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Abstract: Background: Hemorrhagic transformation (HT) is a severe complication in patients with
acute ischemic stroke (AIS). This study was performed to explore and validate the relation between
bilirubin levels and spontaneous HT (sHT) and HT after mechanical thrombectomy (tHT). Methods:
The study population consisted of 408 consecutive AIS patients with HT and age- and sex-matched
patients without HT. All patients were divided into quartiles according to total bilirubin (TBIL)
level. HT was classified as hemorrhagic infarction (HI) and parenchymal hematoma (PH) based on
radiographic data. Results: In this study, the baseline TBIL levels were significantly higher in the
HT than non-HT patients in both cohorts (p < 0.001). Furthermore, the severity of HT increased
with increasing TBIL levels (p < 0.001) in sHT and tHT cohorts. The highest quartile of TBIL was
associated with HT in sHT and tHT cohorts (sHT cohort: OR = 3.924 (2.051–7.505), p < 0.001; tHT
cohort: OR = 3.557 (1.662–7.611), p = 0.006). Conclusions: Our results suggest that an increased TBIL
is associated with a high risk of patients with sHT and tHT, and that TBIL is more suitable as a
predictor for sHT than tHT. These findings may help to identify patients susceptible to different types
and severity of HT.

Keywords: acute ischemic stroke; hemorrhagic transformation; bilirubin; mechanical thrombectomy;
predictor

1. Introduction

Hemorrhagic transformation (HT) is a serious complication of cerebral infarction and
may be a multifactorial phenomenon [1,2]. In addition, the presence of HT, especially the
parenchymal hematoma (PH) type, is associated with adverse outcomes, including early
mortality and disability, in stroke patients [3,4]. Almost 12–40% of patients with acute
ischemic stroke (AIS) experience spontaneous HT (sHT) after stroke [2,5], which can be
aggravated by endovascular treatment (EVT), leading to an incidence of approximately
46.1% [6]. However, most studies have focused on HT after EVT and thrombolysis therapy;
there have been few studies of sHT.

A better understanding of the risk factors associated with HT may help prevent the
development of this condition. Previous studies identified baseline factors associated with
HT in stroke patients, including systolic thrombolysis [7], symptom severity [8], blood
pressure [9], and blood glucose level [10]. However, effective risk factors for predicting HT
have not been identified.

Recent studies suggested that an elevated serum bilirubin level is associated with
subarachnoid hemorrhage (SAH) and acute intracerebral hemorrhage (ICH) [11]. A case–
control study showed that the serum total bilirubin (TBIL) level was significantly higher in
patients with cerebral hemorrhage than in controls [12]. Furthermore, bilirubin has been
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confirmed as a cerebrospinal fluid marker of SAH in a pig model [13]. Only a few stud-
ies have attempted to elaborate the link between bilirubin and HT [14,15]. Jian et al. [14]
reported the close relation between bilirubin and HT in patients with AIS after mechan-
ical thrombectomy (MT). However, there have been no previous studies of the relation
between bilirubin and sHT. Besides, the relation between bilirubin and the severity of HT
remains unknown.

The incidence of sHT remains high and its prognosis is poor. Given the close relation
between bilirubin levels and intracranial hemorrhage, we hypothesized that bilirubin levels
may be associated with sHT. This study was performed to validate the role of bilirubin
in the occurrence of HT in patients after thrombectomy and to examine whether bilirubin
plays an important role in sHT.

2. Methods
2.1. Subjects

All consecutive patients aged 18 years or older with a confirmed diagnosis of HT
after AIS between January 2012 and June 2022 were enrolled in this retrospective cohort
study conducted at the Stroke Center of the First Affiliated Hospital of Wenzhou Medical
University, Wenzhou, China.

This study was approved by the Institutional Review Board and Ethics Committee of
the First Affiliated Hospital of Wenzhou Medical University. The requirement for informed
consent was waived as this was a retrospective study and all data were anonymous.

The diagnosis of first-ever AIS was confirmed by computed tomography (CT) or
magnetic resonance imaging (MRI) at admission. The exclusion criteria were: a diagnosis
of hemorrhagic stroke or transient ischemic attacks; a previous history of biliary calculus,
cholecystitis, or malignancy; serum transaminase concentration greater than twice the
upper limit of the reference range within 6 months; hepatitis B or C virus positivity; chronic
kidney disease (glomerular filtration rate < 60 mL min−1 1.73 m−2); ongoing infection
or inflammation; alcoholism (consumption of at least 40 g alcohol/day for males and
≥ 20 g/day for females during the previous 3 months); having received intravenous throm-
bolytic therapy; failure to undergo a second CT/MRI scan; and incomplete medical records.

A final total of 408 consecutive patients diagnosed with HT after AIS, consisting of
247 with sHT and 161 with HT after thrombectomy (tHT), were included in this study. The
same number of age- and sex-matched AIS inpatients without HT for each cohort were
randomly selected from the Stroke Center of our institution between January 2017 and June
2022 as controls. All patients met the inclusion criteria.

2.2. Data Collection and Group Stratification

Demographic characteristics, including age and sex, were collected and data concern-
ing a history of atrial fibrillation (AF), diabetes mellitus, hypertension, coronary heart
disease (CHD), current cigarette smoking, and current drinking status were obtained to
assess stroke risk.

Laboratory tests were performed within 24 h of hospital admission under fasting con-
ditions. Laboratory findings, including a red blood cell (RBC) count, white blood cell (WBC)
count, platelet (PLT) count, and hemoglobin (Hb), fasting blood glucose, total bilirubin
(TBIL), direct bilirubin (DB), indirect bilirubin (IDB), alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST), alkaline phosphatase (AKP), and γ-glutamyltranspeptidase
(γ-GT) levels were obtained for all patients. Trial of ORG 10172 in Acute Stroke Treatment
(TOAST) criteria were used to classify the ischemic stroke subtypes [16]. Furthermore, the
administration of anticoagulant and antiplatelet therapies for acute stroke during hospital-
ization before HT was recorded. Stroke severity was assessed within 24 h of admission by
qualified neurologists using the National Institutes of Health Stroke Scale (NIHSS) score.
In addition, the modified Rankin Scale (mRS) score was used to assess the neurological
function of each patient at admission.
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In the analysis, the TBIL level was taken as the main index representing bilirubin. All
patients were divided into quartiles according to the distribution of their baseline serum
TBIL level to examine whether any enhancement of performance could be quantified while
maintaining sufficient statistical power in each category.

2.3. Definition and Classification of HT Subtypes

Brain CT or MRI, including diffusion-weighted imaging (DWI) and T2-weighted
gradient-echo imaging, was performed at 24 h and 7 days (±2) after stroke in all patients.
If the clinical symptoms of hospitalized subjects deteriorated, the imaging examination
was performed immediately.

Two experienced neuroradiologists blinded to the clinical data classified HT radio-
logically into four subtypes based on follow-up CT/MRIs, according to the criteria of the
European Cooperative Acute Stroke Study (ECASS) [17,18]: hemorrhagic infarction (HI)
type 1 (small petechiae along the periphery of the infarct), HI type 2 (more confluent pe-
techiae around the infarcted area without a space-occupying effect), PH type 1 (hematoma
< 30% of the infarcted area with a mild space-occupying effect), and PH type 2 (hematoma
> 30% of the infarcted area with a significant space-occupying effect).

2.4. Statistical Analysis

The Kolmogorov–Smirnov test was used to test the normality of the data distribution.
Continuous variables with normal distributions are expressed as the mean ± standard
deviation, those with non-normal distributions as the median with interquartile range,
and categorical variables as relative frequency and percentage. Student’s t test or the
Mann–Whitney U test was used to compare continuous variables, as appropriate. The
chi-square test or Fisher’s exact test was used to compare categorical variables. Statistical
comparisons of TBIL stratification were performed by a one-way analysis of variance
(ANOVA) or Kruskal–Wallis test for continuous variables and Pearson’s chi-square test
or Fisher’s exact test for categorical variables. Spearman’s rank correlation test was used
to analyze the correlations between TBIL level and ECASS subtype. After adjusting for
conventional confounding factors and significant variables (p < 0.1) identified in univariate
conditional logistic regression analysis, a multivariate-adjusted conditional binary logistic
regression was performed to determine whether the TBIL stratification was an independent
predictor of HT after AIS. A two-tailed p < 0.05 was taken to indicate statistical significance.
All statistical analyses were performed using R for MacOS, version 4.1.2 (http://www.r-
project.org/, accessed on 1 November 2021).

3. Results

A total of 826 patients (two cohorts) were included in this study, consisting of 322
(70.2% males; median age, 70 [61–76.75] years) with MT treatment and 494 (71.3% males;
median age, 67 [58–74.75] years) without MT treatment. The baseline characteristics of the
two cohorts are shown in Supplementary Table S1.

3.1. Baseline Characteristics of Patients with and without HT in the Two Cohorts

The baseline characteristics and laboratory findings of patients with AIS are shown
in Table 1. The patients with HT were more likely to have a higher baseline WBC count
and higher glucose, AST, and bilirubin levels (including TBIL, DB and IDB) in both cohorts.
PLT was significantly decreased in patients with HT in both cohorts (p < 0.001); however,
sHT patients were more likely to receive anticoagulation drug therapy and less likely to
receive antiplatelet therapy.

http://www.r-project.org/
http://www.r-project.org/
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Table 1. Differences in the Baseline Characteristics of the AIS patients with and without HT in the
Two Cohorts.

sHT Cohort (n = 494) tHT Cohort (n = 332)

Variables Non-HT
(n = 247) HT (n = 247) p Value * Non-HT

(n = 161) HT (n = 161) p Value *

Demographic
parameters
Age (years) 67 (58–73) 68 (58.5–76) 0.121 69 (61–76) 70 (61–77) 0.918

Sex (Male, n%) 176 (71.3%) 176 (71.3%) 1 113 (34%) 113 (34%) 1
Vascular risk factors

History of atrial
fibrillation, n (%) 23 (9.3%) 43 (17.4%) 0.008 61 (37.9%) 65 (40.4%) 0.732

History of
hypertension, n (%) 151 (61.1%) 151 (61.1%) 1 111 (68.9%) 109 (67.7%) 0.905

History of diabetes,
n (%) 67 (27.1%) 63 (25.5%) 0.683 32 (19.9%) 36 (22.4) 0.682

History of coronary
heart disease, n (%) 21 (8.5%) 23 (9.3%) 0.578 20 (12.4%) 21 (13%) 1

Current smoking,
n (%) 163 (66.0%) 162 (65.6%) 0.924 66 (41%) 59 (36.6%) 0.493

Current drinking,
n (%) 77 (31.2%) 70 (28.3%) 0.555 53 (32.9%) 58 (36%) 0.639

mRS on admission,
median (IQR) 2 (1–3) 3 (2–4) <0.001 5 (4–5) 5 (4–5) 0.076

NIHSS on admission,
median (IQR) 5.0 (2.0–10.5) 9.0 (5.0–13.0) <0.001 16 (10–20) 16 (12–24) 0.143

Biochemistry and vital signs on admission

RBC 4.5 (4.18–4.805) 4.44
(4.105–4.760) 0.153 4.03±0.61 4.13±0.61 0.118

WBC 6.37 (5.37–7.60) 8.05
(6.43–10.26) <0.001 8.95 (7.09–11.2) 10.25

(8.44–12.39) <0.001

Hb 139 (128–147) 136 (126–145) 0.104 124 (110–135) 128 (113–140) 0.032
PLT 198 (173–230) 189 (150–231) 0.009 191 (155–243) 176 (144–219) 0.026

Glucose 5 (4.45–6.4) 5.8 (4.8–7.2) <0.001 6.4 (5.5–8) 7.7 (6.3–10.075) <0.001
TBIL 11 (8–14) 15 (11–24) <0.001 13 (9–17) 15 (11–21) <0.001
DB 4 (3–5) 5 (4–7) <0.001 4 (3–7) 5 (4–7) 0.002
IDB 7 (5–9) 8 (6–12) <0.001 8 (5–11) 10 (7–14) <0.001
ALT 19 (14–26.75) 19 (13–29) 0.911 16 (11–23) 19 (13.75–30.25) 0.002
AST 22 (19–31) 25 (20–32) 0.010 22 (19–28) 25 (21–34) 0.005
AKP 82 (69–94) 83 (70.25–98) 0.214 72 (62.75–89) 78 (62–93) 0.219

γ-GT 30 (20–46) 40.5
(23.35–58.5) 0.002 30 (18–48) 33 (23.5–50.5) 0.122

Stroke mechanisms 0.493 0.284
Atherosclerotic, n (%) 213 (86.2%) 217 (87.9%) 79 (49.1%) 68 (42.2%)
Cardioembolic, n (%) 23 (9.3%) 25 (10.1%) 63 (39.1%) 78 (48.4%)

Lacunar, n (%) 5 (2.0%) 2 (0.8%) 0 (0%) 1 (0.6%)
Other causes, n (%) 6 (2.4%) 3 (1.2%) 19 (11.8%) 14 (8.7%)
Initial treatment in

hospital
Anticoagulants 45 (18.2%) 67 (27.1%) 0.018 78 (48.4%) 81 (50.3%) 0.824

Antiplatelets 220 (89.1%) 136 (55.1%) <0.001 107 (66.5%) 93 (57.8%) 0.135
NOTE: HT: hemorrhagic transformation; sHT: spontaneous HT; tHT: HT after thrombectomy; NIHSS, National
Institutes of Health Stroke Scale; mRS, modified Rankin Scale; RBC, red blood cell; WBC, white blood cell;
Hb, hemoglobin; PLT, platelet; TBIL, total bilirubin; DB, direct bilirubin; IDB, indirect bilirubin; ALT, alanine
aminotransferase; AKP, alkaline phosphatase; AST, aspartate amino transferase; γ-GT, γ-glutamyltranspeptidase;
* Continuous variables were compared between the groups by the Student’s t-test or the Mann–Whitney test. The
chi-square test was used for categorical variables.
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3.2. Baseline Characteristics according to TBIL Quartiles

All patients were divided into quartiles according to TBIL level (range, 4.0–59.0 µmol/L),
with quartile cutoff values of 4.0–9.0 µmol/L (Q1), 10.0–13.0 µmol/L (Q2), 14.0–20.0 µmol/L
(Q3), and 21.0–59.0 µmol/L (Q4). Given that TBIL values are integers, we were unable to
place the same number of patients in each quartile. Tables 2 and 3 show the demographic
characteristics, vascular risk factors, laboratory findings, TOAST classifications, and initial
hospital treatments of the patients in the two cohorts according to TBIL quartiles. A higher
TBIL level was associated with a higher incidence of HT in both cohorts (p < 0.001). In the
sHT cohort, subjects with higher TBIL levels were more likely to smoke and drink and to
have higher AST and γ-GT levels and lower PLT counts than those with a lower TBIL level.
In the tHT cohort, subjects with higher TBIL levels had a higher prevalence of AF, higher
RBC and WBC counts, higher AKP levels, and lower PLT counts than those with a lower
TBIL level.

Table 2. Baseline Characteristics of the AIS Patients in the sHT Cohort According to TBIL Quartiles.

Variables All Patients

TBIL Quartiles

Quartile 1
n = 125
(4.0–9.0
µmol/L)

Quartile 2
n = 127

(10.0–13.0
µmol/L)

Quartile 3
n = 122

(14.0–20.0
µmol/L)

Quartile 4
n = 120

(21.0–59.0
µmol/L)

p-Value *

HT 247 (50.0%) 39 (31.2%) 57 (44.9%) 67 (54.9%) 84 (70%) <0.001
Demographic

parameters
Age (years) 67 (58–74.75) 65 (61.5–75) 72 (59–76) 63 (56.5–76.5) 68.5 (58.75–76) 0.191
Sex (Male) 352 (71.3%) 92 (73.6%) 80 (63.0%) 88 (72.1%) 92 (76.7%) 0.097

Vascular risk factors
History of atrial
fibrillation, n (%) 66 (13.4%) 13 (10.4) 15 (11.8%) 19 (15.6%) 19 (15.8%) 0.501

History of
hypertension, n (%) 302 (61.1%) 72 (57.6%) 78 (61.4%) 78 (63.9%) 74 (61.7%) 0.782

History of diabetes,
n (%) 130 (26.3%) 42 (33.6%) 31 (24.4%) 30 (24.6%) 27 (22.5%) 0.191

History of coronary
heart disease, n (%) 44 (8.9%) 6 (4.8%) 12 (9.4%) 14 (11.5%) 12 (10.0%) 0.694

Current smoking,
n (%) 169 (34.2%) 55 (44%) 39 (30.7%) 23 (18.9%) 52 (43.3%) <0.001

Current drinking,
n (%) 147 (29.8%) 28 (24.3%) 29 (22.8%) 51 (41.8%) 39 (32.5%) 0.002

mRS on admission,
median (IQR) 2 (1–3) 2 (2–3) 2 (1–3) 2 (2–3) 3 (2–3.5) 0.172

NIHSS on admission,
median (IQR) 7 (3–11) 6 (3–10) 6 (2–11) 7 (3–11) 8 (4–11) 0.110

Biochemistry and vital signs on admission

RBC 4.465
(4.15–4.78) 4.42 (4.15–4.74) 4.42

(4.15–4.735)
4.585

(4.18–4.89)
4.54

(4.145–4.856) 0.118

WBC 7.115
(5.735–8.886) 7.27 (6.15–8.41) 7.31 (6.03–8.93) 7.6 (5.85–8.723) 7.42

(6.25–9.255) 0.858

Hb 138 (127–146) 137 (128–144) 135 (125.5–145) 139 (127–150) 139
(128–148.25) 0.143

PLT 195
(162–230.75) 208 (179.5–249) 191 (163–222) 195 (157–227) 183 (152–213.5) <0.001

Glucose 5.4 (4.6–6.8) 5.1 (4.6–6.4) 5.35 (4.8–6.9) 5.2 (4.4–6.675) 5.55 (4.7–6.975) 0.219
TBIL 13 (9–19) 8 (6–9) 11 (10–13) 15 (14–17.75) 25 (21–29) <0.001
DB 5 (3–7) 3 (3–3) 4 (4–5) 6 (5–7) 8 (5.75–10) <0.001
IDB 8 (6–12) 5 (4–5) 7 (6–8) 9 (8–11) 14.5 (9–17.25) <0.001
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Table 2. Cont.

Variables All Patients

TBIL Quartiles

Quartile 1
n = 125
(4.0–9.0
µmol/L)

Quartile 2
n = 127

(10.0–13.0
µmol/L)

Quartile 3
n = 122

(14.0–20.0
µmol/L)

Quartile 4
n = 120

(21.0–59.0
µmol/L)

p-Value *

ALT 19 (14–28) 18 (13–28) 18 (14–26.75) 20 (14–28) 19 (14–28.75) 0.706
AST 7 (5–10) 22 (18–29) 23 (19–30.75) 28 (20–33) 25.5 (20–32.75) 0.022
AKP 83 (69–97) 88 (77–102) 83 (68–95) 78 (67–94.5) 81.5 (70.25–96) 0.178

γ-GT 34 (22–53.25) 29.5 (20–46.5) 31 (19–43.75) 40.5 (22.25–63) 42.5
(26.75–58.25) 0.003

Stroke mechanisms 0.306
Atherosclerotic, n (%) 430 (87%) 110 (88%) 112 (88.2%) 102 (83.6%) 106 (88.3%)
Cardioembolic, n (%) 48 (9.7%) 9 (7.2%) 10 (7.9%) 17 (13.9%) 12 (10%)

Lacunar, n (%) 7 (1.4%) 4 (3.2%) 1 (0.8%) 2 (1.6%) 0 (0.0%)
Other causes, n (%) 9 (1.8%) 2 (1.6%) 4 (3.1%) 1 (0.8%) 2 (1.7%)
Initial treatment in

hospital
Anticoagulants 112 (22.7%) 30 (24.0%) 31 (24.4%) 24 (19.7%) 27 (22.5) 0.808

Antiplatelets 117 (23.7%) 29 (23.2%) 33 (26.0%) 31 (25.4%) 24 (20.0%) 0.685

NOTE: HT: hemorrhagic transformation; sHT: spontaneous HT; NIHSS, National Institutes of Health Stroke
Scale; mRS, modified Rankin Scale; RBC, red blood cell; WBC, white blood cell; Hb, hemoglobin; PLT, platelet;
TBIL, total bilirubin; DB, direct bilirubin; IDB, indirect bilirubin; ALT, alanine aminotransferase; AKP, alkaline
phosphatase; AST, aspartate amino transferase; γ-GT, γ-glutamyltranspeptidase; * Continuous variables were
compared between TBIL quartiles by one-way variance analysis (ANOVA) or Kruskal–Wallis test, and Pearson’s
chi-square test or Fisher’s exact test for categorical variables.

Table 3. Baseline Characteristics of the AIS Patients in the tHT Cohort According to TBIL Quartiles.

Variables All Patients

TBIL Quartiles

Quartile 1
n = 76

(4.0–9.0
µmol/L)

Quartile 2
n = 89

(10.0–13.0
µmol/L)

Quartile 3
n = 87

(14.0–20.0
µmol/L)

Quartile 4
n = 70

(21.0–59.0
µmol/L)

p-Value *

HT 161 (50.0%) 25 (32.9%) 44 (49.4%) 44 (50.6%) 48 (68.6%) <0.001
Demographic

parameters
Age (years) 70 (61–76.75) 70 (61.75–76.25) 69 (61–76) 69 (62.5–77.5) 70.5 (61–76) 0.988
Sex (Male) 226 (70.2%) 53 (69.7%) 57 (64.0%) 63 (72.4%) 53 (75.7%) 0.417

Vascular risk factors
History of atrial
fibrillation, n (%) 126 (39.1%) 24 (31.6%) 29 (32.6%) 35 (40.2%) 38 (54.3%) 0.017

History of
hypertension, n (%) 220 (68.3%) 49 (64.5%) 66 (74.2%) 61 (70.1%) 44 (62.9%) 0.386

History of diabetes,
n (%) 68 (21.1%) 17 (22.4%) 24 (27.0%) 14 (16.1%) 13 (18.6%) 0.987

History of coronary
heart disease, n (%) 41 (12.7%) 9 (11.8%) 9 (10.1%) 9 (10.3%) 14 (20.0%) 0.189

Current smoking,
n (%) 125 (38.8%) 34 (44.7%) 33 (37.1%) 35 (40.2%) 23 (32.9%) 0.502

Current drinking,
n (%) 111 (34.5) 30 (39.5%) 23 (25.8%) 36 (41.4%) 22 (31.4%) 0.117

mRS on admission,
median (IQR) 5 (3–5) 5 (4–5) 4.5 (4–5) 5 (4–5) 5 (4–5) 0.212

NIHSS on admission,
median (IQR) 16 (11–22) 17 (11–23.75) 15 (10.25–18.75) 16 (11.5–22) 17 (11.5–24) 0.491
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Table 3. Cont.

Variables All Patients

TBIL Quartiles

Quartile 1
n = 76

(4.0–9.0
µmol/L)

Quartile 2
n = 89

(10.0–13.0
µmol/L)

Quartile 3
n = 87

(14.0–20.0
µmol/L)

Quartile 4
n = 70

(21.0–59.0
µmol/L)

p-Value *

Biochemistry and vital signs on admission
RBC 4.09 (3.65–4.47) 3.84 (3.43–4.34) 4.15 (3.67–4.46) 4.13 (3.76–4.44) 4.20 (3.90–4.74) 0.006

WBC 9.635
(7.690–11.845)

9.14
(7.12–11.03)

10.04
(8.02–12.53)

9.16
(7.43–11.86)

10.62
(8.52–12.35) 0.015

Hb 125 (112–138) 115
(104–131.25) 120 (109–136) 129

(117.5–139.5) 129.5 (121–142) <0.001

PLT 181.75
(149.5–231)

197
(155.75–253.5) 190 (165–238) 175

(143.5–222.5)
166.5

(139.25–211.5) 0.012

Glucose 7 (5.8–8.9) 6.65 (5.6–8.65) 7.05 (6.1–8.63) 6.9 (5.8–8.95) 7.7 (6.03–9.2) 0.402
TBIL 14 (10–19) 8 (6–9) 11 (10–12) 17 (15–18) 25.5 (22–30.75) <0.001
DB 4 (3–7) 3 (2–3) 4 (3–5) 6 (4–7) 8 (7–11) <0.001
IDB 9 (6–13) 5 (4–6) 7 (6–8) 10 (9–12) 17 (15–20.75) <0.001
ALT 17 (12–26) 17 (12.75–26) 16 (12–24.25) 16 (13–28) 19.5 (12–28.75) 0.624
AST 24 (20–31) 23 (20–30) 23 (18–30) 24 (20–33.5) 25 (21–34) 0.416
AKP 76 (63–91) 67.5 (58–85.5) 82 (70.75–94.25) 76 (65–92) 71.5 (57–89) 0.010
γ-GT 31 (20.75–51) 32 (20–49) 31 (23–50.5) 28.5 (18.75–44) 33.5 (23.75–55) 0.587

Stroke mechanisms 0.240
Atherosclerotic, n (%) 147 (44.3%) 42 (55.3%) 45 (50.6%) 33 (37.9%) 27 (38.6%)
Cardioembolic, n (%) 141 (42.5%) 28 (28.9%) 34 (38.2%) 42 (48.3%) 37 (52.9%)

Lacunar, n (%) 1 (0.3%) 1 (1.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Other causes, n (%) 33 (20%) 5 (5.1%) 10 (12.6%) 12 (13.8%) 6 (8.6%)
Initial treatment in

hospital
Anticoagulants 159 (48%) 37 (38.1%) 37 (41.5%) 41 (46.1%) 44 (62.9%) 0.059

Antiplatelets 200 (40.5%) 53 (54.6%) 58 (65.2%) 48 (55.2%) 41 (58.6%) 0.365

NOTE: HT: hemorrhagic transformation; tHT, HT after mechanical thrombectomy; NIHSS, National Institutes of
Health Stroke Scale; mRS, modified Rankin Scale; RBC, red blood cell; WBC, white blood cell; Hb, hemoglobin;
PLT, platelet; TBIL, total bilirubin; DB, direct bilirubin; IDB, indirect bilirubin; ALT, alanine aminotransferase;
AKP, alkaline phosphatase; AST, aspartate amino transferase; γ-GT, γ-glutamyltranspeptidase; * Continuous
variables were compared between TBIL quartiles by one-way variance analysis (ANOVA) or Kruskal–Wallis test,
and Pearson’s chi-square test or Fisher’s exact test for categorical variables.

3.3. Association between TBIL Level and HT after AIS

In the sHT cohort, an analysis of TBIL quartiles according to HT subtype showed that
the proportion of patients with severe HT (PH-1 and PH-2) was significantly greater in the
highest quartile (Q4) than in those with mild HT (HI-1 and HI-2) or without HT (Figure 1A).
Conversely, the lowest TBIL quartile (Q1) contained the highest proportion of patients with
mild HT (HI-1) and without HT. In the tHT cohort, the highest quartile (Q4) still had the
highest proportion in PH-2. Similarly, the lowest TBIL quartile (Q1) still contained the
highest proportion of patients with HI-1 and without HT (Figure 1B). Furthermore, the
severity of HT increased with increasing TBIL level in both cohorts (p < 0.001), and the
Spearman correlation coefficient is 0.42 (p < 0.001) between TBIL level and ECASS subtypes
in the sHT group and 0.28 (p < 0.001) in the tHT group (Figure 2), suggesting a positive
association between elevated TBIL concentration and HT severity.
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The findings of adjusted multivariate conditional binary logistic regression analyses,
using HT as a dependent variable and the lowest TBIL quartile (Q1) as the reference, are
shown in Table 4. Univariate analysis (Supplementary Table S2) showed that the highest
TBIL quartile (Q4) was significantly and independently associated with the risk of HT in
patients with AIS (unadjusted model, OR = 5.128, 95% CI = 2.987–8.862, p < 0.001 in the
sHT cohort; OR = 4.430, 95% CI = 2.474–7.933, p < 0.001 in the tHT cohort). Furthermore,
univariate analysis showed that mRS on admission, WBC count, and glucose and PLT levels
were significantly associated with HT in both cohorts. However, NIHSS on admission,
AST, and anticoagulant and antiplatelet therapies were only associated with HT in the
sHT cohort. After adjusting for confounders, including age, sex, and medical history (e.g.,
AF, hypertension, diabetes mellitus, baseline mRS, and NIHSS score), the highest TBIL
quartile (Q4) remained significantly and independently associated with the risk of HT in
both groups (sHT cohort, model 1: OR = 5.122, 95% CI = 3.245–8.084, p < 0.001; sHT cohort,
model 2: OR = 5.285, 95% CI = 3.223–8.667, p < 0.001; tHT cohort, model 1: OR = 4.436,
95% CI = 2.476–7.950, p < 0.001; tHT cohort, model 2: OR = 6.226, 95% CI = 3.073–12.614,
p < 0.001). Moreover, the association remained after further adjusting for variables iden-
tified as risk factors in the univariate analysis for HT (sHT cohort, further adjusting for
WBC count, glucose level, PLT count, γ-GT level, anticoagulant and antiplatelet therapies;
model 3: OR = 3.924; 95% CI = 2.051–7.505, p < 0.001; tHT cohort, further adjusting for
WBC count, Hb level, glucose level, PLT count, and AST level; model 3: OR = 3.557; 95%
CI = 1.662–7.661, p = 0.006).
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Figure 1. Proportion of patients in each TBIL quartile among AIS patients with different HT subtypes
in the two cohorts. (A) sHT cohort. (B) tHT cohort. HI, hemorrhagic infarct; HT: hemorrhagic
transformation; PH, parenchymal hematoma.
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Figure 2. TBIL concentrations in subgroups of HT in the two cohorts. Each data point and error bar
corresponds to the median and interquartile range of TBIL levels in the subgroups of HT. The line
chart shows worsening of HT with an increasing TBIL level. (A) sHT cohort. (B) tHT cohort. HI, hem-
orrhagic infarct; HT: hemorrhagic transformation; PH, parenchymal hematoma. #Cor.r: Spearman’s
rank correlation test was used to analyze the correlations between TBIL and ECASS subtype.
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Table 4. Multivariate Logistic Regression Analysis of the Association between TBIL Level and HT in
the Two Cohorts.

sHT Cohort tHT Cohort

Model 1 * Model 2 † Model 3 # Model 1 * Model 2 † Model 3 $

Adjusted
OR a (95%CI)

p-
Value

Adjusted
OR a (95%CI)

p-
Value

Adjusted
OR a (95%CI)

p-
Value

Adjusted
OR a (95%CI)

p-
Value

Adjusted
OR a (95%CI)

p-
Value

Adjusted
OR a (95%CI)

p-
Value

TBIL
Q1 Ref Ref Ref Ref Ref Ref

Q2 1.777
(1.148–2.735) 0.030 1.917

(1.192–3.083) 0.024 1.473
(0.799–2.720) 0.298 1.985

(1.167–3.379) 0.034 2.272
(1.214–4.251) 0.031 1.703

(0.874–3.317) 0.189

Q3 2.697
(1.743–4.173) <0.001 2.866

(1.782–4.493) <0.001 2.092
(1.099–33.979) 0.059 2.085

(1.223–3.556) 0.023 2.172
(1.148–4.108) 0.045 1.819

(0.920–3.598) 0.149

Q4 5.122
(3.245–8.084) <0.001 5.285

(3.223–8.667) <0.001 3.924
(2.051–7.505) <0.001 4.443

(2.479–7.963) <0.001 6.226 (3.073–
12.614) <0.001 3.557

(1.662–7.611) 0.006

Note: sHT: spontaneous hemorrhage transformation; tHT: hemorrhage transformation after thrombectomy; OR,
odds radio; CI, confidence level; HT, hemorrhage transformation; TBIL, total bilirubin; a Reference OR (1.000) is
the lowest quartile of TBIL for HT; * Model 1: adjusted for age, sex; † Model 2: adjusted for covariates from Model
1 and further adjusted for medical history (atrial fibrillation, diabetes, hypertension, baseline NIHSS scores and
baseline mRS scores); # Model 3 (sHT cohort): adjusted for covariates from Model 2 and further adjusted for WBC,
PLT, glucose, γ-GT, anticoagulants and antiplatelets; $ Model 3 (tHT cohort): adjusted for covariates from Model 2
and further adjusted for WBC, Hb, glucose, AST and PLT.

The receiver operating characteristic (ROC) curves for the prediction of HT after AIS
by bilirubin are shown in Figure 3. In the sHT cohort, the area under the curve (AUC) was
0.705 (CI: 0.660–0.751, p < 0.001) for TBIL. In addition, the AUC was 0.632 (CI: 0.573– 0.692,
p < 0.001) for TBIL in the tHT cohort.
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4. Discussion

The main finding of this study is that an elevated serum TBIL level was significantly
associated with HT after AIS in both cohorts. On the one hand, we validated the predictive
power of bilirubin for HT in patients who received MT. On the other hand, we found that
bilirubin was also a good predictor of sHT. TBIL showed better predictive power in sHT
than tHT. Furthermore, higher TBIL concentrations were associated with more severe HT
(PH) in both cohorts.

In the sHT cohort, the incidence of anticoagulant use was higher in patients with
than without HT after AIS, but the incidence of antiplatelet therapy was lower, consistent
with previous studies [19]. The incidence of sHT is higher in patients with a history of
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AF, as reported previously [19,20]. Consistent with this, Tu et al. [21] found an association
between AF and severe baseline hypoperfusion, leading to more frequent and severe HT.
Moreover, previous studies indicated that clinical worsening was significantly associated
with HT [22–24]. However, there was no significant difference in baseline NIHSS scores in
the tHT cohort, similar to previous studies [25]. In addition, our results indicate that there
were no differences in the use of anticoagulant and antiplatelet therapies between non-HT
and HT patients in the tHT cohort, which may be explained by the similar incidence of AF
between the two groups (37.9% vs. 40.4%, p = 0.732) (Table 1). Furthermore, our finding
that a high WBC count, serum glucose level, and PLT count are associated with HT is
consistent with previous reports [26–29].

Several studies have detected increased levels of serum bilirubin during the early phase
of stroke [30–33]. Bilirubin was suggested to be a negative prognostic biomarker of ischemic
stroke; a higher serum bilirubin level at clinical presentation is associated with greater
stroke severity and a greater degree of disability at 3 months after AIS [31,34]. Similarly, a
high serum bilirubin level at admission is independently associated with poor outcomes
in patients with intracerebral hemorrhage [12]. Consistent with these observations, the
highest (Q4) and second highest (Q3) TBIL quartiles were significantly associated with
HT in all multivariate-adjusted conditional logistic regression models in the present study,
and the risk of HT was higher in Q4 than in the other quartiles (Tables 2–4). Moreover, the
TBIL levels were higher in patients with severe HT (PH-1 and PH-2) than in those with
mild HT (IH-1 and IH-2) or without HT in the sHT and tHT cohorts (Figures 1 and 2). This
finding may help to identify patients at high risk of HT. Therefore, we suggest that timely
intervention of hyperbilirubinemia may reduce the risk of HT after AIS.

The mechanisms underlying the production of bilirubin after a stroke remain unclear.
Changes in serum bilirubin level have been observed in patients without liver dysfunction,
suggesting that the changes were caused primarily by local oxidative stress induced by
vascular and brain injury [35]. Bilirubin is the main product of heme catabolism [36].
Heme is liberated and metabolized to biliverdin by inducible hemeoxygenase-1 (HO-1) [37].
Then, biliverdin reductase reduces biliverdin to bilirubin [36–38]. HO-1 is an inducible
heme oxygenase of 288 amino acids with a molecular weight of 33 000 Da [38]. Under
conditions of oxidative stress, increasing the level of HO-1 causes early brain damage after
intracerebral hemorrhage [39–41]. Similar findings have been reported in SAH [11,42].
Wang et al. [41] reported that HO-1−/− mice were significantly protected from early brain
injury and functional impairment caused by an intracerebral hemorrhage. Moreover, heme
or other metabolites have been shown to induce HO-1, causing endothelial cell damage
and functional changes resulting in increased vascular permeability [39].

A previous study showed that the environment surrounding the hematoma is highly
conducive to oxidation, promoting the conversion of bilirubin to bilirubin oxidation prod-
ucts [43]. Bilirubin oxidation products are thought to act as alkylating agents, directly
attacking smooth muscle and/or its contractile apparatus, and they may be responsible for
bilirubin toxicity in axons and neurological deficits [37,42,44].

Bilirubin is potentially neurotoxic. It aggregates at micromolar concentrations and
attaches to the cell membrane in the brain, disrupting normal cell function [45,46] and
causing vascular leakage and the rupture of ischemic brain tissue [2]. Moreover, elevated
bilirubin levels have been shown to induce cell death [47] in brain sections, cultured
cell lines, and isolated nerve endings [48–50]. Furthermore, hyperbilirubinemia induces
cytotoxicity in astrocytes and oligodendrocytes [51,52]. It is worth noting that normal
astrocytes may contribute to formation of the blood–brain barrier (BBB) and provide
metabolic support to neurons [51]. Our findings suggest that high levels of bilirubin are
associated with HT, which may be attributable to oxidative stress and the neurotoxic effects
of hyperbilirubinemia on ischemic brain tissue, ultimately disrupting the BBB [2]. The
loss of BBB integrity is a significant pathological event, which contributes to intracerebral
hemorrhage and HT [53,54].
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The results of our multivariate logistic regression (Table 4) and ROC curve analyses
(Figure 3) emphasize that bilirubin is a better predictor of sHT. As an effective procedure for
AIS, MT has been widely used in recent years. However, the association between MT and
HT requires further attention. A recent clinical trial showed that the incidence of HT in AIS
patients who had received MT was as high as 46.1% [6]. Furthermore, the incidence of HT
in real-world clinical settings may be higher than the results of clinical trials performed at
experienced medical centers [55]. In addition, indicators related to MT, such as procedure
time and device pass time, are associated with the occurrence of tHT [56,57]. Reperfusion
injury is another essential factor in the occurrence of tHT. Reperfusion injury also occurs
very early after successful MT reperfusion therapy [58]. During the course of subsequent
ischemia–reperfusion, glutamate excitotoxicity, free radical injury, and neuroinflammation
can lead to HT of the ischemic tissue [2,59]. Therefore, the high incidence of tHT may be
mainly related to the surgical procedure and reperfusion injury, while TBIL has little effect
on tHT. In contrast, the occurrence of sHT is mainly related to oxidative stress and the
activation of matrix metalloproteinases caused by cerebral ischemia [60], which can also be
caused by bilirubin. Therefore, it is reasonable that bilirubin is a more suitable predictor
of sHT.

This study had several limitations. First, due to the limitations of our HT database
and the different mechanisms of HT after thrombolytic therapy, patients undergoing
thrombolytic therapy were excluded from the analysis. Further study is needed to confirm
the association between TBIL and HT in stroke patients receiving thrombolytic therapy.
Second, due to the small sample size, we did not perform a regression analysis between
the radiological HT subtypes and TBIL levels. Third, matched pair design would lead
to inevitable selection bias, which may have affected our results. Finally, as this was a
retrospective single-center study, additional prospective multicenter studies are needed to
validate our findings.

5. Conclusions

In conclusion, our results show that the serum TBIL concentration at admission is an
independent risk factor for sHT and tHT, and that TBIL is a more suitable predictor of sHT.
A high TBIL level is associated with severe HT. Clinicians should consider TBIL levels in
identifying at-risk patients to prevent HT after a stroke.
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