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Abstract: Background: Nonalcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC)
is becoming a major health-related problem. The exploration of NASH-related prognostic biomarkers
and therapeutic targets is necessary. Methods: Data were downloaded from the GEO database.
The “glmnet” package was used to identify differentially expressed genes (DEGs). The prognostic
model was constructed by the univariate Cox and LASSO regression analyses. Validation of the
expression and prognosis by immunohistochemistry (IHC) in vitro. Drug sensitivity and immune
cell infiltration were analyzed by CTR-DB and ImmuCellAI. Results: We constructed a prognostic
model that identified the NASH-related gene set (DLAT, IDH3B, and MAP3K4), which was validated
in a real-world cohort. Next, seven prognostic transcription factors (TFs) were identified. The
prognostic ceRNA network included three mRNAs, four miRNAs, and seven lncRNAs. Finally,
we found that the gene set was associated with drug response which was validated in six clinical
trial cohorts. Moreover, the expression level of the gene set was inversely correlated with CD8 T
cell infiltration in HCC. Conclusions: We established a NASH-related prognostic model. Upstream
transcriptome analysis and the ceRNA network provided clues for mechanism exploration. The
mutant profile, drug sensitivity, and immune infiltration analysis further guided precise diagnosis
and treatment strategies.

Keywords: multi-omics analysis; NASH-driven HCC; prognostic biomarkers; drug sensitivity;
immune infiltration

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancers with an increasing
mortality rate [1,2]. Nonalcoholic steatohepatitis (NASH), a manifestation of systemic
metabolic disease, has been recognized as a leading cause of HCC and liver transplantation
in recent years [3]. Although the incidence of NASH-driven HCC is lower than that of other
causes (such as hepatitis virus), the number of NASH patients is large, and the incidence of
NASH is projected to double within 10 years [4].

Compared to hepatitis virus-driven HCC, up to 50% of NASH-driven HCC occurs
in patients without cirrhosis, with relatively low annual incidence [3]. These features
lead to delays in diagnosing and treating NASH-driven HCC, ultimately affecting cancer
prognosis. With the development of high-throughput sequencing and bioinformatics, a
range of potential biomarkers that play a role in HCV-, HDV-, type 2 diabetes mellitus-, and
metallothionein1 deletion-driven HCC has been identified [5–8]. Some pyroptosis-related
genes (GSDMC, DHX9, CHMP4B, BAK1, and NOD2), necroptosis-related genes (RIPK1,
RIPK3, and MLKL-p), anoikis-related genes (DAP3), and cuproptosis-related genes (TAF6,
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SPP2, CFHR4, DNASE1L3) have also been defined as prognostic targets for HCC [9–12].
A systematic understanding of disease pathogenesis and treatment response may help
develop new approaches to cancer diagnosis and treatment. Therefore, more perspectives
are needed to identify prognostic biomarkers and underlying mechanisms associated with
NASH-driven HCC.

In this study, we aimed to establish a risk model based on NASH-related differentially
expressed genes (DEGs) that can predict the prognosis of HCC. Furthermore, upstream
regulatory networks, mutational profiles, drug sensitivity, and immune infiltration were
studied by multi-omics analysis.

2. Materials and Methods
2.1. Differential Expression Analysis

Download the data of GSE89632 (NASH), GSE99807 (NASH-driven HCC), and GSE87630
(HCC) from the online tool GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r accessed on
10 October 2022). The 3 databases had complete clinical information and sufficient samples
for analysis. DEGs were obtained through “limma” packages [13]. |log2FC| > 1 and
adj. p-value < 0.05 were set as the cut-off criteria. Protein–protein interactions (PPIs) were
obtained from the STRING database (https://string-db.org/ accessed on 10 October 2022).

2.2. Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
were carried out through R software, including the “clusterProfiler”, “enrichplot”, and
“goplot” packages. GO analysis includes three terms: biological process (BP), molecular
function (MF), and cellular component (CC). The top 5 enriched GO terms and KEGG
pathways were displayed using the “ggplot2” package.

2.3. Construction of a Prognostic Model and Nomogram

The least absolute shrinkage and selection operator (LASSO) regression model was
performed using the “glmnet” package in TCGA-LIHC. Univariate Cox regression analysis
further screened the DEGs with prognostic value using the “survival” package. The risk
score was calculated according to the centralized and standardized mRNA expression
data in TCGA-LIHC. Risk score = ∑n

i=1 exp(Xi) coef (Xi). Here, risk score = expression
level of DLAT× 0.255685 + expression level of IDH3B× 0.027537 + expression level of
MAP3K4× 0.190317. Next, the overall survival (OS) curves and receiver operating characteristic
(ROC) curves were produced by the “survival” package and “timeROC” package, respectively.
The “rms” and “survival” packages were used to form nomogram and calibration plots.

2.4. Specimen Collection

Liver tissues were obtained from Xiangya hospital. Two highly qualified patholo-
gists independently diagnosed these samples. HCC tissues and their adjacent normal
tissues were collected and immediately transferred to −80 ◦C for storage once excised.
Formalin-fixed tissue samples were embedded with paraffin for subsequent immuno-
histochemistry (IHC). This study was performed in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of Xiangya hospital (ID: 202105066). All
participants/patients have given informed consent.

2.5. Immunohistochemistry (IHC)

After dehydration and paraffin embedding, the liver tissues fixed with 4% paraformalde-
hyde were prepared into tissue chips. After dewaxing and hydration, 10 mM sodium
citrate was used at 95 ◦C for 15 min for antigen repair. After cooling to room temperature,
endogenous peroxidase was blocked with 3% H2O2 for 10 min. The diluted primary
antibodies (DLAT Afantibody Cat# AF302309; IDH3B Afantibody Cat# AF10574; MAP3K4
Afantibody Cat# AF05249) were then incubated at 4°C overnight. Next, biotin-labeled IgG
(Abcam Cat# ab6721) was used to detect antibody binding. DAB-H2O2 and hematoxylin

https://www.ncbi.nlm.nih.gov/geo/geo2r
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were prepared for staining. Images were photographed with a microscope. The staining
score was defined by both the staining intensity score and the positive staining percentage
score. The staining intensity was divided into 4 grades: negative is 0; weakly positive is
1; moderately positive is 2; strongly positive is 3. The percentage of positive staining was
divided into 4 groups: 1 means positive in 1–25%; 2 means positive in 26–50%; 3 means
positive in 51–75%; 4 means positive in 76–100%.

2.6. TF-Gene Interaction and Competing Endogenous RNA (ceRNA) Network

Transcription factors (TFs) were predicted at the single-cell or bulk level through
GRNdb (http://www.grndb.com/ accessed on 10 October 2022) [14]. miRNAs and lncRNA
were predicted based on mirDIP (http://ophid.utoronto.ca/mirDIP/ accessed on 10 Octo-
ber 2022) [15] and StarBase V2.0 (https://starbase.sysu.edu.cn/ accessed on 10 October
2022) [16]. The network diagrams were made by the “igraph” package.

2.7. Mutation Analysis

The single-nucleotide variant (SNV) and copy number variation (CNV) data were
collected from the TCGA database. Seven types of mutation were included in this analysis:
Missense_Mutation, Nonsense_Mutation, Frame_Shift_Ins, Splice_Site, Frame_Shift_Del,
In_Frame_Del, and In_Frame_Ins. These types of mutations are deleterious mutations.
Moreover, the non-deleterious mutations include Silent, Intron, IGR, 3’UTR, 5’UTR, 3’Flank,
and 5’Flank. The copy number variation (CNV) data were processed through GISTIC2.0 [17].

2.8. Drug Sensitivity and Response Analysis

We collected the IC50 data and mRNA gene expression from the Genomics of Thera-
peutics Response Portal (GTRP) (https://portals.broadinstitute.org/ accessed on 10 October
2022) [18]. Pearson correlation analysis was performed to obtain the correlation between
gene mRNA expression and drug IC50. Data on drug response to cancer treatments were
obtained from the cancer treatment response gene signature database (CTR-DB) (http://ctrdb.
cloudna.cn/ accessed on 10 October 2022) [19]. CTR_Microarray_14, CTR_Microarray_15,
CTR_Microarray_35, CTR_Microarray_71, CTR_RNAseq_410, and CTR_RNAseq_386 were
analyzed. The ability to predict drug response was based on the AUC value.

2.9. Immune Cell Abundance Identifier (ImmuCellAI)

The association between gene expression and immune cell infiltration was analyzed
by ImmuCellAI (https://github.com/lydiaMyr/ImmuCellAI accessed on 10 October
2022) [20]. Spearman’s coefficient was used for evaluation. The immune infiltration
data were obtained from TCGA. Heatmaps were drawn through the “ggplot2” package.

2.10. Statistical Analysis

Statistical analysis was performed in R software (v.3.6.3) and GraphPad Prism. The
differential expression analyses were detected with t-test. The survival analyses were
determined by the Logrank test. In all analyses, p-value < 0.05 was considered statistically
significant. *, **, and *** indicated p < 0.05, p < 0.01, and p < 0.001, respectively.

3. Results
3.1. Screening of the Common DEGs in NASH and HCC

In search of gene expression microarrays regarding NASH and HCC in the GEO
database, three datasets (GSE89632, GSE99807, and GSE87630) were finally included
(Figure 1A). Subsequently, differential expression analysis was conducted. A total of
487 DEGs were obtained in GSE89632, 828 DEGs were obtained in GSE99807, and 1247 DEGs
in GSE87630. The corresponding volcano maps and heat maps (top 20) are shown in
Figure 1B–D. Next, we further identified 19 DEGs that appeared in all 3 databases (Figure 1E).
The gene symbols and interactions of these 19 significant DEGs are presented in Figure 1F
and Table S1.

http://www.grndb.com/
http://ophid.utoronto.ca/mirDIP/
https://starbase.sysu.edu.cn/
https://portals.broadinstitute.org/
http://ctrdb.cloudna.cn/
http://ctrdb.cloudna.cn/
https://github.com/lydiaMyr/ImmuCellAI
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Figure 1. Screening of the common DEGs in NASH and HCC. (A) Description of datasets used to 
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3.2. Functional Enrichment Analysis for the Common DEGs 

Figure 1. Screening of the common DEGs in NASH and HCC. (A) Description of datasets used to
screen DEGs. (B−D) The volcano plots (|log2(FC)| > 1, adj. p < 0.05) and heatmap plots (top 20) of
DEGs in GSE89632, GSE99807, and GSE87630. (E) Overlap of DEGs from 3 datasets found 19 valuable
genes. (F) Protein–protein interaction network of 19 DEGs among NASH and HCC. The width of the
edge represents the correlation.

3.2. Functional Enrichment Analysis for the Common DEGs

We performed functional enrichment analysis to predict the underlying biological func-
tion and corresponding pathways between NASH and HCC. The enriched GO functions
included citrate metabolic process and acetyl-CoA metabolic process in the BP category
(Figure 2A); mitochondrial matrix, oxidoreductase complex, and secretory granule lumen
in the CC category (Figure 2B); oxidoreductase activity, acting on the aldehyde or oxo group
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of donors and sulfur compound binding in the MF category (Figure 2C). Some enriched
KEGG pathways were also observed, among which citrate cycle, carbon metabolism, and
pyruvate metabolism were the most highly enriched pathways (Figure 2D).
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3.3. Construction and Validation of a Prognostic Model

As shown in Figure 1F, we screened out 19 common DEGs. The LASSO regression
algorithm and Cox regression analysis were used to refine the gene set (Figure 3A–C)
to reduce the overfitting of high-dimensional genes. In this manner, three genes were
identified as the most valuable predictive DEGs, and the risk score system was established
using the formula mentioned above. In addition, we also analyzed the expression levels of
DLAT, IDH3B, and MAP3K4 in HCC (Figure 3D) and their prognostic value in different
clinical subgroups: T3 and T4 stage, pathological stage III and IV, fibrosis Ishak score 3–6,
and Child–Pugh grade B and C. The results indicated that the lower expression of the
three genes might be correlated with better prognosis in advanced patients (Figure 3E–G,
Figure S1).
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Figure 3. Construction of the LASSO regression model. (A) Cross-validation for tuning the parameter
selection in the LASSO regression. (B) Coefficient profiles in the lasso regression model. The different
color lines represented the trajectory of the coefficients for each variable. (C) Univariate Cox regression
analysis and LASSO coefficient of DLAT, IDH3B, and MAP3K4 in TCGA-LIHC. (D) The expression
levels of DLAT, IDH3B, and MAP3K4 in TCGA-LIHC. (E–G) Prognostic value of DLAT, IDH3B, and
MAP3K4 in different subgroups: T3 and T4 stage, pathological stage III and IV, and fibrosis Ishak
score 3–6.

In order to confirm whether this risk model could predict the prognosis better, patients
from the TCGA-LIHC database were randomly divided into a training set (50%) and a
test set (50%). The median risk score was defined as the threshold, dividing the HCC
patients into high-risk and low-risk groups. We found that the high-risk group had a
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higher mortality rate compared with the low-risk group in the training set (Figure 4A).
Kaplan–Meier curve showed that patients in the high-risk group had a worse prognosis
(p < 0.001) (Figure 4B). Moreover, the prognostic accuracy of OS was 0.775 at one year, 0.699
at three years, and 0.658 at five years (Figure 4C). In the test set, the high- and low-risk
groups exhibited significantly different survival probabilities (p = 0.008) with an AUC of
0.780, 0.726, and 0.699 in a time-dependent ROC at one, three, and five years (Figure 4D–F).
In addition, the prognostic model constructed based on our risk score was superior to the
single gene (Figure 4G–I) and other models that have been published [21–24].
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Figure 4. Construction and validation of a prognostic model. (A) Risk score, patient survival status,
and expression heatmap of 3 DEGs in the training set. (B,C) Kaplan–Meier curve and time–ROC
curve of risk score in the training set. (D) Risk score, patient survival status, and expression heatmap
of 3 DEGs in the test set. (E,F) Kaplan–Meier curve and time–ROC curve of risk score in the test set.
(G–I) The predictive efficiency (1, 3, and 5 years) of DLAT, IDH3B, and MAP3K4 in TCGA-LIHC.



J. Clin. Med. 2023, 12, 1286 8 of 21

3.4. Construction of the Nomogram and Calibration Curves

To better guide clinical decision-making, we established a nomogram combining
multiple clinical parameters, including age, gender, T stage, pathological stage, and risk
scores (Figure 5A). In the nomogram, each signature was assigned points according to its
risk contribution to OS. Furthermore, we constructed calibration curves, which illustrated
a remarkable consensus with the actual survival time of patients with HCC (Figure 5B).
Based on these findings, we found that the nomogram containing our risk scores performed
well in predicting OS in HCC.
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Figure 5. Nomogram to predict survival probability of HCC patients. (A) The predictive probability
of the risk score with pathologic features in the nomogram. (B) Calibration plots for predicting 1-, 3-,
and 5-year OS of HCC patients.

3.5. Validation of the Expression and Prognosis in a Real-World HCC Cohort

We collected 30 pairs of HCC tissues and normal liver tissues to make the tissue
microarray (Table 1). Excluding sample loss during tissue microarray fabrication and
staining, 28 pairs of samples are available. The protein expression levels of DLAT, IDH3B,
and MAP3K4 were detected by IHC. The high/low expression of the target protein was
relative, defined by the median IHC staining score. Consistent with the previous analysis,
our results showed that DLAT presented a high expression level, and the patients with high
DLAT had poorer OS (Log-rank p = 0.049) (Figure 6A–C). Similar results were found in
IDH3B (Log-rank p = 0.015) (Figure 6D–F) and MAP3K4 (Log-rank p = 0.028) (Figure 6G–I).
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Figure 6. Validation of the expression and prognosis in a real-world HCC cohort. (A–C) The expression
level and prognostic value of DLAT were analyzed by IHC and survival curve. (D–F) The expression
level and prognostic value of IDH3B were analyzed by IHC and survival curve. (G–I) The expression
level and prognostic value of MAP3K4 were analyzed by IHC and survival curve. *** p < 0.001.
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Table 1. Clinical information of HCC patients from Xiangya Hospital.

Characteristic Levels Overall

Age >60 16 (53.3%)
≤60 14 (46.7%)

Gender Female 3 (10%)
Male 27 (90%)

Pathological stage I 11 (36.7%)
II 11 (36.7%)
III 5 (16.7%)
IV 3 (10%)

T stage T1 10 (33.3%)
T2 13 (43.3%)
T3 6 (20%)
T4 1 (3.3%)

N stage N0 28 (93.3%)
N1 2 (6.7%)

M stage M0 29 (96.7%)
M1 1 (3.3%)

Living status Alive 23 (76.7%)
Dead 7 (23.3%)

3.6. Prediction of the Upstream TFs in HCC

To better understand the regulatory mechanisms, transcriptome analysis was per-
formed using GRNdb in HCC. First, we predicted 32 TFs targeted DLAT, 35 TFs targeted
IDH3B, and 14 TFs targeted MAP3K4 (Table S2) and constructed a transcriptional regu-
latory network (Figure 7A). To further explore the intrinsic relationship of the gene set,
we screened TFs targeting at least two genes for subsequent analysis (Figure 7B). The
correlation between TFs and target genes was shown by heatmaps (Figure 7C–E). Based on
correlation analysis (R > 0.3) and prognostic analysis (p < 0.05), we finally identified seven
potential TFs: RELA, RAD21, PML, EZH2, ELF4, NFYA, and SUPT20H (Figure 7F). The
corresponding relationships between TFs and target genes are presented in Figure 7G.

3.7. Construction of ceRNA Network in HCC

In recent years, more and more evidence has revealed the role of mRNA–miRNA–
lncRNA networks in a variety of human cancers. The predicted miRNAs and lncRNAs are
from mirDIP and StarBase V2.0. These two databases combined nearly 30 different sources,
and we selected the targets with the highest score class for further analysis. Finally, we
identified 8 miRNAs that targeted DLAT, 10 miRNAs that targeted IDH3B, and 9 miRNAs
that targeted MAP3K4 (Figure 8A–D, Table S3). Based on the classical inverse relationship
between miRNAs and target genes, we hypothesized that the upstream miRNAs should
theoretically display lower expression levels and favorable prognosis. Therefore, we
further evaluated the expression and prognosis of 27 predicted miRNAs in HCC. The
results showed that four miRNAs (hsa-miR-1271-5p, hsa-miR-582-3p, hsa-miR-491-5p, and
hsa-miR-148a-3p) out of 27 miRNAs functioned as significant prognostic biomarkers for
patients with HCC (Figure S2A).

Next, we further predicted those lncRNAs that can potentially bind to the four key
miRNAs (Figure 8E, Table S4) based on the StarBase. There is a negative correlation between
lncRNAs and miRNAs, according to the ceRNA hypothesis. Combining the expression
analysis and survival analysis results for these predicted lncRNAs, we defined the seven
lncRNAs: LINC00847 and LINC01011 targeted hsa-miR-582-3p; MAPKAPK5-AS1 targeted
hsa-miR-1271-5p; AC078846.1 targeted hsa-miR-491-5p; and SNHG4, LINC00667, and
AC093227.1 targeted hsa-miR-148a-3p (Figure S2B). Through the above-integrated analysis,
we have constructed the mRNA–miRNA–lncRNA triple network (Figure 8F), which was
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significantly associated with the prognosis of HCC. The network may also be developed as
promising prognostic biomarkers or therapeutic targets for HCC in the future.
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Figure 7. Prediction of potential TF-gene interactions. (A) The transcriptional network for DLAT,
IDH3B, and MAP3K4. (B) Screening for TFs regulating at least 2 genes. (C–E) The heatmaps of
correlations between predicted TFs and target genes. (F) Prognostic analysis of TFs with spearman
R > 0.3. (G) The Sankey diagram showed the corresponding relationships between TFs and target
genes. * p < 0.05, ** p < 0.01, *** p < 0.001 and ns, no significance.
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Figure 8. Prediction of potential ceRNA network. (A–C) Venn diagram found 8 potential miRNAs
of DLAT, 10 potential miRNAs of IDH3B, and 9 potential miRNAs of MAP3K4. (D) Network for
miRNA–mRNA interactions. Red edges represent the miRNAs with prognostic values in TCGA-LIHC.
(E) Network for miRNA–lncRNA interactions. Red edges represent the miRNAs with prognostic
values in TCGA-LIHC. (F) The potential mRNA–miRNA–lncRNA competing endogenous RNA
(ceRNA) triple regulatory network associated with the prognosis of HCC.

3.8. The Expression and Mutation Profile in Pan-Cancer

To further explore the role of the gene set (DLAT, IDH3B, and MAP3K4) across diverse
cancer types, we analyzed their expression levels and mutant profiles. We found that the
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gene set had consistently high expression levels in CHOL, ESCA, LIHC, LUAD, LUSC, and
STAD but low expression levels in KIRC and THCA (Figure 9A–C).
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and MAP3K4 (C). * p < 0.05, ** p < 0.01, *** p < 0.001.

Mutation data of DLAT, IDH3B, and MAP3K4 were analyzed and visualized in the
GSCA online tool. The landscape of mutation in each cancer sample was presented in the
waterfall plot (Figure 10A). By comparison, missense mutations, SNPs, and C > T accounted
for the largest fraction of SNV in pan-cancer (Figure 10B). SNV heatmap indicated that
the mutation rate of MAP3K4 was the highest, and uterine corpus endometrial carcinoma
(UCEC) had the highest mutation rate (Figure 10C, Table S5). On the other hand, CNV
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percentages in pan-cancer are shown in Figure 10D. As for DLAT, the highest copy number
amplification (>33%) was found in DLBC, and the highest copy number deletion (>81%)
was found in TGCT. As for IDH3B, the highest copy number amplification (>62%) was
found in UCS, and the highest copy number deletion (>29%) was found in READ. As
for MAP3K4, the highest copy number amplification (>44%) was found in UCS, and the
highest copy number deletion (>77%) was found in KICH (Table S5).
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Figure 10. The landscapes of mutation based on GSCA. (A) SNV information (deleterious) of
MAP3K4, DLAT, and IDH3B in each sample was shown in the waterfall plot. Different mutation
types were identified by color. (B) According to classification categories, missense mutation, SNP,
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and C > T mutation accounted for a larger proportion. (C) The SNV percentage heatmap of MAP3K4,
DLAT, and IDH3B in pan-cancer. (D) The CNV percentage pie plots of MAP3K4, DLAT, and IDH3B
in pan-cancer. (E) The survival difference between gene set mutant (deleterious) and wide type
in pan-cancer. (F) The survival difference between gene set CNV and wide type in pan-cancer.
SNP, single-nucleotide polymorphism; SNV, single-nucleotide variant; CNV, copy number variation;
OS, overall survival; PFS, progression-free survival; DSS, disease specific survival; DFI, disease
free interval.

In addition, the prognostic value of the gene set mutations was also analyzed in
pan-cancer (Figure 10E,F). The endpoints of OS, PFI, DFI, and DSS data are in accordance
with Liu’s suggestion [25]. The results suggested that the gene set mutant had better PFS
and DFI than the wild type in UCEC but had worse PFS in OV. Moreover, the gene set
amplification/deletion type in THCA, SARC, UCEC, and LGG had consistently better OS,
PFS, and DSS than the wild type.

3.9. Drugs Sensitivity and Response Analysis

The correlations between the gene set expression and drug sensitivity (top 30) in pan-
cancer were summarized in Figure 11A and Table S6. We found that the expression level of
the gene set was generally negatively correlated with drug sensitivity. Next, we evaluated
the response of the gene set to therapeutic drugs in six real-world trial cohorts (Table 2).
Figure 11B–D revealed the ability of DLAT to predict response to Imatinib, FOLFIRI, and
FOLFOX6 regimen were 0.744, 0.824, and 0.756. Figure 11E,F revealed the ability of IDH3B
to predict response to Paclitaxel and Fluorouracil were 0.868 and 0.84. Figure 11G revealed
the ability of MAP3K4 to predict response to Peginterferon alfa-2a was 0.921.

Table 2. Data of drug response from CTR-DB.

Gene CTR-DB ID Cancer Type Therapeutic Regimen Sample

DLAT
CTR_Microarray_14 Leukemia Imatinib 45
CTR_Microarray_15 Colorectal cancer FOLFIRI 21
CTR_Microarray_35 Colorectal cancer FOLFOX6 29

IDH3B
CTR_Microarray_71 Ovarian cancer Paclitaxel 20
CTR_RNAseq_410 Stomach cancer Fluorouracil 10

MAP3K4 CTR_RNAseq_386 Skin cancer Peginterferon alfa-2a 16
FOLFIRI, Fluorouracil + Irinotecan + Leucovorin; FOLFOX6, Fluorouracil + Leucovorin + Oxaliplatin.

3.10. Correlation Analysis of Immune Cell Infiltration

With the popularity of immunotherapy, attention has been paid to the role of the
tumor microenvironment in the process of tumor development, metastasis, recurrence, and
drug resistance [26]. We analyzed the relationship between the gene set expression levels
and immune cell infiltration in 33 human tumors. As shown in Figure 12A–C, we selected
six common immune cells: CD8 T cell, CD4 T cell, B cell, macrophage, neutrophil, and
dendritic cell. To show the results more clearly as a whole, we used the GSVA score to
replace the gene set expression value (Figure 12D) (Table S7). GSVA score represented the
comprehensive level of gene set expression and was positively correlated with gene set
expression [27]. It is generally accepted that CD8 T cells are the main performers of the
immune response. Specifically in LIHC, we found that DLAT, MAP3K4, and CD8 T cell
infiltration were negatively correlated (Figure 12E). Further evaluation by the infiltration
score results suggested that the expression level of the gene set was inversely correlated
with immune cell infiltration in general (Figure 12F).
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Figure 11. Analysis of the drug sensitivity and response. (A) The bubble plot showed the correlations
between genes and drugs (top 30). The drugs were ranked by the integrated level of correlation
coefficient and FDR of searched genes. (B–D) The ability of DLAT to predict response to imatinib,
FOLFIRI, and FOLFOX6 therapeutic regimen. (E–F) The ability of IDH3B to predict response to
paclitaxel and fluorouracil. (G) The ability of MAP3K4 to predict response to peginterferon alfa-2a.
FOLFIRI, Fluorouracil + Irinotecan + Leucovorin; FOLFOX6, Fluorouracil + Leucovorin + Oxaliplatin.



J. Clin. Med. 2023, 12, 1286 17 of 21J. Clin. Med. 2023, 12, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 12. Correlation analysis of immune cell infiltration. (A–C) The correlation between the single 

gene expression levels and the infiltration of 6 immune cells. (D) The correlation between the gene 

set expression (based on GSVA score) and the infiltration of 6 immune cells. (E) Scatter plots showed 

that CD8 T cell infiltration was negatively correlated with the expression of DLAT, IDH3B, 

MAP3K4, and the gene set in TCGA-LIHC. (F) The correlation between gene expression levels and 

infiltration score in pan-cancer. * p < 0.05, ** p < 0.01. 

4. Discussion 

In recent decades, NASH has gradually developed into the most common chronic 

liver disease, which is closely associated with obesity, type 2 diabetes mellitus, 

dyslipidemia, and hypertension [28]. NASH-driven HCC is a serious public health con-

cern as the number of cases increases year by year. Current international clinical practice 

guidelines for HCC do not consider etiology. Therefore, the explorations of NASH-related 

biomarkers and prognostic models may help stratify patients and predict prognosis, and 

reveal potential therapeutic targets. 

Figure 12. Correlation analysis of immune cell infiltration. (A–C) The correlation between the single
gene expression levels and the infiltration of 6 immune cells. (D) The correlation between the gene
set expression (based on GSVA score) and the infiltration of 6 immune cells. (E) Scatter plots showed
that CD8 T cell infiltration was negatively correlated with the expression of DLAT, IDH3B, MAP3K4,
and the gene set in TCGA-LIHC. (F) The correlation between gene expression levels and infiltration
score in pan-cancer. * p < 0.05, ** p < 0.01.

4. Discussion

In recent decades, NASH has gradually developed into the most common chronic liver
disease, which is closely associated with obesity, type 2 diabetes mellitus, dyslipidemia,
and hypertension [28]. NASH-driven HCC is a serious public health concern as the number
of cases increases year by year. Current international clinical practice guidelines for HCC
do not consider etiology. Therefore, the explorations of NASH-related biomarkers and
prognostic models may help stratify patients and predict prognosis, and reveal potential
therapeutic targets.

Studies of the mechanisms of NASH-driven HCC have provided us with some po-
tential targets. STARD1 is considered to affect the progression of HCC by promoting the
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synthesis of primary bile acids through the mitochondrial pathway [29]. Activation of the
E2F1–E2F2–CPT2 axis established a lipid-rich pro-tumor environment [30]. FGF21, which
controls inflammation and anti-fibrosis, has been identified as a novel intervention target
for NASH–HCC transformation [31]. Targeted inhibition of the LPL/FABP4/CPT1 axis
can block malignant transformation during NASH [32]. Studies of senescent cells also indi-
cated that nicotinamide adenine dinucleotide (NAD), silence information regulator protein
family (sirtuins), and mechanistic target of rapamycin (mTOR) were the major signaling
pathways involved in NASH-driven HCC [33]. Augmenter of liver regeneration (ALR) is
an important enzyme to maintain mitochondrial dynamics [34]. Zheng et al. proved that
the ubiquitination degradation of ALR had a potential contribution to NASH-driven HCC
progression at the mitochondrial level [35].

We defined three common DEGs between NASH and HCC. DLAT, or dihydrolipoamide
S-acetyltransferase, has been reported to mediate glycolysis reprogramming in non-small
cell lung cancer [36]. It is also considered to be one of the key proteins regulating cupropto-
sis [37]. IDH3B (isocitrate dehydrogenase 3β) is thought to cooperate with the cell cycle and
participate in cell proliferation in squamous esophageal carcinoma [38]. MAP3K4 (mitogen-
activated protein kinase kinase kinase 4), as an important member of the MAPK pathway,
is known to be a regulatory gene related to abnormal lipid droplet accumulation [39].
However, their roles in HCC have not been reported.

We constructed a prognostic risk model using these three DEGs through LASSO
regression analysis and univariate Cox analysis. Transcriptome and ceRNA network
analyses were performed to better understand the regulatory mechanisms. We finally
identified seven potential TFs that may be involved in the upstream regulation of this
gene set. In addition, we constructed a prognosis-related ceRNA network consisting of
seven lncRNAs, four miRNAs, and three mRNAs. The network may also be developed
as promising prognostic biomarkers or therapeutic targets for HCC in the future. The
mutant profile and drug sensitivity/response analysis further guided gene diagnosis
and clinical medication. It is well known that the treatment of HCC is a comprehensive
treatment strategy based on surgery. There are few drugs for HCC compared to other
cancers. Therefore, the hypothesis and exploration of “drug functional relocation” and
“drug combination” have become more important and urgent for HCC. Although none
of these drugs were used in the treatment of HCC, this study at least provided novel
therapeutic hypotheses and potential therapeutic targets.

It is well known that immunotherapy for advanced HCC has shown promising results
in animal models and clinical trials. However, surprisingly, NASH–HCC mouse models did
not respond to PD-1/PD-L1 treatment but instead exacerbated liver fibrosis and increased
the incidence of tumors [40]. Dominik Pfister et al. analyzed three clinical trials (CheckMate
459, IMbrave 150, and Keymat-240) and found that immunotherapy did not improve
survival in patients with non-viral HCC [41–44]. Our study showed that the infiltration of
immune cells, mainly CD8 T cells, was negatively correlated with the gene set expression.
We preliminarily believe that DLAT and MAP3K4 are one of the targets, and interfering
with their expression may improve the immunotherapy efficacy of NASH–HCC.

However, our study has some limitations. First, further exploration of its biological
functions and mechanisms in vivo and in vitro is necessary, which we are carrying out. Sec-
ondly, single-cell sequencing and flow sorting are needed to further verify the correlation
between the gene set and the tumor immune microenvironment. Thirdly, the implementa-
tion of an international multi-regional clinical trial is necessary to avoid selection bias.

5. Conclusions

To sum up, by combining machine learning with multi-omics analysis, we found a
set of NASH-related prognostic biomarkers, which may contribute to the development of
more personalized and precise treatment strategies for HCC.
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