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Abstract: Sepsis, the most serious complication of infection, occurs when a cascade of potentially
life-threatening inflammatory responses is triggered. Potentially life-threatening septic shock is a
complication of sepsis that occurs when hemodynamic instability occurs. Septic shock may cause
organ failure, most commonly involving the kidneys. The pathophysiology and hemodynamic
mechanisms of acute kidney injury in the case of sepsis or septic shock remain to be elucidated,
but previous studies have suggested multiple possible mechanisms or the interplay of multiple
mechanisms. Norepinephrine is used as the first-line vasopressor in the management of septic shock.
Studies have reported different hemodynamic effects of norepinephrine on renal circulation, with
some suggesting that it could possibly exacerbate acute kidney injury caused by septic shock. This
narrative review briefly covers the updates on sepsis and septic shock regarding definitions, statistics,
diagnosis, and management, with an explanation of the putative pathophysiological mechanisms
and hemodynamic changes, as well as updated evidence. Sepsis-associated acute kidney injury
remains a major burden on the healthcare system. This review aims to improve the real-world clinical
understanding of the possible adverse outcomes of norepinephrine use in sepsis-associated acute
kidney injury.
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1. Plain Language Summary

Sepsis is a common and potentially life-threatening complication of infection. When
sepsis leads to hemodynamic instability, septic shock occurs, which can result in septic acute
kidney injury (S-AKI). S-AKI must be treated quickly. A patient with S-AKI experiences low
blood pressure and decreased circulation to the kidneys. Treatment involves administering
fluids to the patient and providing a vasopressor agent to improve circulation. The first-
line vasopressor in use is norepinephrine, although other agents are also used. Recent
studies have suggested that norepinephrine may result in adverse outcomes. In particular,
norepinephrine increases the glomerular filtration rate, which increases sodium delivery
into the tubules of the renal medulla. This sodium requires oxygen for reabsorption,
which means that norepinephrine results in a decrease in oxygen to the kidneys. While
vasopressin does improve microcirculation, these improvements do not always affect the
microcirculation of the kidneys. This narrative review describes the pathophysiology
of sepsis, septic shock, S-AKI, and the role of norepinephrine and other vasopressors in
treating S-AKI.
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2. Key Points

1. Septic-AKI (S-AKI) is clinically distinct from AKI without sepsis.
2. Microcirculatory abnormalities can occur in S-AKI due to endothelial injury and

shedding of the glycocalyx, which can result in reduced blood flow velocity.
3. Norepinephrine is recommended as the first-line treatment for S-AKI. It increases the

glomerular filtration rate, increases sodium filtration and reabsorption, boosts renal
blood flow, and has no effect on urine flow or renal vascular resistance. However,
norepinephrine can reduce medullary tissue oxygen by half.

4. Although 20% of cardiac output is delivered to the renal system, the renal medulla is
vulnerable to hypoxia, likely due to vascular congestion.

5. In head-to-head clinical studies of norepinephrine vs. vasopressin, there was no
clear superiority for norepinephrine, and in some studies, vasopressin had lower
mortality. In meta-analyses, vasopressin did not confer a clear-cut mortality benefit
over standard care.

3. Introduction

Sepsis is a life-threatening condition that results from a profoundly dysregulated
response to infection. It can lead to organ failure distant from the primary site of the infec-
tion, particularly in the kidneys [1]. Sepsis has been associated with a hyperinflammatory
response and concomitant immune suppression [2]. Almost 50 million cases of incident
sepsis have been reported around the world, resulting in approximately 11 million deaths.
From a global perspective, sepsis accounts for 19.7% of all deaths, with the greatest burden
in Sub-Saharan Africa, Oceania, and Asia [3]. The global incidence of sepsis is greatest in
children and neonates, but there are scant population-based data on this subject; it has been
estimated to be 3 million neonates and 1.2 million children with sepsis [4].

An expert consensus definition of septic shock defined it as a subset of sepsis associated
with circulatory, cellular, and metabolic abnormalities, such that septic shock has a greater
mortality risk than sepsis alone [5]. Sepsis may be thought of as an infection with organ
dysfunction [6]. Septic shock is diagnosed in adults when vasopressor treatment is required
to maintain a mean blood pressure of 65 mmHg or higher and where there is a serum lactate
level > 2 mmol/L after fluid resuscitation [5]. Vasopressors are typically administered to
maintain mean arterial pressure ≥ 65 mmHg [1].

Sepsis can cause acute kidney injury (AKI) [7], but the rate of AKI in critically ill
patients varies. Although up to 60% of patients with sepsis will develop AKI [8], there
is limited information about the epidemiology of sepsis-associated AKI (S-AKI), which
has emerged as a common complication in hospitalized patients [9]. S-AKI patients may
experience any of several disease trajectories, including renal recovery, survival with
diminished kidney function, or death [7]. The outcome depends greatly on the severity
of the kidney injury. A 97-center international study of 1032 intensive care unit (ICU)
patients in their first week in the ICU found that 57.3% had AKI, and the severity of the
AKI was related to mortality [10]. Inpatients treated for AKI remain at risk for adverse
kidney-related outcomes for six months [11]. Although one out of three septic patients
will develop S-AKI [7], the underlying processes and pathogenesis of S-AKI remain to be
elucidated.

Septic shock is a risk factor for S-AKI (odds ratio 2.88, 60.5%), but there are other risk
factors, including type 2 diabetes mellitus, abdominal infection, use of vasopressors (odds
ratio 2.95, 64.5%), vasoactive drugs (odds ratio 3.85, 63.22%), mechanical ventilation, history
of smoking, cardiovascular diseases, and liver diseases [12]. It has been suggested that in
S-AKI, the defects in the initial two days of the condition are more functional than structural
in nature (i.e., abnormal microvasculature and tubular stress are more evident in the first
48 h than aberrant histopathology) [13]. As intrarenal perfusion is redistributed during
sepsis, renal hypoxia may result, which may cause S-AKI [13]. Hypoxia is particularly
damaging to the renal medulla and can lead to oxidative stress, initiating an inflammatory
cascade, which leads to spiraling cellular injury [14]. Thus, tissue perfusion is a primary
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goal in managing S-AKI that can be accomplished with rapid infusion of intravenous (IV)
fluids under ultrasound guidance [15]. If hypotension persists after fluid resuscitation, a va-
sopressor may be administered, typically norepinephrine [16]; if hypotension persists after
norepinephrine administration, vasopressin may be used as well [17]. While vasopressors,
such as norepinephrine, are widely used for blood pressure regulation and organ perfusion,
paradoxically, norepinephrine does not appear to confer such benefits in AKI [13]. Thus,
the optimal therapy for S-AKI is not known, nor are the underlying mechanisms of this
potentially life-threatening condition. The goal of our narrative review was to evaluate the
literature with the goal of developing a better understanding of S-AKI and how it might
inform prescribing choices.

4. Methods

Using the PubMed database, the keywords “septic acute kidney injury” were searched
in November 2022, with results limited to the past 10 years (2012–2022) and including
only clinical trials and randomized clinical trials published in English with associated data
available. This yielded 63 results. These were then sorted to include those that reviewed
the use of norepinephrine or vasopressin in the setting of S-AKI, which yielded one result.
A search for “septic acute kidney injury norepinephrine” yielded 24 results, three of which
were relevant. A search for “septic acute kidney injury vasopressin” yielded three results,
two of which were duplicates from other searches; the remaining one was not relevant. The
next search was for “septic acute kidney injury”, but it was limited to meta-analyses in the
past 10 years in English; this yielded 28 results. We excluded meta-analyses regarding renal
replacement therapy or not directly related to norepinephrine or vasopressin; this yielded
four results, which are summarized in Table 1. Using the same keywords “septic acute
kidney injury”, but limiting the search to systematic reviews in the past 10 years, yielded
33 results. In this search, all relevant results had been found in previous searches. Using
the same criteria, we searched Scopus (14 documents, all included in the previous findings)
and Web of Science (18 documents, all included in the previous findings). In addition, we
reviewed the bibliographies of these studies. The objective of our narrative review was to
provide a thorough background on S-AKI and then review these relevant studies on the
use of norepinephrine in such cases.

Table 1. Meta-analyses of clinical trials about the role of vasopressin and/or norepinephrine in the
treatment of S-AKI.

Studies and Patients Agents Findings Safety Comments

Huang 2021 [18]
5 studies

788 patients

Vasopressin infusion
within 6 h of

developing septic
shock vs. standard care

Short-term mortality
was similar between

groups

Similar rates of
new-onset arrhythmias

No difference between
groups in ICU length

of stay

Landoni 2013 [19]
18 interventions

Observational of
18 different

interventions

Reduced mortality;
vasopressin in septic
shock, terlipressin for
hepatorenal syndrome

type 1

15/18 interventions
reduced mortality

Mouncey 2021 [20]
65 CCUs

2463 patients ≥
65 years

Vasopressin vs.
standard care

Vasopressin did not
reduce 90-day mortality

over standard care
Not blinded

Nagendrahn 2019 [21]
4 studies

1453 patients

Vasopressin vs.
standard care

No effect on 28-day
mortality

Reduced need for RRT
Appears safe

CCU, cardiac critical care unit; ICU, intensive care unit; RRT, renal replacement therapy; vs., versus.
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5. Results

Sepsis can be defined as any dysregulated response to an infection. It can trigger
septic shock, an inflammatory cascade that may involve a cytokine storm [22], along with
circulatory system abnormalities and metabolic and cellular derangements [12]. Septic
shock can lead to AKI, which may be life threatening or have long-term adverse sequelae [8].
S-AKI is clinically distinct from AKI without sepsis. A high proportion, if not the majority,
of critically ill patients develop S-AKI [23], which carries with it high morbidity and
mortality rates [12]. Sepsis and AKI form a vicious cycle, as sepsis is one of the main drivers
of critical illness [23].

The host’s response to any pathogen depends in part on the virulence of the micro-
organism. The type of pathogen in sepsis helps determine the course of the infection and
the outcome. The predominant organisms associated with sepsis are Staphylococcus aureus
(20.5%), Pseudomonas spp. (19.9%), Enterobacteriaceae (16.0%), and fungi (19%) [24]. In a
meta-analysis of 510 studies, gram-negative bacteremia was more closely associated with
mortality than gram-positive bacteremia [25]. While the organism and site of infection
may play a role in determining negative outcomes, approximately one-third of patients
with severe sepsis do not have a positive blood culture [26]. Genetic factors play a role in
sepsis susceptibility and poor outcomes [24]. Comorbidities may also play a role, as sepsis
contributes to about 30% of all in-hospital cancer deaths [24]. The increasing incidence of
sepsis and S-AKI may be due, in part, to the emergence of progressively more multidrug-
resistant pathogens, longer lifespans, more urinary catheterizations, and older patients
living with chronic diseases and “managed cancer” [27–30].

Sepsis leads to numerous complications, including acute respiratory distress syn-
drome (ARDS) [31] and disseminated intravascular coagulopathy (DIC), which can lead
to microthrombosis, ischemic limb injury, and death [32]. Sepsis may also cause delirium,
along with psychological or cognitive problems [33]. One of the most commonly reported
complications of sepsis is AKI, which increases mortality risk [34].

5.1. Diagnostic Challenges in S-AKI

The Acute Dialysis Quality Initiative group published a landmark consensus definition
for AKI in adults known as RIFLE, for the five stages of AKI: risk, injury, failure, loss, and
end-stage disease [35]. AKI was characterized by a creatinine increase of ≥50% from
baseline and/or a decrease in glomerular filtration rate (GFR) of ≥25% and/or decreased
urinary output below a level of 0.5 mL/kg/h over at least six hours. RIFLE stated that
the ≥50% increase in creatinine level occurred or could be reasonably presumed to have
occurred over ≤ 7 days [35]. The AKI Network (AKIN) amended RIFLE by omitting the
last two stages (loss and end-stage renal disease) and establishing the following stages:
stage 1: risk, stage 2: injury, and stage 3: failure [36]. Inflammatory biomarkers, such
as procalcitonin (PCT), C-reactive protein (CRP), and interleukin 18 (IL-18), are under
consideration as potential diagnostic tools for S-AKI [37]. An increase of 0.3 mg/dL in
creatinine over 48 h was part of stage 1, and the GFR criteria were removed [36]. Kidney
Disease: Improving Global Outcomes (KDIGO) synthesized RIFLE and AKIN with some
modifications [38].

The traditional biomarkers for AKI were urinary output, urinary indices, tubular en-
zymes, and cystatin C [39]. Biomarkers that indicate damage include neutrophil gelatinase-
associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-18), and
liver-type fatty acid-binding proteins [37,40–43]. However, the evidence for some of these
biomarkers is suggestive rather than conclusive, and some remain controversial. Biomark-
ers specific to AKI in the setting of sepsis (S-AKI) are emerging and include differentially
expressed genes [44]. The identification of hub genes for AKI and hub genes for septic
shock resulted in datasets that allowed for the identification of potential targets for future
research. The genes under consideration associated with S-AKI are VMP1, SLP1, PTX3,
TIMP1, OLFM4, LCN2, and S100A9 [44].
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5.2. Managing S-AKI

Sepsis is managed with fluid resuscitation and early administration of antimicrobial
therapy [41]. The CLASSIC multicenter feasibility trial explored a protocol that restricted
the volume of resuscitation fluid to 151 septic shock patients and found a benefit in reducing
fluids [45]. The CLASSIC study pointed out the potential risks of fluid overload, defined
as total input minus total output divided by initial body weight. Adverse events were
associated with fluid overloads over approximately 10% [46,47]. However, the results
of this feasibility study remain controversial [46]. The 2016 Surviving Sepsis Campaign
(SSC) suggests a fixed dose of crystalloid fluid (30 mL/kg) for the first three hours from
diagnosis [48], but others recommend individualizing fluids for each patient based on
their clinical status, starting with an infusion of 10 mL/kg for the first 30–60 min [49].
Both the 2016 SSC guidelines [50] and the 2018 SSC bundle [51] recommend early use
of vasopressors, such as norepinephrine and vasopressin, in severely hypotensive septic
patients, titrating the doses up until a mean arterial pressure (MAP) of at least 65 mmHg
is achieved. Close clinical monitoring and regular checking of vital signs are necessary;
invasive blood pressure monitoring may be considered in cases in which vasopressors are
used [50].

The role of renal replacement therapy in S-AKI is beyond the scope of this narrative
review. While there is no expert consensus as to the appropriate time to commence dialysis,
there is growing consensus that early initiation of renal replacement therapy in appropriate
patients may be associated with improved outcomes [52].

5.3. The Pathophysiology of S-AKI

AKI is characterized by a rapidly declining glomerular filtration rate and the inability
of the renal system to regulate fluid and electrolyte homeostasis [53]. The three main
underlying causes of AKI are prerenal, postrenal, and intrinsic. Prerenal kidney injury
is characterized by an abrupt reduction in blood flow to the kidney, resulting in kidney
dysfunction, although the kidney itself is not damaged [54]. On the other hand, postrenal
kidney injury occurs when the urinary tract below the kidneys is obstructed in some way,
causing waste to build up in the kidneys [55]. S-AKI is caused by molecular patterns from
pathogenic bacteria that are released from damaged cells; downstream effects are glomeru-
lar dysfunction, peritubular endothelial damage, downregulation of tubular resorption,
apoptosis, and destruction of organelles from damaged cells [56]. Although S-AKI has been
modeled as being secondary to renal ischemia, new findings from animal studies suggest
that renal blood flow may paradoxically increase as renal vascular resistance decreases,
so that S-AKI could occur in renal hyperemia. Ischemia need not be present for the loss
of glomerular filtration [57]. Thus, S-AKI is a complex condition. Sepsis-induced renal
microvascular dysfunction can occur, such as vasoconstriction, capillary leak syndrome,
endothelial dysfunction, microthrombi, and others, leading to S-AKI [58]. A crucial devel-
opment in S-AKI occurs when increased renal vascular resistance causes changes in the
microcirculation of the renal cortex and/or renal medulla, despite normal or even elevated
renal blood flow [58].

Historically, the pathophysiology of S-AKI was considered to be hypoperfusion and
secondary tubular epithelial cell death because the most frequent causes of AKI were
associated with decreased renal blood flow and ischemia [7]. Advances in postmortem and
in vitro studies have revealed that hypoperfusion and/or ischemia are not the sole causes of
S-AKI. It has been determined that hypoperfusion need not be involved in the pathogenesis
of S-AKI, and S-AKI may be multifactorial in nature, with potential contributions from the
inflammatory process, metabolic reprogramming, and dysregulated microcirculation [7].

Inflammation is the body’s primary response to invading pathogens, and a dysreg-
ulated or aberrant inflammatory response may be caused by organ dysfunction [50]. In
sepsis, the invading pathogen releases inflammatory mediators called pathogen-associated
molecular patterns (PAMPs) into the circulation. In response, damaged cells release damage-
associated molecular patterns (DAMPs). Both PAMPs and DAMPs interact with pattern
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recognition receptors (PRRs), which are part of the body’s innate immune system [59]. PRR
signaling leads to pro-inflammatory responses aimed at destroying or at least subduing the
infectious assault [59,60]. For example, Toll-like receptors (TLRs) are a type of PRR that
are expressed in renal tubular epithelial cells [61]. When DAMPs and PAMPs interact with
TLRs in tubular epithelial cells, an imbalance in the asymmetric pro- and anti-inflammatory
actions can cause a pathological increase in oxidative stress, culminating in the release of
reactive oxygen species (ROS), which can damage host tissues and cause organ dysfunc-
tion [62]. This release of ROS can trigger inflammation in the kidney, which may be distant
from the main site of the infection [7]. In an effort to protect itself from free radicals, which
can cause necrosis, protective proteins, such as NGAL and hepcidin, are released [63,64].
Macrophages associated with H-ferritin contribute to the hepcidin-associated protective
anti-inflammatory effects [65]. See Figure 1.
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Figure 1. The outcomes of S-AKI. Note that the glomerular filtration rate is reduced only due to the
influx of sodium produced by downregulation of the sodium/potassium pump; it is not an initiator.
Abbreviations: GFR, glomerular filtration rate; S-AKI, septic acute kidney injury.

Severe microcirculatory dysfunction can occur in S-AKI, regardless of macrohemo-
dynamic stability [7]. Alterations in the microcirculation can be caused by endothelial
injury and shedding of the glycocalyx, leading to the potential formation of microthrombi
due to increasing levels of white blood cells (WBCs) and platelet rolling, which eventually
decrease blood flow velocity. Microcirculatory changes can also reduce GFR by several
mechanisms: reduced intraglomerular hydrostatic pressure due to afferent arteriole con-
striction, dilatation of the efferent arteriole, intrarenal blood flow redistribution away from
the medulla, and the emergence of capillaries going from afferent to efferent arterioles
without passing through the glomerulus [7]. See Figure 2.
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Figure 2. The role of pro-inflammatory mediators in S-AKI. Abbreviations: GFR, glomerular filtration
rate; S-AKI, septic acute kidney injury; WBC, white blood cells.

Metabolic reprogramming plays a major role in the development of S-AKI and has
multiple mechanisms, including cell cycle arrest, downregulation of ion transporters, and
switching from aerobic glycolysis to oxidative phosphorylation. All of these mechanisms
seek to optimize energy expenditure [7]. See Figure 3.
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Figure 3. How S-AKI can lead to cell membrane damage and necrosis. Abbreviations: DAMPs,
damaged-associated molecular patterns; NGAL, neutrophil gelatinase-associated lipocalin; PAMPs,
pathogen-associated molecular patterns; ROS, reactive oxygen species; TLR, Toll-like receptor.

The inflammation caused by sepsis alone can reduce GFR, but in fact, many other
mechanisms can cause or contribute to decreased GFR [66]. When pro-inflammatory
mediators reach the glomerulus, the mesangial cells within Bowman’s capsule contract,
narrowing their already narrow pores to the point that filtration is hindered [67]. In AKI or
S-AKI, renal cells optimize their energy expenditure in response to these stresses, sometimes
using the pathophysiologic system of cellular hibernation [68,69]. In cellular hibernation,
the sodium/potassium ATPase pump is downregulated; normally, this pump is responsible
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for about 80% of renal oxygen consumption [70]. This causes the macula densa to detect
an increase in sodium concentration in the filtrate, triggering contraction of the afferent
arteriole, which, in turn, will decrease GFR [71].

Of course, GFR may be adversely affected by any of several mechanisms that essen-
tially cause an imbalance between the afferent and efferent arterioles, even in the presence
of increased renal blood flow to the kidneys [72]. This reduced GFR was found to be caused
by vasodilation of the renal arteries, which lends credence to the notion that overall renal
function depends on the complex interplay between systemic hemodynamics and local
renal microcirculation rather than the isolated effects of each one separately [73].

5.4. Septic Shock

Septic shock is the most severe complication of sepsis and is potentially life threaten-
ing [74]. The pathophysiology may be described as sequential intracellular events being
launched by pathogens in immune cells, the epithelium, the endothelium, and, overall, in
the neuroendocrine system [74]. To combat the pathogens, pro-inflammatory mediators
are launched, which, in turn, causes the release of anti-inflammatory mediators to control
the inflammatory response. The inflammatory response damages tissues, while the anti-
inflammatory events cause leukocyte reprogramming and immune system alterations. This
complicated process can happen in a very short window of time [74], and many interven-
tions are intended to provide prompt symptomatic relief [75]. Septic shock is associated
with abrupt and profound circulatory compromise, typically addressed with a vasopressor
to maintain a mean arterial pressure of at least 65 mmHg and a serum lactate level greater
than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia [5].

5.5. Norepinephrine in S-AKI

Synthesized mainly in the locus coeruleus (LC) of the brain, norepinephrine is a cate-
cholamine with diverse neuromodulatory effects, including regulation of the central ner-
vous system (CNS). There are three main receptors for norepinephrine: α1-adrenoreceptors
(α1Rs), α2-adrenoreceptors (α2Rs), and β-adrenoreceptors (BRs) [76]. Norepinephrine
attenuates the release of pro-inflammatory mediators [77,78] and is recommended as a
vasopressor in sepsis for its ability to regulate blood pressure and vascular resistance [79].
The cardiovascular effects of norepinephrine include an increase in the intracellular calcium
concentration of smooth muscles and inotropic effects on the myocardium due to the effects
of norepinephrine on α-adrenergic receptors [80]. Norepinephrine has many effects. It in-
creases GFR, sodium filtration and reabsorption, renal blood flow, and oxygen delivery and
consumption; however, it has no effect on renal vascular resistance, filtration fraction, urine
flow, or renal oxygen extraction [81]. Norepinephrine reduces medullary tissue oxygen
tension by 50% and decreases medullary perfusion. Since norepinephrine increases GFR, it
increases sodium delivery into the medullary tubules [14,82]. This sodium requires oxygen
for reabsorption, which leads to relative medullary hypoxia [82]. It has been maintained
that this decreased renal medullary perfusion and inflammatory response contribute to
AKI in septic patients because renal vasoconstriction decreases renal blood flow, which
can lead to hypoperfusion and/or ischemia; however, this view has been challenged or
perhaps better stated expanded [83]. Instead, it has been proposed that a dysfunctional
renal tubular system activates microvascular shunting, causing a tubule-glomerular vicious
circle, which, in turn, results in an inflammatory response and coagulation [83,84]. Renal
hypoperfusion caused by sepsis likely does more than just reduce glomerular filtration, as
it seems to trigger both macro- and microcirculatory deficits as well [85]. The renal medulla
is particularly susceptible to hypoxia, despite the fact that approximately 20% of cardiac
output is delivered to the renal system [86]. A putative explanation is that the outer portion
of the medulla is vulnerable to vascular congestion, which can prolong hypoxia and lead to
ischemia [86].

Catecholamine infusions in critically ill patients have been shown to trigger renal
vasoconstriction and loss of renal function. Adjunctive to catecholamines is the use of
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vasopressin and/or norepinephrine. The current method of increasing renal perfusion
in the setting of sepsis or S-AKI is the administration of vasopressin or norepinephrine
to increase renal perfusion by restoring the microcirculatory balance [87]. One drawback
of this approach is that macrocirculatory improvements do not always correspond to
optimization of the microcirculation when inflammation or infection are present [88].

Terlipressin is a vasopressin analog with pronounced vasoconstrictive effects on the
efferent arterioles and minimal effects on the afferent arterioles [89]. In a pilot study
of 22 septic shock ICU patients, the patients were randomized to receive terlipressin or
standard care [87]. The sonographic signal intensity peak at 24 h was 60.5 ± 8.6 dB among
the terlipressin patients compared to 52.4 ± 70 dB in the control group (p = 0.04). The
terlipressin patients had a lower time to peak, slower heart rates, and higher cardiac stroke
volumes at 24 h after enrolling in the study vs. the control patients. There was no significant
difference in urinary output at 24 h [87]. It should be noted that terlipressin was more
effective than placebo in treating patients with hepatorenal syndrome type 1 [90]. AKI
in patients suffering from acute liver failure was also more effectively treated with early
infusion of terlipressin compared to noradrenaline, which conferred a mortality benefit [91].
In a study of 678 geriatric patients undergoing major gastrointestinal surgery, the incidence
of postoperative AKI was 10.9%, but it was significantly lower in patients with mean
arterial pressure controls set to a range of 80–95 mmHg compared to two other groups,
where the mean arterial pressure was set to 65–79 mmHg or 96–110 mmHg. The patients in
the highest mean arterial pressure group used more norepinephrine, phenylephrine, and
nitroglycerin than the other two groups with lower range values [92].

Vasopressor administration to critically ill patients, including those with kidney dys-
function, is generally guided by blood pressure monitoring, with mean arterial pressure
targets of 65 mmHG, although this number is somewhat higher for geriatric, hypertensive,
or coronary artery disease patients [16]. To evaluate whether the use of vasopressors in
older patients was associated with greater mortality, a randomized trial reduced the vaso-
pressor exposure of older patients (≥65 years) by setting the mean arterial pressure target
lower, at 60–65 mmHG, but this did not reduce the 90-day mortality rate [93]. In this study,
48% of the patients had septic shock, and 22% had no sepsis at all. Most patients (60%)
received norepinephrine only, although other drugs (metaraminol and phenylephrine)
were used in some patients [93].

In a double-blind single-center study of 76 critically patients with AKI receiving
vasopressor therapy, a high continuous venovenous hemofiltration cutoff had no effect
on the duration of vasopressor therapy or mortality compared to standard venovenous
hemofiltration [94].

In a randomized study of 300 patients with risk factors for AKI undergoing cardiac
bypass surgery, norepinephrine was used to maintain mean arterial pressure at either
75–85 mmHg (high group) or 50–60 mmHg (control group). Defining AKI as an increase
in serum creatinine of 30% or more, both groups had the same proportion of AKI cases
(17% vs. 17%, p = 1). Statistically similar were the lengths of stay, 28-day mortality, and
six-month mortality [95].

Norepinephrine was directly compared with vasopressin in a study of 778 adults with
septic shock [96]. Via a blinded infusion, patients received vasopressin (0.01–0.03 U/min)
or norepinephrine (5–15 µg/min) along with open-label administration of vasopressors.
Upon entry into the study, the overall proportion of patients with kidney injuries was
59.6% (n = 464). Vasopressin was associated with a lower rate of progression to kidney
failure (20.8% vs. 39.6%, p = 0.03) and a lower need for renal replacement therapy (17.0%
vs. 37.7%, p = 0.02). Furthermore, the vasopressin group had a lower mortality rate than
the norepinephrine group [96].

In a randomized, double-blind study of 778 septic shock patients receiving at
least 5 µg/min norepinephrine infusion, patients were randomized to receive either
0.01–0.03 U/min of vasopressin or 5–15 µg/min of norepinephrine. The 28-day and 90-day
mortality rates were similar between groups, as were the rates of serious adverse events.
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However, in the subpopulation of patients with less severe septic shock, vasopressin was
associated with a lower mortality rate than norepinephrine at 28 days (26.5% vs. 35.7%,
p = 0.05) [97].

6. Discussion

The results of this research have made clear that this topic would deserve attention.
At the moment, the literature is offering a few studies. Systematic reviews and meta-
analyses have been offered to provide a broad picture of the role of vasopressin and/or
norepinephrine in treating S-AKI. See Table 1. The first of them is focused on the differences
between vasopressin and norepinephrine, with uncertain results [21]. Another one has
investigated the possibility to reduce the administration of vasoactive drugs in elderly
critically ill people [20]. The results were very uncertain and discussable. A meta-analysis
including the results obtained on 788 patients treated with early administration of vaso-
pressin (6 h septic shock) did not show any advantage with the comparator group, treated
with the usual protocol [18]. A further study was addressed to identify the procedures used
in intensive care, when patients with AKI where treated [19]. The authors identified 18
different protocols in studies suggesting a significant effect on mortality. The deep analysis
of their investigation revealed an incredible discordance between participants stated beliefs
and actual practice.

Despite the increasing incidence of sepsis and the morbidity and mortality burden
it presents, it is surprising how little research has been dedicated to the condition and its
consequences [98]. Norepinephrine appears to have potentially adverse effects on renal
function, which may increase the risk of AKI in patients with sepsis. As a result, it appears
that other vasopressors may be better suited as first-line treatment, or they should be
supplemented with other substances [99,100].

The clinical implications are profound. S-AKI is prevalent in critically ill patients and
poses treatment challenges. Prompt fluid resuscitation and treatment are needed, but this
is a severe condition with high morbidity and mortality rates. The role of norepinephrine is
being superseded by vasopressin, although an expert consensus for a specific treatment
protocol is lacking. More research into this difficult and potentially deadly condition is
urgently needed. Since there are logistic and ethical challenges to conducting clinical trials
in critically ill patients, it is likely that the best evidence for guiding treatment will come
from a better understanding of the pathophysiology of S-AKI.

This study has several important limitations. It is a narrative review rather than a
systematic review or meta-analysis. Many studies cited in this paper did not consider
S-AKI or septic shock as variables. The doses of norepinephrine varied among the studies.
Many animal studies, which we did not include, have been conducted to research S-AKI,
and the results of some animal studies do not always align with human studies. Finally, the
studies we reviewed sometimes had patient populations with specific comorbidities, such
as diabetes mellitus, or demographic differences, such as geriatric patients. Thus, these
findings are not generalizable to all patients.

7. Conclusions

Sepsis is prevalent and associated with morbidity and mortality. Despite this preva-
lence, understanding of the pathophysiology of S-AKI is limited. Norepinephrine is
recommended as the first-line treatment, but a growing body of evidence suggests that
vasopressin may be a better choice. Further study is needed.
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