not be cured. There-
fore, different treatment priorities and goals should be set according to the different courses
of PCOS, and this should never be limited to a single medication use. Future PCOS manage-
ment should be more individualized and refined. Based on the guidelines and consensus,
clinicians should pay attention to assessing the initiating factors of different phenotypes of
PCOS (e.g., genetic background, environment, psychological stress, etc.) and manage them
in an integrated biological–physical, and multidisciplinary way.

Lifestyle interventions are the first line of treatment for PCOS. First, PCOS patients
should adhere to a good diet pattern. Based on an overall analysis of the patient’s previous
dietary structure, clinicians should develop individualized dietary formulas, including
macronutrient ratios, micronutrient intake, and total calorie restriction. Second, exercise
is not only used as an aid to weight loss but also as a way to adjust the patient’s body
structure. Based on different muscle-fat ratios, PCOS patients need an individualized
exercise prescription that takes both fat loss and muscle gain into account. Finally, it is
necessary to pay more attention to the psychological assessment of PCOS management.

In the prevention and treatment of metabolic-related comorbidities and complications
of PCOS, it is crucial to advance the threshold of metabolic evaluation to the initial diagno-
sis rather than the patient having developed severe metabolic syndrome or cardiovascular
diseases. In addition to lifestyle interventions, PCOS patients with metabolic dysfunc-
tion require other pharmacological treatments, such as metformin or statins (HMG-CoA
reductase inhibitors).

However, not all PCOS patients respond to metformin. It was found that inositol
combined with metformin is effective in improving insulin resistance and menstrual cycle
frequency in infertile women with PCOS [39]. However, a recent meta-analysis showed that
metformin did not improve the clinical pregnancy rates and live births of PCOS patients
in IVF/ICSI [40]. For PCOS patients with hyperandrogenemia, there is evidence that
metformin does not affect the reduction in androgen levels in pregnant PCOS women [41].
However, in a subgroup analysis, a modest androgen-lowering effect was observed in non-
obese PCOS women with male fetuses [41]. It is unclear whether the androgen-lowering
effects of metformin also occur in fetal circulation.

Therefore, other metabolically modifiable agents, including classic insulin sensitiz-
ers (thiazolidinediones) and non-classical insulin sensitivity-improving drugs (acarbose,
sodium-glucose cotransporter (SGLT2) inhibitors, glucagon-like-peptide 1 receptor ag-
onist (GLP-1RA)), are also indicated and effective in PCOS patients. Our study found
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that the combination of GLP-1RA and metformin improved the reversal of prediabetes
in overweight/obese PCOS patients [42]. Other studies have also shown evidence that
metabolic surgery plays an important role in improving metabolic dysfunction and hy-
perandrogenism in obese PCOS patients [43]. However, the effectiveness of metabolic
surgery in preventing long-term metabolic complications and metabolic risk in subsequent
generations remains unknown.

2.5. Treatment Dilemma in PCOS

As mentioned above, because of the highly heterogeneous nature of PCOS, the current
clinical classification does not reflect the underlying pathological mechanisms. Individu-
alized and precise treatment of PCOS is difficult due to the lack of a clear understanding
of the etiology and prognostic markers. Furthermore, current national and international
guidelines provide only experimental symptom management and lack mechanism-based
treatment.

It cannot be ignored that the incidence of metabolic diseases in PCOS offspring is
not encouraging. In addition to genetic and environmental factors, it has been suggested
that the origin of metabolic diseases can be traced back to the early developmental stages
of life. This theory was originally raised by David Barkers, emphasizing that maternal
nutrient deficiencies during pregnancy would result in low-birth-weight infants having
rapid catch-up growth [44]. These offspring will exhibit impaired insulin secretory capacity,
glucose and lipid metabolism, and increased risk of metabolic syndrome in their early
life. Today, this hypothesis enlarged the theory of Developmental Origins of Health and
Disease (DOHaD) theory, which means that an adverse intrauterine environment may
lead to irreversible lifelong consequences for offspring, increasing susceptibility to non-
communicable diseases (e.g., obesity, T2DM, metabolic syndrome, cardiovascular disease)
in later life [45].

Serval studies have proven that PCOS offspring may be at significantly higher risk
for early onset metabolic disorders. Prenatal androgen-exposed offspring mice exhibit
impaired glucose tolerance and increased visceral adiposity [46], elevated circulating
triglyceride levels [47], left ventricular hypertrophy [48], liver lipogenesis imbalance [49],
and significant accumulation of fat in the liver [50] in their offspring. According to Finland’s
national birth cohort, maternal PCOS was significantly associated with a 1.58-fold increased
risk of childhood obesity, a 1.37-fold increase in adolescent obesity, and a 2.06-fold increase
in T2DM in early adulthood [51]. Zhang et al. prospectively tracked the growth trajectory
of the Ningbo birth cohort and obtained similar results [52]. In addition, Risal et al. found
that daughters of PCOS mothers had a five-fold increased risk of PCOS in a Swedish
nationwide register-based cohort and a clinical case–control study from Chile [53]. The
metabolic dysfunction in the PCOS offspring will further put grandchildren at risk, which
in turn creates a vicious circle of intergenerational transmission (Figure 2). This will place
a heavy burden on both the patient’s family and society. How to break this vicious cycle
remains a huge challenge for the future.

According to guideline recommendations, lifestyle interventions and metformin are
the preferred options for the treatment of PCOS. However, these classical treatments are
not as effective in preventing the intergenerational transmission of PCOS and its associated
metabolic dysfunction. Lifestyle interventions are proven effective in reducing the health
risks of the offspring of patients with preconception PCOS in observational studies and
preclinical animal models. Dhana et al. [54] found that mothers who live healthy lifestyles
(quality diet, normal weight, regular exercise, light to moderate alcohol consumption,
and no smoking) reduce their children’s risk of obesity by 75%. Xu et al. [55] found that
offspring of high-fat diet-induced obese female mice had abnormal glucose tolerance and
significant hepatic adipocyte degeneration at 12 weeks of age, while the mother switching
from a high-fat to a standard diet 9 weeks before pregnancy can protect the offspring from
metabolic dysfunction. However, there is still a lack of high-level evidence-based medical
evidence from randomized controlled studies to demonstrate the effectiveness of lifestyle
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interventions in promoting the offspring’s health. Mintjens et al. [56] reported a 6-month
preconception lifestyle intervention (including reduced energy intake, exercise, and health
consulting) in 577 obese infertile women to reverse pre-pregnancy metabolic abnormalities
and follow up their offspring until 4–6 years of age. However, no significant differences
in metabolic markers such as height standard weight Z score, body fat percentage, blood
pressure Z score, pulse wave velocity (PMV), blood lipids, glucose, blood insulin, and
HOMA-IR were found in the offspring due to the limitations of high dropping rates and
uncontrolled weight gain during pregnancy.

Figure 2. The vicious circle of intergenerational transmission of PCOS. (a) Many challenges remain in
the diagnosis and treatment of PCOS in reproductive age. The concurrent metabolic disturbances
in PCOS will bring risks to both mother's and offspring's health. (b) Lifestyle intervention and
metformin are the first-line treatment for PCOS and they are safe for use during conception. However,
their efficiency in benefiting PCOS offspring requires more evidence to demonstrate. (c) The adverse
uterine environment caused by maternal PCOS, according to the DOHaD theory, may increase the
susceptibility to non-communicable diseases of their offspring. The offspring of PCOS are vulnerable
to serval metabolic diseases in their early adult life, which will also affect their children's health. How
to break this vicious cycle remains a huge challenge for the future. Abbreviations: BMI, body mass
index; DOHaD, developmental origins of health and disease; PCOS, polycystic ovary syndrome.
Components of this figure were created using Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 unported license (https://smart.servier.com).

Metformin is the most commonly used medication in the treatment of PCOS [57].
Echiburu et al. [58] reported that metformin during pregnancy could protect the offspring
from the DNA methylation levels change in leptin, lipocalin receptor 2, and androgen
receptor genes caused by maternal PCOS. Meanwhile, it is safe to use metformin in the
perinatal period. There is no evidence that perinatal metformin use will increase the risk of
congenital malformations [59], miscarriage, and preterm delivery [60] or long-term effects
on children’s average cognitive function [61]. However, Hanem et al. [62,63] reported the
PedMet-study, which is the longest follow-up study on the offspring of PCOS patients who
have taken metformin during pregnancy. The results showed that metformin use during
pregnancy in PCOS patients might induce an increase in the adiposity of their offspring at
4 years of age, along with an increase in fasting glucose levels and systolic blood pressure
at age 8 years of age. The increase in adiposity in childhood strongly suggests adult obesity
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and a substantially increased risk of metabolic syndrome and cardiovascular disease. This
may suggest concerns about the effectiveness of metformin as a gestational intervention for
PCOS mothers to reduce health risks in their offspring.

2.6. Future Prospective of PCOS Therapeutic Target

In recent years, various intervention targets have shown good therapeutic promise
in preclinical models or clinical studies with small samples. There is evidence of brown
fat dysfunction in PCOS patients and future potential to improve metabolic disorders in
PCOS patients by activating brown fat [64]. Both PCOS mouse models and patients show
whole-gene hypomethylation, and it has been shown that the clinical features of PCOS
may have transgenerational transmission effects in mice by altering the DNA methylation
status. S-adenosylmethionine (SAM), a medication that can reverse DNA methylation,
may have a potential therapeutic effect on PCOS, which has been demonstrated in the
preclinical models [65]. Animal studies have shown that supplementation with interleukin-
22 (IL-22) or glycodeoxycholic acid (GDCA) ameliorates insulin resistance in B. vulgatus
mice and significantly corrects estrous cycle dysfunction, alters ovarian morphology, and
improves abnormal hormone levels [66]. Kisspeptin/Neurokinin B/Dynorphin (KNDγ)
neurons are expected to be a new therapeutic target for modulating gonadotropin-releasing
hormone (GnRH)/LH pulse generators in the future. A randomized, double-blind, placebo-
controlled, multicenter (5 European clinical centers) Phase 2a study [67] evaluated the
clinical efficacy and safety of the neurokinin 3 (NK3) receptor antagonist “fezolinetant” in
the treatment of PCOS. The study found that fezolinetant has a sustained effect of suppress-
ing hyperandrogenism and lowering the LH/ follicle-stimulating hormone (FSH) ratio.
In addition, kisspeptin treatment increased oocyte production by more than 60% in IVF
patients without increasing the risk of ovarian hyperstimulation and ovarian hyperstimula-
tion syndrome (OHSS) [68]. Notably, although the results of preclinical studies and cohort
studies suggest that kisspeptin improves reproductive hormone secretion and ovulation in
some animal models of anovulation PCOS, the effect on PCOS patients remains unknown.
Universally, future clinical studies could increase the number of patients and focus on the
impact on their improved metabolic profile. In conclusion, based on the novel findings of
PCOS etiology in genetic, epigenetic, and cortical brain responses, these effective therapeu-
tic targets, such as SAM, IL-22 supplementation, and fezolinetant, will lead to a new area
in the future management of PCOS.

At the same time, in addition to the exploration of new treatment targets, the timing
of interventions for PCOS is also very important. Current evidence has shown that lifestyle
interventions and metformin for PCOS during pregnancy are not effective in improving
offspring health. In recent years, more and more people have begun paying attention
to preconception health. Lifestyle improvement behaviors (e.g., good dietary structure,
smoking and alcohol cessation, exercise, regular sleep, etc.) must take months or even
years to achieve. It is advocated that preconception care should be extended to several
years before conception to address preconception risk factors such as diet and obesity to
achieve optimal fertility [69]. In the future, metabolic modulation in young women with
PCOS, especially before their pregnancy plans, may be an effective solution to prevent the
intergenerational transmission of PCOS and its metabolic disorders.

3. Conclusions

The global prevalence of PCOS has risen throughout the years. Its increased risk
of concomitant metabolic illnesses may impose a major burden on PCOS women’s long-
term health. Researchers have made significant advances in genetics, epigenetics, gut
microbiota, and corticolimbic brain response variables in PCOS etiology. Metformin and
lifestyle interventions have demonstrated encouraging results in the treatment of PCOS.
Meanwhile, metabolically modifying drugs and metabolic surgery have an essential role in
treating metabolic dysfunction and hyperandrogenism in obese PCOS patients. However,
existing treatment guidelines only provide experimental symptom management instead
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of mechanism-based treatment. Meanwhile, the incidence of metabolic diseases in PCOS
offspring is also concerning. Future PCOS management should pay more focus to novel
therapeutic targets, and a sharper focus on intervention before conception is required to
improve both maternal and child health in PCOS patients.
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