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Abstract: The limitation of traditional delivery methods for fecal microbiota transplantation (FMT)
gave birth to colonic transendoscopic enteral tubing (TET) to address the requirement of frequent
FMTs. Colonic TET as a novel endoscopic intervention has received increasing attention in practice
since 2015 in China. Emerging studies from multiple centers indicate that colonic TET is a promising,
safe, and practical delivery method for microbial therapy and administering medication with high
patient satisfaction. Intriguingly, colonic TET has been used to rescue endoscopy-related perforations
by draining colonic air and fluid through the TET tube. Recent research based on collecting ileocecal
samples through a TET tube has contributed to demonstrating community dynamics in the intestine,
and it is expected to be a novel delivery of proof-of-concept in host–microbiota interactions and
pharmacological research. The present article aims to review the concept and techniques of TET and
to explore microbial therapy, colonic drainage, and microbial research based on colonic TET.

Keywords: fecal microbiota transplantation; transendoscopic enteral tube; drainage; host–microbiota
interactions; proof-of-concept

1. Introduction

The relationship between the intestinal microbiome and diseases has been studied
and documented through developments in the field of microbiology and metabolomics.
The essence of microbial therapy is to reconstruct the patient’s gut microbiota, and fecal
microbiota transplantation (FMT) is the most common method. Recently, increasing ev-
idence has demonstrated the therapeutic potential of FMT in many diseases including
recurrent Clostridioides difficile infection (rCDI) [1], inflammatory bowel disease (IBD) [2,3],
refractory irritable bowel syndrome [4], autism [5], diabetes mellitus [6], serious antibiotics-
associated diarrhea [7], radiation enteritis [8], non-erosive reflux disease [9], and other
microbiota-related diseases.

FMT-related delivery methods are traditionally divided into the upper gut, the mid-
gut, and the lower gut [10–12]. Oral capsule is a delivery method via the upper gut [13]. The
mid-gut routes for FMT include the gastroscopy, nasojejunal tube, percutaneous endoscopic
gastro-jejunostomy, and mid-gut transendoscopic enteral tubing [14]. The microbiota
suspension can be infused into the lower gut through enema, colonoscopy, distal ileum
stoma, colostomy, or colonic transendoscopic tubing (TET) [12]. Colonic TET, a novel
delivery pathway, was initially designed for multiple FMT and colon administration [12].
Recently, a systematic review reported that patients who underwent colonic TET had the
lowest incidence of delivery-related adverse events (AEs) compared with patients using
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other delivery routes such as capsule, gastroscopy, colonoscopy, and mid-gut tube, etc. [15].
In addition, Allegretti et al. also stated that TET was a promising approach for FMT due to
its considerable improvement in safety [16].

Endoscopic placement of an intestinal decompression tube is a practical technique
for the treatment of acute intestinal dilation. However, patients with decompression
tubes face many difficulties in conducting their daily tasks. Colonic TET, as a delivery
method for microbial therapy, could be used to solve the problem of the development
of colonic perforation due to IBD or endoscopic-associated injury to avoid surgery [17].
There is a clinical necessity of using a maintainable colonic tube by combining the use of
decompression and medication delivery.

Based on the novel implanting method of colonic TET, which directly connects the
deep intestine to the exterior, its application is already beyond microbial therapy. The
innovation of colonic TET has been proven to be a new non-invasive method of sampling
fecal suspension from the cecum for microbiomics and metabolomics research [18]. In
addition, colonic TET could represent a novel delivery method for proof-of-concept in
pharmacological research. Considering the multiple applications of colonic TET, this review
aims to present up-to-date evidence of colonic TET in microbial therapy, colonic drainage,
and host–microbiota interaction.

2. The Concept and Technique of Colonic TET

The concept of TET was first reported in 2015 [12]. The main clinical applications
of colonic TET are shown in Figure 1. A tiny and soft TET tube should be inserted into
the deep colon with endoscopic guidance. After that, the endoscope is removed from
the colon while the TET tube is maintained at the target location. Then, the endoscope
is re-inserted to fix the TET tube in place [12,19]. The colonic TET tube (FMT medical,
Nanjing, China) has three separate loops attached to the tube: the first, second, and third
site/station. The first loop is fixed to the proximal end of the colon, 10 cm away from the
subsequent loop [19]. Each line-loop on the tube is used to fix the tube to the intestinal wall
with one or two endoscopic clips (e.g., ROOC-D-26-195-C, ≥10 mm, Nanjing Microtech Co.;
HX-610-135 L, 135◦, Olympus). The location and number of clips are based on the mucosal
folds, disease severity, and duration for which the tube needs to be retained. Generally,
1–2 clips at the first site and 0–2 clips at the second and/or third site (as required) are
recommended [12,19,20]. A previous study indicated that using more than four clips had
no extra benefit in prolonging the maintenance time of the TET tube [19]. There is a guide
wire within the tube for colonic TET, which is removed from the distal TET tube when the
colonoscope is withdrawn from the intestine. Subsequently, the TET tube outside the anus
is fixed to the hip lubricated with paraffin.

After the endoscope arrives at the target location (e.g., the cecum, ascending colon,
transverse colon, and descending colon), the TET tube lubricated with paraffin oil is inserted
through the endoscopic channel (diameter >3.2 mm is recommended). A recent study
demonstrated that the implantation of a colonic TET tube was quick and safe, although
it required double cecal intubation. Compared with regular colonoscopy, the whole cecal
intubation time was decreased with the help of cap-assisted colonoscopy, especially the
second cecal intubation time (2.8 min vs. 2.2 min, p < 0.001) [21].
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Figure 1. The diagram of colonic TET in clinical practice and research. (A). Insert the colonic TET into
the endoscopic channel when the endoscope reaches the target location, then remove the endoscope.
(B). Re-insert the endoscope and hold the TET tube in place. (C). Insert the titanium clip to fix the
loop of the colonic TET tube onto the intestinal wall. TET: transendoscopic enteral tubing.

3. The Applications of Colonic TET
3.1. Colonic TET for Microbial Therapy

FMT via colonoscopy is impractical for patients who require multiple FMTs to undergo
repeated colonoscopy in a short period of time. As for pediatric or older patients who
cannot care for themselves, there is a high risk of choking into the airway accidentally when
swallowing the oral capsules. Furthermore, it is also not recommended for patients who
are unconscious. The microbiota suspension delivered by enema can only reach the rectal
and sigmoid colon, making it difficult for patients to retain it in the gut for sufficient time.
Therefore, colonic TET was developed to meet the needs of multiple FMTs. In addition,
whole or local colonic administration of medications is possible through colonic TET
including mesalazine and corticosteroids [12,19]. A study by Oancea et al. demonstrated
that the local administration of thioguanine in the rectum might be an effective treatment for
colitis [22]. They highlighted the advantages of local drug administration, which reduces
the risk of serious side effects associated with systemic delivery. Moreover, colonic TET
works for patients who can endure regular enemas. The differences among the common
delivery methods are shown in Table 1. The improved methodology of FMT was termed
“washed microbiota transplantation” (WMT), which is based on an automatic filtration
and washing process and the related delivery [23]. During the washing process, more
types, quantities of viruses, and pro-inflammatory mediators are washed out to improve
the safety of WMT. Recently, Lu et al. found that colonic TET for delivering WMT was the
predominant method used in ulcerative colitis (UC, 67.2%) [24].
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Table 1. Comparison of the different delivery methods.

Delivery Ways Advantages Limitations

Oral capsules Overcome the concern of invasive
administration; easy to perform

Efficacy may affect by gastric acid and
the preservation state of bacteria

Gastroscopy Easy to reach the target location Not convenient to repeat FMTs

Mid-gut/Nasojejunal tube/PEGJ tube
Easy to reach the target location;
convenient to repeat FMTs; easy

to maintain

Placed under gastroscopy; limited and
special population for use

Colonoscopy Easy to reach the target location Not convenient to repeat FMTs

Colonic TET tube
Easy to reach the target location;
convenient to repeat FMTs; easy

to maintain;
Placed under colonoscopy

Stoma in ilecolon/colon Convenient to repeat FMTs; easy
to perform

Only for selected population with
surgical double-cavity stoma in

ilecolon/colon

Enema Easy to perform; low cost Difficulty to hold the bacteria suspension
in rectum for a long time

Abbreviations: PEGJ, percutaneous endoscopic gastrostomy with jejunal extension; FMT, fecal microbiota trans-
plantation; TET, transendoscopic enteral tubing.

Colonic TET was recommended by the most recent consensus from the FMT-standardi-
zation study group in Asia in 2019 [25] and an international FMT expert group in 2020 [26]
due to its convenience and safety for WMT in clinical applications (Figure 2). A question-
naire analysis from Liang’s group indicated that an increasing proportion of the public
were aware of FMT and had positive outlooks toward the use of FMT in the treatment of
IBD and other diseases in recent years [27]. However, another questionnaire study about
the recognition and attitudes of FMT through TET in patients with IBD revealed that a
large proportion of participants were unaware of the concept of TET, suggesting that it
is necessary to increase public attention and promote the medical application of colonic
TET [28].

Generally, colonic TET is removed actively or falls out spontaneously after microbial
therapy or medication treatment; the latter outcome is preferred in clinical practice. Due to
the difference in the sample size in studies, the median retention time of colonic TET has
been reported to be 12.4 days [12] and 8.6 days [19] in adults and 6 days in children [20];
the difference between adults and children can be attributed to the number and type of
endoscopic clip. All of the existing studies indicate that endoscopic clips are an independent
factor affecting the retention time. The reported success rate of performing colonic TET
was 100% in both adult [19] and pediatric patients [20]. Moreover, physician–patient
satisfaction [29] for colonic TET in adults was 97.8% [19], and the reasons for dissatisfaction
were not mentioned in the relevant study. In children, the satisfaction rate was 100% [20].

Recently, Philip et al. reported on a patient with fulminant CDI requiring surgical
loop ileostomy. The patient underwent rescue FMT, which was safely delivered by a Foley
catheter through the ileostomy. The case highlighted the positive contribution of the Foley
catheter in multiple FMTs, avoiding re-operation and unnecessary colonoscopy [30]. The
role of the Foley catheter in this case was similar to colonic TET; however, it is not as stable
as colonic TET because it is not fixed to the intestinal wall.

Several studies regarding FMT delivery via colonic TET demonstrated a high ef-
ficacy [31]. Zhou’s group indicated that in 47 patients with UC who underwent FMT
treatment via colonic TET, the rate of steroid-free clinical response was 84.1% and steroid-
free clinical remission was 70.5% at one month post-FMT [32]. Ding et al. demonstrated
that the clinical response of UC patients one month post-FMT via colonic TET was 83.3% [3].
Moreover, Chen’s group reported that in 30 patients with active UC who underwent FMT
via colonic TET and enema, the clinical response rate was 59.3% and the clinical remission
rate was 40.7% [33]. Remarkably, there was no difference in efficacy between patients who
underwent FMT via colonic TET or via other delivery routes (gastroscopy and nasojeju-
nal TET) in different studies [3,34–36]. Nie’s group further demonstrated that regardless
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of whether it was gastroscopy or colonic TET, the delivery route might not affect fecal
IgA-bacteria interactions after FMT [37].
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Figure 2. The colonic TET tube used in different disease conditions. (a) The colonic TET tube in the
intestine of a patient with CD. (b). The colonic TET tube in the intestine of a patient with rCDI. (c) The
colonic TET tube in the intestine of a patient with IBS. (d) The colonic TET tube in the intestine of a
patient with UC. CD, Crohn’s disease; rCDI, recurrent Clostridioides difficile infection; IBS, irritable
bowel syndrome; UC, ulcerative colitis; TET, transendoscopic enteral tubing.

Recently, it has been reported that two patients with IgA nephropathy who received
FMT through colonic TET for 6–7 months both achieved partial clinical remission [38].
Furthermore, WMT via colonic TET was shown by He’s group to reduce the serum uric acid
in patients with hyperuricemia and acute gout [39,40]. Details regarding the application
of colonic TET in published articles are shown in Table 2. Of note, colonic TET is not
recommended for traditional manual preparation of FMT because tube obstruction was
reported while delivering the manual microbiota suspension in another study [41]. Recent
reports have highlighted that WMT as a new methodology of FMT contributes to the
decreased incidence of AEs compared with manual FMT [23]. Evidence suggests that
colonic TET is an efficient, safe, and satisfying delivery route for FMT.
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Table 2. The reported indications, clinical success rates, satisfaction rates, and adverse events of colonic TET.

Author, Year Article Type Case, n
Sex, Male, n (%);

Age, Mean (Range),
Years

Indication Clinical Success
Rate

Satisfaction
Rate

The Mean
Retention Time Adverse Events The Target

Location
The Endoscopic

Clips

The Average of
Endoscopic

Clips

Zhang et al.,
2022 [32]

Prospective
study 27 17(63.0%);

47.48 ± 12.34 UC 100% NA NA NA NA NA NA

Chen et al.,
2021 [42]

Retrospective
study 16 10 (62.5%); 39.88 ± 11 UC 100% 97.3% NA 3 NA NA NA

Zhong et al.,
2021 [20]

Prospective
study 47 42 (89.36%); 5(4–6)

21 autism, 6 UC,
2 rCDI, 1 CD,

17 others
100% 100% 6 (5–7) 4

29 in ileocecal,
12 in the

transverse colon,
6 in left

colon ileum

35 in large,
12 in small 2 (1.75–3)

Long et al.,
2020 [43]

Prospective
study 257 138 (57%); 39.9 ± 18.4

132 UC, 14 CD,
10 epilepsy,

8 autism,
56 others

100% NA 9.3 ± 3.8 (2–28) 21

215 in ileocecal,
6 in the

transverse colon,
25 in the

left colon, 6 in
descend-
ing colon

154 in large,
103 in small

3.5 ± 1.0 (2–6)
(in 95 cases)

Luo et al.,
2020 [44]

Retrospective
study 9 6 (66.7%);

47.44 ± 12.26 UC 100% NA NA 1 NA NA NA

Wen et al.,
2020 [21]

Randomized
controlled trial 303 155 (51.16%);

44.4 ± 17.6

93 constipation,
88 UC, 32 IBS,
9 CD, 2 health,

75 others

100% 100% 8 (6–10) 9 NA NA 2.65 ± 1.1

Liu et al.,
2021 [18]

Prospective
study 5 NA Health 100% NA NA NA 5 in ileocecal NA NA

Chen et al.,
2020 [33]

Prospective
study 44 25 (57%); 44.4 ± 17.6 UC 100% NA NA 5 NA NA NA

Chen et al.,
2020 [36]

Prospective
study 5 5 (100%); 47.9 ± 10.6 UC 100% NA NA 0 NA NA NA

Zhang et al.,
2019 [45]

Randomized
controlled trial 21 NA; 49.2 ± 13.77 UC 100% 100% NA 3 21 in ileocecal NA NA

Wang et al.,
2019 [41] Case series 5 4 (80%); 56.33 (31–94) 4 rCDI, 1 CD 100% NA NA NA 5 in left colon NA NA

Zhang et al.,
2021 [17] Case 3 1 (50%); 38 (25–51) 2UC, 1 CD 100% NA NA NA

1 in left colon, 2
in descend-
ing colon

NA NA

Luo et al.,
2021 [44] Case 1 1 (100%); 32 UC 100% NA NA NA NA NA NA

Zhao et al.,
2021 [38] Case 2 0 (0%); 40 (32–48) Refractory IgA

nephropathy 100% NA NA 2 NA NA NA

Wang et al.,
2020 [41] Case 1 1 (100%); 77 rCDI 100% NA NA NA NA NA NA

Zhong et al.,
2019 [20] Case 1 1 (100%); 31 CD 100% NA NA NA NA NA NA

Zhang et al.,
2019 [45] Case 1 1 (100%); 55 UC 100% NA NA NA NA NA NA

Abbreviations: UC, ulcerative colitis; rCDI, recurrent Clostridioides difficile infection; CD, Crohn’s disease. NA, not applicable.
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3.2. Colonic TET for Drainage and Decompression from Deep Colon

Stricture formation and intestinal perforation are common complications of Crohn’s
disease (CD) and results from the disease process, surgery, or drugs. The related practical
recommendations about dealing with IBD-related strictures and perforation have been
released by the International Interventional IBD Group [46,47]. Subsequently, the correct
and prudent application of endoscopic stricturotomy and ileo-colonic resection have been
emphasized by expert opinions [48,49]. Hence, the endoscopic procedure in the treatment
of IBD-associated complications is still a challenge. Although endoscopic decompression of
acute intestinal distension can reduce mortality in critically-ill patients [50], the trans-anal
decompression tube should be applied discreetly as it may cause intestinal perforation [51].
Unlike traditional trans-anal depression tube placement in the left colon [52,53], colonic
TET is a novel interventional procedure that will be promising for bringing benefits to
patients under endoscopy and avoiding surgery.

Endoscopic perforations are usually observed in patients with CD-associated stric-
tures [54]. The European Society of Gastrointestinal Endoscopy (ESGE) [55] and the Interna-
tional Intervention IBD Group [46] recommended that endoscopic intervention should be
considered depending on the type and size of iatrogenic perforation. Moreover, diversion of
the digestive luminal contents and decompression of tension pneumoperitoneum should be
performed [55], and colonic TET could play a significant role in this situation. Endoscopy is
the correct option if the perforation is found immediately; however, endoscopic reinterven-
tion can entail new risks and it may be difficult to locate the site of perforation. Furthermore,
prompt diagnosis will affect patient outcomes, and if the endoscopic perforation is found
too late, there is a risk of infection. Surgery must be performed once the patient shows
symptoms of generalized peritonitis or sepsis. However, if a patient with acute colonic
obstruction is in poor condition, emergency surgery compared with elective colon cancer
resection has a higher mortality rate [56]. Therefore, placing a colonic TET as palliative
treatment and awaiting a better time for surgery is necessary in critical illness.

Zhang et al. reported two cases of stricturing CD in the transverse colon in the same
patient who underwent endoscopic balloon dilation and one case with UC and spreading
mild dysplasia in the sigmoid colon, both patients suffered perforation after therapeutic
endoscopy [17]. A colonic TET with loops was fixed to the ascending or descending
colon wall with the intention of WMT and frequently delivering medications. However,
perforation was identified by X-ray several days after endoscopy, and the colonic TET
was immediately used for draining the air and fluid in the colon with syringe suction.
Eventually, all patients recovered rapidly via colonic TET and were free from surgery [17].
In cases of intestinal pressure exceeding atmospheric pressure, regardless of whether
surgery is necessary for the patient, colonic TET could be used to drain intestinal fluid
and reduce the tension by opening the cap of the distal tube outside the intestine. In
addition, colonic TET can be used to deliver antibiotics to prevent or treat infection. Of
note, regular endoscopic procedures such as endoscopic mucosal resection within the colon
and cap-assistant endoscopic sclerotherapy for hemorrhoids and prolapse have no effect
on colonic TET [57].

4. Host-Microbiota Interaction Based on Sampling via Colonic TET
4.1. Discovery in Host–Microbiota Interaction

Microorganisms play critical roles in various physiological functions of the host.
Exploring the human microbiota–host interaction could reflect the connection between
health and disease [58,59]. Principally, all gut microbiota-derived metabolites are produced
in one of three ways: directly from ingested compounds, from host-derived substrates,
or de novo from primary metabolites [59]. Therefore, finding a more effective method
to sample metabolites is vital. In most studies, fecal samples were used to study the gut
microbiome. Although they can be acquired easily, continual fecal samples are rarely taken
within short intervals [60]. Some studies found that the ileocecal microbiome, localized
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in the middle part of the gastrointestinal tract, had relatively higher diversity than the
fecal microbiome [61]. Moreover, studies on sampling the intestinal lavage fluid (IVF)
microbiome found that pathogenic microbiota was more abundant in the IVF than in
feces, and the microbiome in the IVF may be a better indicator for evaluating the risk of
developing colorectal cancer compared with fecal samples [62].

Microbial circadian rhythmicity is a feature of mammalian metabolism that might be a
significant factor in the development of metabolic disease [63]. Lora V’s group found that
the intestinal microbiota in the mouse small intestine programs diurnal metabolic rhythms
through histone deacetylase 3 [64]. To investigate community dynamics in the intestine
with better resolution, Wang et al. applied colonic TET to extract cecum fluid samples from
healthy volunteers twice daily (10 a.m. and 10 p.m.) via syringe, from which metagenomic,
metatranscriptomic, metabolomic, and virome analyses were conducted [65,66]. The results
revealed the individuality of reconstruction in the microbiome composition, functions,
and shared characteristics of the internal resilience of the gut microbiome. Sampling the
ileocecal microbiota in situ provides unique insights into the diurnal patterns or circadian
rhythms of the human gut microbiome for the first time. Based on samples from a healthy
human cecum, Liu et al. further identified that gut microbial methionine impacts circadian
clock gene expression and the reactive oxygen species level in the host gastrointestinal
tract [18]. Moreover, Fawad et al. reported that gut microbe-generated short-chain fatty
acids entrained intestinal epithelial circadian rhythms by inhibiting histone deacetylase [67].
Collection of intestinal fluid with a sterile syringe is recommended. Colonic TET is currently
the best non-invasive tool for collecting microbial samples from the deep colon in humans.

4.2. Precision Delivery of Potential Microbiota and Its Metabolites

The interplay between the metabolic activities of the intestinal microbiome and its host
forms a significant component of health [68]. The basis of this interaction is mediated by
the release of microbially-derived metabolites that interact with the immune or metabolic
systems of the host [69]. To date, accumulating evidence focusing on host microbiota
has shown that some potential gut microbiota and derived metabolites can be used to
reflect and treat different diseases [70]. For example, Meng’s group found that colitis could
be treated with indole-3-propionic acid [70], which was also recently demonstrated by
Serger et al. to promote nerve regeneration and repair in mice [71]. A 9-amino-acid peptide
called D3 was designed by Zhao’s group, which could largely increase the abundance of
Akkermansia muciniphila and downregulate CD36 to improve obesity [72]. Moreover, a
study by Zhao’s group demonstrated that supplementation with Bacteroides uniformis
improved autism spectrum disorder-like behaviors in a mouse model, which added new
evidence for the host–microbiota interaction [73]. Table 3 presents some potential substances
for the prevention or treatment of disease. In these studies, oral administration was the
primary delivery. However, one possibility is that the concentration and properties of these
substances had changed when they arrived at their destination in the intestine, which was
not mentioned in the articles. Therefore, how to effectively transfer potential metabolites
for treatment to the intestine has triggered further investigation.
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Table 3. The potential substances for the prevention or treatment of disease.

Item Name Model Disease Delivery Route Possible Mechanism

Chemical
substances and

food
Acetylcholine Mice and human IBD Enema

ACh promotes interleukin-10 secretion of
monocytic myeloid-derived suppressor
cells and suppresses the inflammation
through activating the nAChR/ERK

pathway [74]

Polyphenol Mice Cancer Oral
administration

Oral administration of castalagin enriched
for bacteria associated with efficient

immunotherapeutic responses
(Ruminococcaceae and Alistipes) and

improved the CD8+/Foxp3+CD4+ ratio
within the tumor microenvironment [75].

Starch modified with
acetate and butyrate Human Type 1 diabetes Oral

administration

Changes in gut microbiota composition,
function, and immune profile following 6

weeks of starch supplementation were
associated with increased SCFAs in stools

and plasma [76].

Intestinal
microbiota Akkermansia Mice Aging Oral

administration

Oral administration of Akkermansia
sufficiently ameliorated the

senescence-related phenotype in the
intestinal systems in aged mice and

extended the health span [77]

Saccharomyces
Boulardii (Sb) Mice IBS Gavage

Sb could upregulate SERT by EGFR
activation and modulate gut microbiota to

inhibit gut motility [78].

Enterococcus Mice Cancer Oral
administration

Active enterococci express and secrete
orthologs of the NlpC/p60 peptidoglycan

hydrolase SagA that generate
immune-active muropeptides. Expression
of SagA in nonprotective E. faecalis was

sufficient to promote anti-PD-1 antitumor
efficacy [79].

Eubacterium rectale Mice Lymphomagenesis Oral
administration

Producing butyrate to alleviate the
TNF-induced TLR4/My88/NF-kB axis [80]

Metabolites Acetate Mice Alzheimer’s
disease

Oral
administration

Acetate as the essential
microbiome-derived SCFA driving

microglia maturation and regulating the
homeostatic metabolic state [81].

9-amino-acid (D3) Mice and macaques Obesity Oral
administration

D3 ameliorated leptin resistance and
upregulated the expression of uroguanylin
(UGN), which suppresses appetite via the

UGN-GUCY2C endocrine axis, and
increased the abundance of

Akkermansia [72].

Indoles-3-propionic
acid (IPA) Human Colitis Oral

administration

Modulating the gut microbiota, that is by
significantly increasing the overall richness

and abundance of short-chain fatty acids
(SCFA) producing bacteria such as

Faecalibacterium and Roseburia [82].

Phage Kp2-phage Mice and human Intestinal
inflammation

Oral
administration

Proof-of-concept assessment of
Kp-targeting phages in an artificial human

gut and in healthy volunteers
demonstrates gastric acid-dependent

phage resilience, safety, and viability in the
lower gut [83].

Enterococcal
bacteriophage Mice Tumor Oral

administration

In mouse models, administration of
enterococci containing the bacteriophage
boosted T cell responses after treatment
with chemotherapy or programmed cell

death protein 1 (PD-1) blockade. In
humans, the presence of the bacteriophage

was associated with improved survival
after PD-1 immunotherapy [84].

Abbreviations: IBD, inflammatory bowel disease; IBS, irritable bowel syndrome. SCFA, short-chain fatty acid;
PD-1, programmed cell death protein 1; UGN, uroguanylin.

To slow down the drug release in the acidic upper gastrointestinal tract after oral
administration, novel prebiotic and postbiotic synergistic delivery microcapsules were
proposed by Zhao’s team [82]. In addition, Zhong et al. proposed an orally deliverable
strategy based on microalgae, which leveraged the biological properties of microalgal
carriers to improve the bioavailability of loaded drugs for the treatment of colon cancer
and colitis [85]. Similarly, Kaur et al. designed an orally administrable cargo transport
device named bacterioboat, which consists of surface-encapsulated mesoporous nanopar-
ticles on metabolically active Lactobacillus reuteri as a drug carrier that is suitable for oral
administration [86]. In vivo studies have shown that the oral delivery of 5-fluorouracil via
bacterioboat led to increased potency, resulting in improved shrinkage of solid tumors,
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enhanced life expectancy, and reduced side effects. Decorated bacteria for drug delivery in
intestinal disease treatment and cancer therapy will be an innovative strategy in the future
if we ignore the cost of development [87].

4.3. The Proof-of-Concept on Translational Microbial Research

A number of the exact mechanisms have not been verified in clinical research, and
studies focusing on the interaction between the host or pharmacy and microbiota remain in
the proof-of-concept stage [88]. Compared with the attempts of the precision delivery of
potential metabolites and drugs, the advantage and feasibility of colonic TET as a novel de-
livery of the proof-of-concept in host–microbiota interactions and pharmacological research
could be highlighted. Polyphenols mainly exist in plant-based food and are known to be
beneficial in IBD alleviation. Singh et al. found that a combination of polyphenols from
green tea extract and a prebiotic improved the beneficial gut microbiota (Lactobacillus, Bifi-
dobacteria, Akkermansia, Roseburia spp.) abundance, restored Firmicutes/Bacteriodetes,
and improved the Prevotella/Bacteroides proportions to effectively reduce the level of
inflammation [89]. Enlightened by these studies, combined latent beneficial substances or
FMT and probiotics via colonic TET might be a potential method to further explore the
relationship between disease and gut microbiota [90].

5. Conclusions

Strategically choosing a new pathway like colonic TET might be more effective than
traditional delivery methods in future research. Increasing studies have demonstrated
that colonic TET is a promising, safe, and practical delivery method. The present review
demonstrates the benefits of this novel technique in providing new options for the improve-
ment of microbial therapy, rescue therapy for patients with endoscopic-related perforation,
and research on dynamic host–microbiota interactions. There is no doubt that this review
will improve the understanding of colonic TET for researchers, physicians, and patients in
clinical practice and basic studies.
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