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Abstract: Iterations in stent technologies, advances in pharmacotherapy, and awareness of the
implications of implantation techniques have markedly reduced the risk of stent failure, both in
the form of stent thrombosis (ST) and in-stent restenosis (ISR). However, given the number of
percutaneous coronary interventions (PCI) performed worldwide every year, ST and ISR, albeit
occurring at a fairly low rate, represent a public health problem even with contemporary DES
platforms. The understanding of mechanisms and risk factors for these two PCI complications
has been of fundamental importance for the parallel evolution of stent technologies. Risk factors
associated with ST and ISR are usually divided into patient-, lesion-, device- and procedure-related.
A number of studies have shown how certain risk factors are related to early (1 month) versus
late/very late ST (between 1 month and 1 year and >1 year, respectively). However, more research
is required to conclusively show the role of time-dependence of risk factors also in the incidence
of ISR (early [1 year] or late [>1 year]). A thorough risk assessment is required due to the complex
etiology of ST and ISR. The most effective strategy to treat ST and ISR is still to prevent them;
hence, it is crucial to identify patient-, lesion-, device- and procedure-related predictors.

Keywords: drug-eluting stent; stent thrombosis; restenosis; DES; PCI

1. Introduction

Implantation of drug-eluting stents (DES) is a consolidated therapy for the treatment
of both stable and unstable coronary artery disease (CAD). The first DES implantation
dates back to 1999 when Eduardo Sousa in Brazil implanted the first sirolimus-eluting
stent, which became available as Cypher stent (Cordis Corp, Miami, FL, USA) in 2002. At
that time, the need to find an alternative to bare metal stents (BMS) arose from the high
rates of in-stent restenosis (ISR) and target lesion revascularization (TLR) associated with
this technology. Uncontrolled vascular smooth muscle cells (VSMC) proliferation and
intimal migration, together with extracellular matrix production after BMS deployment,
caused ISR in up to 30% of patients. In an effort to minimize the aberrant reaction caused
by BMS, several drugs targeting thrombosis, platelet activation, inflammation, and
VSMC proliferation have been tested. Coating BMS with anti-proliferative drugs such
as sirolimus or paclitaxel led to a significant reduction in the risk of ISR as compared
to BMS [1–4]. First-generation DES, such as the Cypher sirolimus-eluting stent and
Taxus paclitaxel-eluting stent (Boston Scientific, Natick, MA, USA), undoubtedly repre-
sented a breakthrough in stent technology. However, over time, early-generation DES
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were associated with a small but steady risk of stent thrombosis (ST), which appeared
more than a year after stent implantation. Awareness of molecular and pathological
mechanisms of vessel healing and the understanding of the rheological modifications
induced by stent implantation guided over the years several iterations in one of the
three main components of DES, and the advent of contemporary DES allowed reaching
an excellent efficacy and safety profile. Although the introduction of increasingly ef-
fective technologies and pharmacological advances have led to a significant reduction
in stent failure, ST and ISR still occur, albeit at a fairly low rate. However, since the
number of percutaneous coronary interventions (PCI) performed annually worldwide is
increasing and the complexity of treated patients is growing, the two aforementioned
PCI complications represent a relevant public health issue.

The aim of this review is to summarize contemporary DES technologies, the main
risk factors associated with ST and ISR, and how advances in our understanding of these
two complications have paved the way for the design of new, increasingly effective, and
safe devices.

2. Evolution of Drug-Eluting Stents

DES are essentially based on three main components: a metallic stent backbone, an
anti-proliferative agent, and a drug carrier (usually a polymer coating) [5,6]. The main
differences in contemporary DES, as compared to early generation DES, may focus on one
or more of the three components.

- Stent platform: contemporary DES are made to shorten the time it takes for the
stented artery segment to heal, which is what caused first-generation DES to have
a higher risk of very late ST than BMS [7,8]. The first-generation DES were built
on a platform of stainless steel (iron, nickel, and chromium) with struts that were
130–150 µm thick. Cobalt chromium (CoCr) and platinum chromium (PtCr), two
different metallic alloys, were used in newer-generation DES to achieve thinner
stent struts (<100 µm), reduce strut-related changes in shear stress, and enable
faster and thorough endothelial strut coverage while maintaining an adequate
radial strength [9–11]. Additionally, the number of connectors and crowns has been
shrinking in newer-generation stents, and contemporary DES have 2–3 connectors
and 6–7 crowns with improved deliverability, flexibility, and conformability without
any trade-off in radial and longitudinal strength [12].

- Polymer coating on the stent surface acts as a drug carrier and enables effective and
controlled drug release at the arterial stented site. However, once the anti-proliferative
medication has entirely been released, the polymeric material is no longer needed.
Over time, the persistence of polymer coating may cause inflammatory responses
within the arterial wall, impairing the stented artery’s ability to heal [13]. To overcome
these issues, contemporary DES contain more biocompatible durable fluorinated or
biodegradable polymers (made of lactic or glycolic acids which fully resorb by hydrol-
ysis after the completion of drug release). A further iteration has been developed with
polymer-free DES (PF-DES), which release the anti-proliferative drug directly from
the stent surface without the need for a polymeric carrier.

- The anti-proliferative drug released from the polymer or stent surface prevents VSMC
proliferation, minimizing the growth of neointimal tissue inside the stent. On first-
generation DES platforms, paclitaxel and sirolimus were introduced. By binding
to the tubulin component of microtubules, paclitaxel suppresses their detachment
from centrosomes, blocking the cell cycle. Sirolimus instead inhibits the mammalian
target of rapamycin (mTOR), which prevents the advancement of the cell cycle, cell
migration, and protein synthesis. It has repeatedly been demonstrated that sirolimus-
eluting DES have a stronger anti-restenotic efficacy than paclitaxel-eluting DES [14].
This might be because sirolimus has a larger therapeutic index and distinct tissue
kinetics than other drugs. Accordingly, the -limus family of drugs (which differ from
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each other in structure, molecular weight, potency, and lipophilicity) are used in
newer-generation DES.

2.1. Durable-Polymer Drug-Eluting Stents

Durable-polymer DES (DP-DES), also known as second-generation DES, saw three
main innovations as compared to first-generation DES: (1) the use of the new metallic alloys
CoCr and PtCr instead of stainless steel in the stent backbone; (2) the introduction of new
durable polymer coatings to reduce the inflammatory response, platelet activation, and
fasten vessel re-endothelization; (3) the use of new -limus drugs.

The Endeavor zotarolimus-eluting stent (ZES) (Medtronic, Inc., Minneapolis, MN,
USA) contains a polymer similar to the phospholipid phosphorylcholine molecules
found in cellular membranes. Up to 95% of the anti-proliferative drug is released within
the first two weeks after implantation. The lack of anti-proliferative drug following
this brief period led to unexpectedly high rates of restenosis and repeat revascular-
ization [15]. The Endeavor ZES was updated to contain BioLinxTM, a novel polymer
with a hydrophilic surface that repels thrombogenic plasma proteins, to improve drug
release kinetics and assure efficient control of neointimal tissue formation. About 85%
of the drug is released after 2 months thanks to the new polymer, and the remaining
15% is released within 6 months (Table 1).

Table 1. Main features of durable-polymer drug-eluting stents.

Endeavor Xience Promus Resolute

Platform material CoCr CoCr PtCr CoCr
Strut thickness (µm) 91 81 81 91

Polymer material MPC/LMA/
HPMA/3-MPMA PBMA/PVDF-HFP PBMA/PVDF-HFP PBMA/PHMA/PVP/PVA

Coating distribution Circumferential Circumferential Circumferential Circumferential
Polymer thickness (µm) 4.8 8 8 4.8
Drug released Zotarolimus Everolimus Everolimus Zotarolimus

CoCr: cobalt chromium; HPMA: hydroxypropyl methacrylate; LMA: lauryl methacrylate; MPC: methacryloy-
loxyethyl phosphorylcholine; PBMA: poly n-butyl methacrylate; PHMA: polyhexyl methacrylate; PtCr: platinum
chromium; PVA: polyvinyl acetate; PVDF-HFP: co-polymer of vinylidene fluoride and hexafluoropropylene;
PVP: polyvinyl pyrrolidinone; 3-MPMA: trimethoxysilylpropyl methacrylate.

The Xience (Abott Vascular, Inc., Santa Clara, CA, USA) and the Promus Element
(Boston Scientific, Natick, MA, USA) everolimus-eluting stents (EES) contain a double
layered polymer coating: the first layer is a base coat made of poly n-butyl methacrylate
(PBMA), the second layer is a co-polymer of vinylidene fluoride and hexafluoropropylene
(PVDF-HFP), which reduces platelet activation and adhesion and prolongs the release of
everolimus (25% during the first day and 75% during the first month). When CoCr and PtCr
EES were compared in patients with one or two de novo lesions in the PLATINUM Trial,
comparable rates of target lesion failure (TLF) and low ST incidence at 1-year follow-up
were observed [16].

2.2. Biodegradable Polymer Drug-Eluting Stents

The poly-D,L-lactide acid (PDLLA), poly-L-lactide acid (PLLA), or poly-lactic-co-
glycolic acid (PLGA) generally used to coat biodegradable polymer DES (BP-DES) are
converted into water and carbon dioxide molecules after the anti-proliferative drug
is eluted, leaving only a metallic platform within the stented vessel. Stent backbones
consist of PtCr, CoCr, and stainless steel. A highly lipophilic sirolimus derivative known
as Biolimus was embedded as a novel member of the -limus family. Even if there are
many BP-DES which are very similar to one another, some significant differences still
exist [17] (Table 2). New coating technologies were also developed in BP-DES. To prevent
coating failure at the specific spot, which could eventually lead to major inflammatory
injury, Terumo Interventional Systems designed a gradient style of coating in which the
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portions that underwent the greatest physical stress were left uncovered. To completely
prevent the risk of cracking, only the central section of the struts was covered. To
minimize the inhibition of endothelial cell proliferation and promote more physiological
vessel healing, some manufacturers introduced the thin coating strategy and coated
only the abluminal surface of the stent. Some additional features are typical of each
stent, such as the amorphous silicon carbide layer on the luminal surface of the Orsiro
stent (Biotronik AG, Buelach, Switzerland), the circumferential coating of anti-CD34
antibodies on the COMBO stent (OrbusNeich Medical, Fort Lauderdale, FTL, USA) to
enhance endothelization, and the Micropore Technology on the Yukon Choice PC stent
(Translumina GmbH, Hechingen, Germany).

2.3. Polymer-Free Drug-Eluting Stents

By altering the stent surface and drug-matrix formulations, PF-DES enable a controlled
release of the anti-proliferative drug from the stent surface without the requirement of a
polymer. Three PF-DES that have been developed so far have gained large-scale clinical
trial experience and the CE mark for use in Europe (Table 3). Numerous techniques to alter
or cover the surface of the stent have been reported. These either physically or chemically
support drug loading.Direct coating, crystalline coating, nano- or microporous surface
coating, inorganic porous coating, reservoir-based coating, nanoparticle coating on the
stent, and self-assembled monolayer coating on stent surfaces are examples of coating
strategies used in PF-DES [18].
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Table 2. Main features of biodegradable polymer drug-eluting stents.

Synergy Synergy
Megatron BioMatrix/Nobori Ultimaster COMBO Orsiro MiStent BioMime Supraflex Yukon Choice PC Firehawk

Platform material PtCr PtCr Stainless steel CoCr Stainless steel CoCr CoCr CoCr CoCr Stainless steel CoCr
Strut thickness (µm) 74 89 120 80 100 60 64 65 60 87 86

Polymer material PLGA PLGA PDLLA PDLLA-PCL PDLLA/PLGA PLLA PLGA PLLA/PLGA PLLA/PLCL/PVP PDLLA PDLLA
Coating distribution Abluminal Abluminal Abluminal Abluminal Abluminal Circumferential Circumferential Circumferential Circumferential Abluminal Abluminal

Polymer thickness (µm) 4 10 15 5 7 15 2 4–5 5 10
Drug released Everolimus Everolimus Biolimus A9 Sirolimus Sirolimus Sirolimus Sirolimus Sirolimus Sirolimus Sirolimus Sirolimus

Additional features
Circumferential

coating of
anti-CD34 antibodies

Silicon carbide
additional coating

Microporous PEARL
surface for better

endothelial
cell adhesion

CoCr: cobalt chromium; PCL: poly-Caprolactone; PDLLA: poly-D, L-lactic acid; PLCL: poly-L-lactide-co-Caprolactone; PLGA: poly-lactic co-glycolic acid; PLLA: poly-L-lactic acid;
PtCr: platinum chromium; PVP: polyvinyl pyrrolidone.

Table 3. Main features of polymer-free drug-eluting stents.

BioFreedom Ultra Cre8 Coroflex ISAR NEO

Platform material CoCr CoCr CoCr
Strut thickness (µm) 84 70–80 55–65
Drug released Biolimus A9 Amphilimus Sirolimus
Surface modification technique Abluminal microporous surface coating Abluminal Reservoir-based coating Abluminal microporous surface coating

Additional features
BioInducer surface (<0.3 µm) covalently bonded to
the CoCr platform to limit risk of allergic reaction

and platelet adhesion

Probucol as matrix-builder and is a highly
lipophilic, lipid-lowering agent with

antioxidant effects

CoCr: cobalt chromium.
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3. Bioresorbable Scaffolds

Current generation DES present some residual drawbacks, likely related to permanent
metallic platforms and durable polymers, including persistent local inflammation, incom-
plete endothelial coverage, late or very-late ST, impaired vessel remodeling, restricted
vasomotion, and limited options for future target vessel revascularization [19]. The main
feature of bioresorbable scaffolds (BRS) is the use of bioresorbable materials, which can be
completely eliminated from the body by excretion and assimilation after complete cleavage
into small molecules. The main difficulty in producing these devices is striking a balance
between bioresorption and acceptable mechanical properties. The optimal platform needs
significant break strains to be able to survive deformations from the crimped to expanded
states, high elastic moduli to impart radial strength, and low yield strains to lessen the
amount of recoil and overinflation required to accomplish a target deployment. The biore-
sorbable backbone of modern BRS can be characterized as either polymeric (consisting of
a bioresorbable polymer) or metallic (comprised of a bioresorbable metal alloy) (Table 4).
However, current generation BRS failed to challenge standard therapies, showing inferior
outcomes to conventional DES and posing concerns regarding safety [20–25]. Future re-
finements in newer-generation BRS with optimized implantation strategies and proper
intravascular imaging may shed new light on the field.

Table 4. Main features of bioresorbable scaffolds.

Device Backbone Coating Strut Thickness (µm) Eluted Drug Bioresorption
Time (Months)

Bioresorbable polymer
Absorb BVS PLLA PDLLA 157 Everolimus 24–48
DESolve Nx PLLA Polylactide-based 150 Novolimus 24
DESolve Cx PLLA Polylactide-based 120 Novolimus 24
Fantom DAT-PC DAT-PC 125 Sirolimus 36
Bioresorbable metal
DREAMS 1G Magnesium alloy PLGA 125 Paclitaxel 9–12
Magmaris Magnesium alloy PLLA 150 Sirolimus 9–12

DAT-PC: desaminotyrosine polycarbonate; PLLA: poly-L-lactic acid; PDLLA: poly-D, L-lactic acid; PLGA: poly-
lactic co-glycolic acid.

4. Risk Factors of Stent Thrombosis and In-Stent Restenosis with Contemporary DES

ST and ISR are key mechanisms of stent failure requiring repeat revascularization [26–28].

4.1. Stent Thrombosis

ST is a rare but fearsome complication of PCI. The evolution of PCI techniques, inno-
vations in stent technologies, and advancements in antithrombotic therapy has significantly
reduced the incidence of this complication [28–32]. ST is usually classified as early (within
30 days after stent implantation, further differentiated into acute—within 24 h of PCI and
subacute—from 24 h to 30 days), late (between 1 month and 1 year after implantation), or
very late (>1 year after implantation). Based on the degree of diagnostic certainty, ST is
further classified as definite, probable, and possible [33]. Early ST is a devastating event
associated with high mortality and morbidity rates as compared to late and very late ST. A
meta-analysis reported 10% vs. 4% in-hospital mortality and 25% vs. 14% 1-year mortality
for early and late/very late ST, respectively [34]. Several risk factors have been associated
with the occurrence of this severe PCI complication, and over the years, a significant im-
provement in understanding mechanisms of ST has been made. Risk factors associated with
this complication are usually divided into patient-, lesion-, device- and procedure-related
(Figure 1).
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Figure 1. Overview of the main factors associated with stent thrombosis.

It is noteworthy that the strength of the link between a risk factor and ST changes
over time [35]. In the KoST (Korea Stent Thrombosis) registry enrolling 123 Korean
patients receiving DES and presenting with ST, low left ventricular ejection fraction
(LVEF), acute clinical presentation, lower stent diameter, and DES ISR were independent
predictors of both early and late ST, bifurcation interventions were associated with early
ST, while younger age, chronic kidney disease, and left anterior descending artery (LAD)
lesion PCI emerged as correlates of late ST [36]. In a pooled analysis of 3 randomized
trials and 4 registries that included 11,219 patients undergoing PCI with CoCr EES, dual
antiplatelet therapy (DAPT) interruption before 30 days after stent implantation resulted
as a strong predictor of early ST [37]. In the Dutch Stent Thrombosis Registry, which
includes 437 patients treated with both BMS and DES who experienced ST, early clopi-
dogrel disruption after the index PCI was associated with ST, mainly with early events.
Stent under-sizing, uncovered dissection, sub-optimal procedural outcome, presence of
intermediate CAD proximal and distal to the target lesion, history of malignancy, lack of
aspirin use, LVEF ≤ 30%, bifurcation lesions, any DES, and stent number were among
the predictors of early ST. Glycoprotein IIb/IIIa inhibitors acted as preventive agents
against the development of early ST. Stent undersizing, cancer history, intermediate CAD
close to the target lesion, peripheral artery disease, diabetes mellitus, bifurcation lesions,
total stent length, and younger age were all independently linked to the development of
late ST [38]. In a single-center observational study that included 1019 patients undergo-
ing PCI with both BMS and DES, high-on-treatment platelet reactivity was associated
with early but not late ST [39]. In the prospective case-control DESERT (International
Drug-Eluting Stent Event Registry of Thrombosis) study, which included 492 cases of
late/very late ST, younger age, African American ethnicity, active smoking at the time of
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DES implantation, multivessel disease, overlapping stenting, total stent length, saphe-
nous vein graft lesion (SVG) location, LAD PCI, the presence of thrombus, and final
in-stent diameter stenosis were the most important clinical and angiographic correlates
of late/very late ST [40]. In the REAL-ST (Retrospective Multicenter Registry of ST After
First- and Second-Generation DES Implantation) registry enrolling 313 patients treated
with second-generation DES and presenting with definite ST, acute clinical presentation,
LVEF < 40%, current smoking, prior PCI, severely calcified lesions, left main coronary
artery lesions, stent overlap, and residual stenosis > 20% were associated with early ST;
younger age, hemodialysis, ST-elevation myocardial infarction (STEMI) at presentation,
LVEF < 40%, severely calcified lesions, and ISR resulted as correlates of late ST, while
LAD PCI and ISR were predictors of very late ST [41]. Additionally, some variants
in genes involved in clopidogrel and lipids metabolism have been associated with an
increased risk of ST, with a strong association with subacute ST [42,43].

All three components of DES can have an impact on the risk of ST. Strut thickness
and width, between-struts distance, struts number, polymer coating, and drug eluted can
affect blood flow dynamics and several components of the vessel healing response, includ-
ing inflammatory response, platelet adhesion, VSMC, and endothelial cell proliferation.
Thicker struts, a short distance between struts, and an increased stent footprint (expressed
as the ratio between strut surface and vessel surface) may increase local shear stress, cause
platelet activation, and prevent re-endothelization [35,44,45]. In a meta-analysis that in-
cluded 77 studies and 99,039 patients treated with 10 different types of DES, the ultrathin
Orsiro BP-DES was associated with a significantly lower rate of ST as compared with
Nobori/Biomatrix and Resolute DES [46]. Long-term persistence of polymer coating after
anti-proliferative drug elution may trigger an inflammatory and/or hypersensitivity re-
sponse, and causes the drug to be eluted inhomogeneously due to the presence of surface
roughness where platelets can adhere. To date, data about the superiority of newer polymer
coating technologies to reduce ST are lacking [47], but Optical Coherence Tomography
(OCT) studies showed a significantly lower percentage of persistent uncovered struts with
BP-DES [48,49] and PF-DES [50] as compared with DP-DES, albeit this finding was not
confirmed in other trials [51]. A meta-regression analysis of 49 randomized trials reported
a significant reduction of early but not late and very late ST using thinner struts DES and a
decreased incidence of very late ST using newer-generation DES, reflecting the importance
of rheological alterations (mainly depending on strut thickness) induced by stent implanta-
tion in the first phase and the relevance of complete struts coverage (mainly depending on
the polymer biocompatibility), at a later stage, when antithrombotic therapy has already
been remodulated with the discontinuation of DAPT [52].

The major pre- and post-operative parameters related to ST have also been clarified by
intravascular imaging studies. One of the main procedure-related risk factors for ST is stent
underexpansion. A minimal in-stent area (MSA) to reference vessel area ratio of 0.8 has
been linked to ST and primarily correlates with early events. MSA lower than 4.5 mm2 or
5.5 mm2 using intravascular ultrasound (IVUS) or OCT, respectively, has also been linked
to ST [53–55]. Additionally, stent oversizing >10%, which involves expanding the stent to a
diameter that is 10% bigger than the reference vessel diameter to provide a smaller footprint,
was associated with an eightfold lower incidence of ST compared to minimal oversizing in
a pooled analysis of 14 trials on DES. It should be noted that this effect was significantly
less prominent in vessels over 2.75 mm, whose footprint is already small [56]. Stent struts
malapposition, which is defined as a lack of contact between the struts’ abluminal surface
and the vessel wall, can begin soon after stent implantation as a result of the use of a
stent that is too small for the target vessel, because of localized vessel enlargement or
vessel asymmetry, or as a result of an asymmetrical distribution in the case of calcified
lesions [53–55]. In spite of this, malapposition can develop years after implantation due
to positive vascular remodeling, which is most likely caused by inflammatory and/or
hypersensitive reactions that cause the vessel to expand outward and subsequently lose
contact with the stent struts. An Expert Consensus Document of the European Association
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of Percutaneous Cardiovascular Interventions (EAPCI) considers an axial distance <0.4 mm
and a longitudinal length < 1 mm of malapposed stent struts as optimization targets
because below the aforementioned thresholds, full neointimal integration is expected at
follow-up [57]. Uncovered struts were adjudicated as the main mechanism of early ST
in the PRESTIGE (Prevention of Late Stent Thrombosis by an Interdisciplinary Global
European Effort) study [54]. Early after stent implantation, neointimal tissue production
and re-endothelization process are in progress, so it is expected to have a high percentage
of uncovered stent struts. In this phase, it is likely that other factors, along with the pro-
thrombotic non-endothelized stent struts, play a more important role in the thrombotic
abrupt vessel closure. While the persistence of isolated uncovered struts years after DES
implantation, when DAPT has already been discontinued and stent struts should be
completely endothelized, may significantly increase the risk of late and very late ST. In
a Korean study that included 489 patients undergoing PCI with DES implantation and
subsequent OCT follow-up between 6–18 months, the post-intervention minimal lumen
diameter and a percentage of uncovered struts ≥ 5.9% resulted as independent predictors
of major safety events, including cardiovascular death, myocardial infarction, and ST [58].
Edge dissection has been associated with a high rate of ST and adverse cardiovascular
events [59]. Based on the results of the CLI-OPCI (Centro per la lotta contro l’infarto-
Optimization of PCI) and HORIZON-AMI (Harmonizing Outcomes with Revascularization
and Stents in Acute Myocardial Infarction) studies, edge dissection disrupting the vessel
media, extended >60◦, and >2 mm long are considered those with the highest risk of
ST [60,61]. Geographical lesion miss emerged as a further predictor of ST in several
studies [38,60]. An MLA > 4.5 mm2, either at distal or proximal stent edges, is the threshold
considered significant for PCI optimization [57]. Severe restenosis, modifying blood flow
dynamics, increases the risk of late ST. In the PRESTIGE trial, OCT revealed that up to 19%
of patients with late ST had significant restenosis. Furthermore, IVUS evidence of a link
between ST and an inhomogeneous, immature in-stent neointima suggests that both ST
and ISR may represent unfavorable phenomena based on similar biological processes [62].
Tissue prolapse after stent implantation, defined as tissue extrusion from inside the stent
area, may be due either to lesion protrusion or, in the context of acute clinical presentation,
to the protrusion of athero-thrombotic material and has been identified as an OCT predictor
of early ST. A most important causal role is attributed to tissue prolapse in the context of
acute coronary syndromes as compared to chronic coronary syndromes [57,61,63]. Stent
fractures, defined as the complete or partial separation of a stent that was contiguous
after the original stent implantation, stimulate the peri-strut inflammatory response and
modify blood flow laminarity and have been associated with both ISR and ST [64,65]
Neoatherosclerosis has been found to be the most important OCT predictor of very late
ST [53–55]; vascular injury at the time of stent implantation and delayed vascular healing
associated with abnormal neointimal growth, fibrin deposition, and inflammatory response
are the key mechanisms implied in this phenomenon [66].

4.2. In-Stent Restenosis

Despite advancements in DES technology, ISR and the need for repeat revasculariza-
tion continue to be the most common reasons for stent failure, occurring at a rate of 1–2%
per year with modern DES platforms [67,68]. Every year about 10% of all PCI procedures
are performed to treat ISR, but reported rates have reached as high as 20% in some stud-
ies [69–71]. The accepted definition of ISR is a diameter stenosis >50% within the stented
segment (i.e., the stent and a 5 mm border proximal or distal to the stent) [27,68]. The
occurrence of ISR may significantly impact long-term clinical outcomes after PCI. Indeed,
recent data from the National Cardiovascular Data Registry (NCDR) CathPCI records com-
pared outcomes among 653,304 patients, of which 10.2% undergoing ISR-PCI and 89.8% of
de-novo lesion PCI, the former were associated with a higher incidence of major adverse
cardiovascular and cerebrovascular events (MACCE) at 3 years, including higher incidence
of all-cause mortality, myocardial infarction, repeat revascularization, TLR, and stroke [72].
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About 25% of patients with ISR present an acute clinical presentation, more often with
unstable angina, and less often with myocardial infarction compared to matched control
undergoing de novo lesion PCI [73]. Despite first- and second-generation DES having
been associated with a 60% relative risk reduction of ISR compared to BMS, the rate of ISR
recurrence remains high and increases exponentially with the number of re-interventions
performed [69,70]. Furthermore, as follow-up lengthens (i.e., 5–10 years), a late catch-up
phenomenon is seen in the rates of ISR between DES and BMS [74].

Vessel injury after stent implantation triggers VSMC proliferation and extracellular
matrix production, resulting in neointima formation. During vascular remodeling, as after
stent implantation, VSMC undergo a phenotype switch from a contractile to synthetic
and proliferative status. The subsequent accumulation of dedifferentiated VSMC in the
intima is crucial in vessel healing and ISR. Phenotype switching and VSMC migration
are regulated by several genetic and non-genetic mechanisms [75–77]. Neoatherosclero-
sis is characterized by rapid (over months to years) accumulation of lipid-laden foamy
macrophages within the neointima, with or without degenerative calcifications and necrotic
core formation [66]. New iterations in stent technologies led over the years to substantial
changes in ISR pathomorphosis. The quantitative and qualitative representation of the
three main components of ISR (VSMC, extracellular matrix, and neoatherosclerosis) has
changed since newer-generation DES ISR is often hypocellular and proteoglycan-rich and
VSMC usually express a contractile or intermediate phenotype, while in BMS-ISR synthetic
VSMC play a major role along with a moderate proteoglycan content. Neoatherosclerosis
is accelerated with first-generation DES, rare with BMS, and can develop over the long
term with newer-generation DES [78–80]. The two types of stents have quite different
time courses for neointimal formation. Late lumen loss with BMS often reaches a peak 6
to 8 months after implantation and then gradually declines. Contrarily, through 5 years
following implantation, there is a slow and progressive neointimal buildup with DES.
While DES-ISR is more commonly linked to focal or edge-related patterns, BMS-ISR is
more frequently linked to diffuse patterns [27]. Intravascular OCT morphological find-
ings also differed between early and late (>1 year) second-generation DES ISR. Early ISR
is more often associated with stent under expansion and neointimal hyperplasia, while
neoatherosclerosis prevails in late ISR [81]. This has been confirmed in a recent study in
which 512 patients were evaluated by OCT for ISR of second-generation DES. Overall,
neoatherosclerosis was the prevalent mechanism of ISR, with incidence ranging from 20%
at 1 to 3 years and reaching above 70% at 7 years [82].

As with ST, for ISR, several risk factors have been identified, and these are usually
classified as patient-, lesion-, stent-, and procedure-related (Figure 2). Although some studies
have identified different risk factors for early (<1 year) versus late (>1 year) ISR, further studies
are needed to definitively demonstrate the role of time dependence also in ISR.

Diabetes mellitus, chronic kidney disease, advanced age, female sex, and higher
body mass index are clinical predictors of ISR. Additionally, drug resistance, genetically
determined or secondary to drug exposure, such as hypersensitivity and inflammatory
responses triggered by the metallic stent backbone, DES polymer, and anti-proliferative
released drug, can promote the formation of neointima [83]. In a retrospective clinical study
that included 246 patients with multivessel disease undergoing PCI with second-generation
DES, older age, current smoking, and advanced chronic kidney disease were independent
predictors of ISR [84]. A retrospective study including 394 patients undergoing PCI with
second-generation DES showed that the independent predictors of late ISR differed from
those of early ISR. Specifically, previous PCI, diabetes mellitus, and postprocedure residual
stenosis resulted as independent predictors of early ISR, while previous PCI and C-reactive
protein (CRP) levels were correlates of late ISR [85]. However, other studies failed to show
an association between baseline CRP and restenosis [86]. The presence of diabetes mellitus
and a history of bypass surgery were associated with restenosis independently of the stent
implanted in a large European registry [71]. In most studies conducted thus far, the constant
clinical predictor of restenosis has been found to be diabetes mellitus. Patients with diabetes
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mellitus represent a special subgroup with more extensive CAD, complex lesions, and a
high prevalence of dose-dependent resistance to anti-proliferative mTOR inhibitors [87,88].
Recently, the SUGAR (Second-generation drUg-elutinG Stents in diabetes) trial, which
included 1175 diabetic patients undergoing PCI and randomized to Cre8 EVO or Resolute
Onyx stents, showed that the Amphillimus PF-DES was non-inferior to Resolute Onyx
with regard to target lesion failure and even superior to Resolute Onyx in a prespecified
superiority analysis [89]. Moreover, a trend toward lower rates of clinically-indicated TLR
was observed. Also, evidence is emerging about the association between autoimmune
disorders and the risk of ISR [90].

Figure 2. Overview of the main risk factors of in-stent restenosis.

Lesion factors associated with ISR include vessel type, size, and lesion characteristics.
In a retrospective study enrolling patients previously treated for ACS, ISR was more
prevalent in the LAD artery, followed by the left circumflex, right coronary artery, and
finally, the left main coronary artery [91]. In a cohort of 10,004 patients with 6–8-month
angiographic surveillance, small vessel size and complex lesion morphology were strong
correlates of ISR [71]. Small vessel treatment is a challenging setting because of an increased
risk of restenosis and the need for repeat revascularization [92]. Contemporary newer-
generation DES significantly reduced both late lumen loss and restenosis in these complex
lesions [93]. The use of drug-coated balloons (DCB) instead of DES for the treatment of
native small vessel CAD has emerged as a valuable alternative strategy. In a recent meta-
analysis that included 5 randomized trials and 1459 patients, the use of DCB as compared
to DES was associated with similar rates of TLR and restenosis, while a lower risk of ST was
observed [94]. Severe calcified lesions are strongly associated with higher rates of ISR [95].
Coronary calcium may cause poor drug delivery, inefficient stent expansion and wall
apposition, and even polymer disruption [95]. To achieve ideal stent apposition and long-
term patency, adequate lesion preparation using balloon-based procedures, atheroablative
devices, and intravascular lithotripsy is crucial [96]. The pattern of restenosis is another
important predictor of ISR. Specifically, diffuse ISR was associated with significantly higher
TLR rates as compared with focal pattern in a study that included 392 patients with 481 de
novo DES-ISR [97]. Coronary bifurcation PCI is associated with higher rates of restenosis
and TLR as compared with non-bifurcation lesions, and the implemented stenting technique
can substantially affect clinical outcomes [98,99]. Aorto-ostial lesions are composed mainly
of sclerotic and highly tenacious plaques, are often eccentric, and have a high plaque
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burden. For these lesions, restenosis rates have been reported to be higher as compared to
stented non-ostial lesions [100].

Stent type, stent strut thickness, stent length, and stent diameter have been related
to the risk of ISR. In the largest analysis investigating ISR thus far published, the use
of first-generation DES versus BMS and second-generation DES versus first-generation
DES were independent predictors of lower rates of restenosis [101]. Stent struts thickness,
affecting the extent of arterial wall injury at the time of implantation and local blood
rheology after implantation, impacts the inflammatory response strength at the target
lesion, re-endothelization process, struts coverage, and neointima formation [102]. Thinner
struts have been associated with lower inflammation at the stented arterial segment, with
less thrombogenicity and less neointimal hyperplasia and a lower risk of clinically-driven
TLR and target vessel revascularization [12,102,103]. Stent length represents another stent-
related factor associated with higher rates of stent failure, either ST or ISR. In the GRAND-
DES (Grand Drug-Eluting Stent) registry, which includes 8035 patients undergoing stenting
for a single lesion with newer-generation DES, stents longer than 40 mm were associated
with a higher rate of TLR and early ST at a median follow-up of 730 days [104].

Stent underexpansion and stent struts malapposition have been previously defined
and have been associated with an increased risk of ISR as well as ST. Additionally, there
is evidence that there is a higher risk of ISR and TLR when there is a stent gap, which is
characterized as a discontinuous coverage of a coronary lesion between two stents [105].
Local drug distribution is hampered by DES fracture, and the metallic platform support
is compromised. Right coronary artery stenting, severe vascular tortuosity or angulation,
and lengthier or overlapping stents are known risk factors for stent fractures. On the other
hand, stents having a greater diameter or an open-cell construction seem to be less likely to
fracture. The need for revascularization of fractured stents ranges from 15% to 60%, while
the incidence of DES fracture has been reported to be between 1% and 8%.

Available intracoronary imaging modalities allow a detailed characterization of the
underlying ISR substrate and the selection of the most appropriate treatment strategy.
For instance, in 2019, a new OCT classification system to characterize the most relevant
mechanism of ISR and to guide treatment was proposed [106]. This classification includes
5 types of ISR: mechanical or type I, further classified as Ia (under expansion) and Ib
(stent fracture); biological or type II which includes type IIa (neointimal hyperplasia),
type IIb (neoatherosclerosis without calcifications), and type IIc (neoatherosclerosis with
calcifications); mixed-causes or type III; chronic total occlusion or type IV; and 2-layer or
type V ISR. Imaging characterization of the underlying mechanism is of crucial importance
to guide the selection of the treatment strategy [27]. It is extremely important to identify
the cause of ISR (DES under expansion vs. neointimal hyperplasia/neoatherosclerosis),
differentiate between 1-layer and 2-layer ISR, and distinguish ISR as focal, diffuse, or
occlusive phenotype [107]. All these aspects are essential to select the most appropriate
treatment modality.

5. Conclusions

Iterations in stent technologies, improvements in PCI techniques, and advances in
pharmacotherapy have markedly reduced the risk of ST and ISR. However, given the
number of PCIs performed every year around the world, the global burden of ISR and ST
represents a public health issue even with contemporary DES platforms. The understanding
of mechanisms and risk factors for these two PCI complications has been of fundamental
importance for the parallel evolution of stent technologies. Because the pathogenesis of
ST and ISR is multifactorial, differentiated risk stratification is needed. The identification
of patient-, stent-, lesion-, and procedure-related predictors is particularly important, as
preventing ST and ISR is the most efficient way to combat them.
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