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Abstract: Chronic heart failure is a terminal point of a vast majority of cardiac or extracardiac causes
affecting around 1–2% of the global population and more than 10% of the people above the age
of 65. Inflammation is persistently associated with chronic diseases, contributing in many cases to the
progression of disease. Even in a low inflammatory state, past studies raised the question of whether
inflammation is a constant condition, or if it is, rather, triggered in different amounts, according
to the phenotype of heart failure. By evaluating the results of clinical studies which focused on
proinflammatory cytokines, this review aims to identify the ones that are independent risk factors
for heart failure decompensation or cardiovascular death. This review assessed the current evidence
concerning the inflammatory activation cascade, but also future possible targets for inflammatory
response modulation, which can further impact the course of heart failure.

Keywords: heart failure; inflammation; proinflammatory cytokines; TNF-α; CRP; fibrinogen; IL-1;
IL-6; iNOS; myeloperoxidase

1. Introduction

Heart failure (HF) is a diagnosis which appears in the context of a systolic or/and
diastolic dysfunction of the left ventricle (LV) [1]. Characteristic signs and symptoms of the
disease can be considered: shortness of breath with orthopnea, lower limb oedema and
reduced exercise capacity, accompanied by jugular vein distension and ventricular gallop,
with an added S3 (third sound) or S4 (fourth sound) [2]. After physical examination, the
diagnosis is confirmed by several investigations: biological (NT-proBNP) and imagistic
(echocardiography, cardiac-MRI) [3].

Although many new active substances and invasive procedures have been developed
in the last decades with great results shown by clinical randomized trials (CRT), the
prognosis of the patients diagnosed with chronic heart failure remains poor. The rate of
death during the first admission for heart failure is between 2% and 17%. The mortality
rate within 1 year from the admission is between 17% and 45%, and above 50% during the
first 5 years since the diagnosis [4].

Chronic heart failure (CHF) brings an excessive burden on societies and healthcare
systems worldwide, not only by the mortality it generates, but also on an even greater
scale, by the morbidity it brings, caused by prolonged hospitalization and high rates of
readmission [5].

In the last century, the causes and mechanisms considered to generate HF were
the theory of inotropic dysfunction and volemic overload [6]. The present paradigm is
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around the neurohormonal system activation, which appears in response to the severely
altered working conditions of the heart (increased intracavitary pressures and perfusion
mismatch) [6]. The pharmacological treatment endorsed by current guidelines consists of
substances, which aim to inhibit the neurohormonal paths of activation, an effect which
can also produce reverse-remodelling of the geometry of heart chambers [7].

The CRTs showed great benefit on the endpoints of mortality and risk of readmission
for CHF, with statistically significant results especially in the patients with reduced ejection
fraction (HFrEF—heart failure with reduced ejection fraction) [8]. These classes of medical
therapy are the angiotensin-converting enzyme inhibitors (ACEI), beta blockers (BB), miner-
alocorticoid receptor antagonists (MRA), inhibitor of angiotensin II receptor and neprilysin
(ARNI) [9]. Another new class of drugs joined the well-established classes, according to
the last guideline for the treatment of CHF of the European Society of Cardiology (ESC)
2021: the SGLT2i (sodium-glucose cotransporter 2 inhibitors) [3]. This hypoglycaemic
oral antidiabetic type of drug showed a decrease in the mortality and/or readmission risk
composite endpoint both in the HFrEF and HFpEF (heart failure with preserved ejection
fraction), a first-of-a-kind result [10,11]. This aspect is of great interest because more than
50% of the patients admitted with CHF prove to have a HFpEF phenotype [12,13].

Systemic inflammation is recognized to be correlated with CHF, being considered
to have a role in the development, progression and furthermore, complication of this
disease [14]. At the same time, the inflammatory markers are considered a prognostic
factor of poor outcomes, independent of the usual HF indicators of decline: LVEF (left
ventricle ejection fraction) or NYHA (New York Heart Association) functional class [15].
The levels of non-specific inflammatory markers and proinflammatory specific cytokines
in the context of CHF are significantly lower than the ones appearing in the course of
infections or autoimmune diseases [16]. This raises the suspicion that a low-grade state of
chronic inflammation is the constant hit taken by the cardiomyocytes, contributing to the
maintenance and evolvement of CHF, with repeated episodes of acute decompensation [17].
Risk factors associated with the development of heart failure can be seen in Figure 1.
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The level of inflammatory cytokines and immune system cells found to be activated
in CHF patients reached 57% of the enrolled patients in the RELAX (Phosphodiesterase-5
Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure with
Preserved Ejection Fraction) trial. These enrolled patients had elevated C-reactive protein
(CRP) levels [18]. The median of high-sensitivity CRP (hsCRP) was 6.6 mg/L in the patients
with stable chronic HF with reduced and preserved ejection fraction (EF) and 8.5 mg/L in
the TIME-CHF (Trial of Intensified versus Standard Medical Therapy in Elderly Patients
with Congestive Heart Failure) trial [14]. The level of hsCRP was even higher in patients
with acute HF, as shown in the ASCEND-HF (Acute Study of Clinical Effectiveness of
Nesiritide in Decompensated Heart Failure) trial [19].

BioRender.com


J. Clin. Med. 2023, 12, 7738 3 of 25

Inflammation is a major factor in the development and progression of CHF in every
phenotype of CHF: HFrEF, HFmrEF (heart failure with mildly reduced ejection fraction)
and HFpEF [20]. However, two recent biomarker profile analyses demonstrated that there
is a greater link between inflammatory markers and HFpEF, as shown in the COACH
(Counseling in Heart Failure) and BIOSTAT-CHF (Biology Study to Tailored Treatment in
Chronic Heart Failure) trials [21]. This can be explained by the fact that HFpEF patients
usually have a longer list of concomitant chronic diseases, such as diabetes mellitus, chronic
obstructive pulmonary disease, obesity and chronic kidney disease, which contributes to
greater levels of inflammation. The inflammation is produced mainly by activation of
endothelial microvascular cells of the immune system, increased reactive oxygen species
(ROS) and a reduction in nitric oxide (NO), which is produced mainly at the site of endothe-
lial cells by the eNOS (endothelial nitric oxide synthases) [22]. This chronic inflammation
has a chemotaxis effect on monocytes, which gather in high numbers in the myocardium,
in order to then be transformed into proinflammatory macrophages (M1) [23].

HFrEF had lower average inflammatory marker levels, but greater heart failure specific
elevated markers [24]. However, although the level of inflammatory activation is lower
than in the HFpEF phenotype, the injury of cardiomyocytes triggers the proinflammatory
cytokines and chemokines, which is followed by neutrophil and monocyte infiltration in
the myocardium [25]. The next phase in the inflammatory process, called the reparative
phase, involves phagocytosis of apoptotic and necrotic cells, with T and B lymphocyte
chemotaxis, collagen synthesis from myofibroblasts, leading to LV remodelling and the
release of anti-inflammatory and pro-resolving molecules (TGF-β, lipoxins and IL-10). The
last phase, maturation, is marked by the death of the reparative cells and scar matura-
tion [25]. The chronic inflammation stimulus can be from repeating myocardial injury, with
consequent inflammatory cascade activation, or because of the neurohormonal systems
activation (sympathetic nervous system, renin-angiotensin-aldosterone system) [26]. An-
other cause of chronic inflammation is the disturbance of inflammatory resolution. Two
groups of researchers found that patients with CHF with III or IV NYHA functional class
had decreased plasma and urinary lipoxins levels compared to CHF with I or II NYHA
functional class patients. At the same time, patients with CHF had lower levels of resolvin
D1, as opposed to healthy age-matched individuals [27,28].

Chronic, low-grade inflammation, induces significant effects on myocardial structure
and function. The inflammatory state is a frequent feature in cases of HFpEF. The impact of
inflammation on HFpEF evolution can be attributed also to the left atrial stiffening which
amplifies with age, irrespective of the associated LV hypertrophy and concentricity. As left
atrial stiffening can be responsible for the aggravation of congestion, it can lead to a decline
in the functional status of HFpEF patients [29]. Reduction of disease severity and evolution
in HFpEF patients was noted after the suppression of certain inflammation pathways.

In HFpEF, high seric levels of inflammatory biomarkers can be found, such as IL-1β, IL-6,
IL-10, CRP, TNF-α and myeloperoxidase [30]. Inflammasome signalling is involved in the
interplay between chronic inflammation and CVD (cardiovascular disease) development.
Moreover, evidence suggests that systemic inflammation can be triggered by glucose-
mediated redox stress insulin resistance and by the activation of the vascular inflammasome
in type 2 diabetes mellitus patients [30].

Low grade inflammation, evaluated by hsCRP, was an independent risk factor for
vascular and all-cause mortality in type 2 diabetic patients in the study conducted by Sharif
et al. This draws attention to a potential treatment target to diminish the cardiovascular
risk in diabetic patients [31].

High arterial pressure leads to ROS production and further generation of proinflamma-
tory cytokines in renal or pulmonary vessels in HFpEF patients [32] or animal subjects [33].

In obese patients, macrophage and monocyte infiltration in visceral adipose tissue
augments cytokine release, which can further amplify the inflammatory state [30].

In Figure 2, the major proinflammatory cytokines contributing to heart failure are presented.
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The aim of this review is to present the inflammatory activation cascade which further
leads to cardiac injury, inducing and aggravating chronic heart failure and to discuss clinical
trials evaluating specific cytokines, but also to underline future therapeutic options for
inflammation in HF.

2. Inflammatory Mediators Taking Part in the Development and Evolvement of
Heart Failure
2.1. TNF-α

TNF-α, a pivotal proinflammatory cytokine, is the most studied one in HF, since it
can be produced by many types of cells: cardiomyocytes, macrophages, vascular cells and
mast cells [34]. After binding to the cell membrane specific receptors (TNFR1 and TNFR2),
TNF-α has a negative inotropic effect on cardiomyocytes, by reducing the cytosolic level of
Ca2+ [35]. At the same time, TNF-α induces synthesis of other proinflammatory cytokines
(inducible NO synthase, reactive oxygen species with mitochondrial DNA damage), apop-
tosis and extracellular matrix alteration and promotes interaction between endothelial cells
and leukocytes at the site of microcirculation [34]. Also, high levels of TNF-α enhance
protein synthesis and hypertrophy of cardiomyocytes by the production of reactive species
of oxygen, which further decrease the contractility of the heart [36].

The sympathetic nervous system, one of the neurohormonal pathways which leads to
cardiac remodelling, has its function impaired by TNF-α, resulting in β receptor dysfunc-
tion [37]. This triggers, in response, an excessive release of catecholamines, which produces
a positive feedback increase in the levels of seric TNF-α, creating a perpetual cycle [38].

The proinflammatory TNF-α has significant interactions with the sympathetic system,
its interaction with β receptors leading to a negative inotropic effect, both in vitro and
in vivo [39,40].

In heart failure patients, the sympathetic overdrive and high levels of proinflammatory
cytokines are in a vicious circle, representing, however, a hallmark of this disease [41,42].

Although this cytokine has been proven to take part in the inflammatory infiltrate
of both HFrEF and HFpEF patients [43], efforts from clinical trials to inhibit it have been
without evident success [17,44]. This can be explained by the fact that in other experimental
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studies, in ischemia-reperfusion injury scenarios, a small quantity of TNF-α had a protective
cardiac effect, while only high levels of TNF-α had negative effect on cardiac function and
remodelling [45,46].

The trials which tried to see the effect of the soluble receptor of TNF-α (etanercept)
in chronic heart failure patients (RENEWAL and RECOVER), were stopped early in the
process because of the negative results, in comparison to the placebo arm [17]. The same
worsened prognosis was also observed in the case of the TNF-α monoclonal antibodies
(infliximab) trial ATTACH [44]. There is a well-established direct relationship between
the circulating levels of TNF-α and mortality in the patients which suffer from heart
failure [41,47]. Since TNF-α is associated with a serious decrease in survival, it can be
considered for risk assessment in HF patients with both HFpEF and HFrEF [47].

2.2. IL-1

IL-1 is one of the most important cytokines in the initiation of inflammation in HF [48].
The elevated levels of IL-1 are seen in patients with chronic HF, irrespective of etiology
(ischemia, arterial hypertension, valvular disease, cardiomyopathy, arrhythmia) [49]. It
represents a family with 11 members including IL-1α, IL-1β, IL-18 and IL-33 [50]. If IL-1α
or IL-1β bind to the IL-1R1 (IL-1 type 1 receptor), this initiates the inflammatory process,
while binding to IL-1R2 (IL-1 type 2 receptor) stops the triggering of the inflammatory re-
sponse [51]. The synthesis of the active form of IL-1β is directly dependent on the caspase-1
enzyme, which is also at the expense of NLRP3 inflammasome (an intracellular sensor
activated in the onset of danger-associated signals) [52,53]. NLRP3 gets activated in the
cardiac fibroblasts and cardiomyocytes when there is a myocardial injury and this can also
explain the proinflammatory response that appears post-myocardial infarction that further
inflicts cardiac injury [54]. IL-1 also generates cardiac impairment and remodelling by
reducing the capacity of the LTCC (Ca2+ channels type L) to respond to the sympathetic
nervous system (β1 adrenergic) stimulus [48]. This cytokine, which can be produced by car-
diomyocytes, immune cells, endothelial cells and fibroblasts, also reduces the expression of
genes that promote calcium homeostasis and induces cardiomyocyte apoptosis, activation
of endothelial cells and leukocytes, leading to cardiac fibrosis, micro arterial stiffness and
inflammation [50]. One of the cytokines related to IL-1 is CRP, which is an independent
predictor for cardiac decompensation in acute or chronic heart failure [55]. IL-1β can also
disrupt mitochondrial energy production, which translates as dysfunctional myocardial
inotropism [48,56].

This energetic “outage” produced by IL-1 is generated in part through an increase in
nitric oxide synthase activity in the cardiac cells with a consequence of reduced myocardial
contraction [57]. In the animal model trials, the mice that were injected with plasma rich in
IL-1, from acute decompensated heart failure patients, had systolic and diastolic dysfunc-
tion with a decrease in contractile reserve [58]. However, the mice that were previously
treated with the IL-1 human antagonist (anakinra) prior to plasma injection, were protected
against cardiac impairment, leading to the conclusion that IL-1, and more specifically IL-1β,
acts as a cardiodepressant agent [59]. The same antagonist of IL-1 was studied in the
D-HART trial in a total of 12 chronic heart failure patients which were assigned to anakinra
or placebo [48]. The primary endpoint of peak oxygen consumption was measured initially,
at 14 and 28 days, showing a significant increase in peak oxygen consumption in patients
receiving anakinra correlated with a statistically significant decrease in C-reactive protein
seric levels [60].

It is known that IL-1 is a mediator in HF by diminishing cardiac contractility and
promoting cardiomyocyte hypertrophy and apoptosis. However, there is also evidence
that IL-1 is involved in atherothrombosis, by stimulating the development of atheromatous
lesions, it promotes vascular inflammation and favours plaque vulnerability. In acute
scenarios, after myocardial infarction, IL-1 is involved in the inflammatory response and
adverse cardiac remodelling through amplifying matrix metalloproteinase expression [61].
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2.3. IL-6

IL-6 is an important inflammation mediator, which can be regarded as a possible
future biomarker for the development of HFpEF. In HF, oxidative stress is a strong in-
ducer for the production of IL-6 [62]. Ischemia and hypoxia lead to IL-6 auto or paracrine
binding to its receptor (receptor-coupled protein gp130), then following the JAK/STAT3 sig-
nalling pathway, leading to abnormal endothelium-dependent vasodilatation and muscular
atrophy [63].

In HF, various cells can produce inflammatory mediators, such as IL-6, which can have
several effects: systolic dysfunction, diastolic dysfunction, ventricular dilatation, cardiomy-
ocyte hypertrophy, apoptosis [49] and lower coronary flow reserve [63]. IL-6 influences
the inflammatory process, favouring ventricular remodelling, which is responsible for the
debut, but also for the aggravation, of HF symptoms [64].

IL-6 has a multitude of effects on cardiac cells, some of which can lead to a myocardial
phenotype very similar to that of the hypertensive heart (hypertrophy, fibrosis, diastolic
dysfunction, further favouring HFpEF) [65,66].

The interest in anti-IL-6 drug development is increasing, since higher levels of IL-6
were statistically significantly associated with a higher risk of HFpEF development [67]. On
the other hand, de Boer and colleagues indicated that IL-6 was associated with new-onset
HF, IL-6 being evocative for HFrEF [68]. However, these differences between correlation
with HFrEF and HFpEF may come from the dissimilarity between cohorts.

In the BIOSTAT-CHF cohort, HFpEF was an independent predictor of high IL-6
concentrations. In more than half of the patients involved, high IL-6 concentrations were
associated with lower EF, iron deficiency and atrial fibrillation [69].

In patients with decompensated HFpEF, IL-6 was a predictor of all-cause mortality,
cardiovascular mortality and HF hospitalization, according to Mooney et al. [70].

By downregulating SERCA2 gene expression, IL-6 and TNF-α can cause diastolic
dysfunction by diminishing diastolic calcium reuptake, further leading to myocardial
contractility impairment [71].

There is evidence that high concentrations of IL-6 can be found in patients with LV
dysfunction, even when there is no clinical syndrome of HF. IL-6 may play a role in the
evolution from asymptomatic LV dysfunction to symptomatic LV dysfunction, representing
a promising biomarker for patients at risk of developing clinical HF, especially HFpEF [67].

IL-6 exerts negative effects on renal function by acting on the distal tubule (epithelial
sodium channels), altering the process of natriuresis [72]. It is important to underline that
another renal repercussion of IL-6 action can be diuretic resistance [73].

Hemodynamic worsening of the evolution of advanced HF patients was associated,
according to Gabriele et al., with high levels of IL-6 and IL-6R mRNA [74].

2.4. IL-8

IL-8 (or CXCL8) can be produced mostly by macrophages and monocytes, but also by
neutrophils, epithelial cells, fibroblasts, smooth muscle cells and endothelial cells, when
triggers such as ischemia, hypoxia or shear stress are present [75].

IL-8 recruits, through chemotactic effect, monocytes and neutrophils, the main con-
stituents of the acute inflammatory response. Besides recruitment, IL-8 also favours the
activation of monocytes and neutrophils [76].

A special characteristic of IL-8 is its longevity, since it is produced in the first steps of
the inflammatory response, but stays active for days, even weeks. It is resistant to temper-
ature and proteolytic enzymes and relatively resistant to acidic environments, making it
very useful in places of acute inflammation. IL-8 is very sensitive to oxidants, therefore
antioxidants can significantly lower IL-8 gene expression [77].

IL-8 is involved in atherosclerosis. It can be found in high amounts in atherosclerotic
lesion macrophages, in vascular injury sites and in fibrous plaques [76].
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It was reported that angiotensin II increased IL-8 production, while fluvastatin dimin-
ished both basal and angiotensin II-induced IL-8 production in human vascular smooth
muscle cells [78].

IL-8 is also involved in the pathogenesis of hypertension, being expressed in high
concentrations in aortic tissue and vascular smooth muscle cells of hypertensive animal
model [79].

Simonini et al. indicated that IL-8 is a significant mediator of angiogenesis in human
coronary atherosclerosis, which may contribute to atherosclerotic plaque formation through
its angiogenic properties [80].

A report of the potential role of IL-8 as a biomarker for chronic HF was highlighted in
the results from the CORONA study, which evaluated patients aged over 60 years, with
chronic HF of ischemic cause, with II-IV NYHA functional class and LVEF under 40%.
The primary outcomes were a composite of CV mortality, non-fatal myocardial infarction
and non-fatal stroke, and secondary outcomes were any coronary event, sudden cardiac
death, ventricular defibrillation by implantable cardioverter-defibrillator, resuscitation after
cardiac arrest, hospitalization for unstable angina pectoris, all-cause mortality, CV mortality
and a composite endpoint of worsening HF hospitalization or CV mortality [81].

There was a statistical association between IL-8 and outcomes. However, IL-8 added
information independent of hsCRP, which further underlines that they may represent
different inflammatory pathways in chronic HF. NTproBNP and IL-8 were significantly
associated with both cardiac and non-cardiac deaths. IL-8 was a consistently independent
and significant predictor of outcomes after statistical adjustment for NTproBNP [81].

IL-8 is found in high concentrations in CHF and is associated with adverse out-
comes [81,82], and it is a predictor of the development of HF in patients with myocardial
infarction and percutaneous intervention [83].

2.5. IL-10

IL-10 is a major anti-inflammatory cytokine. Inflammation has essential roles in the
development of cardiac hypertrophy and evolution to HF. IL-10 can be expressed in the
cardiac tissue and may have an essential role in cardiac remodelling. For this reason,
signalling modulated by IL-10 could become a promising target for controlling pathological
cardiac hypertrophy [84].

Supporting the impact of IL-10 on cardiac remodelling is the work of Jung M. et al.,
which concludes that in vivo infusion of IL-10 after MI can improve the LV microenvi-
ronment, decrease inflammation and favour cardiac wound healing by stimulating M2
macrophage polarization and fibroblast activation [85].

Verma and colleagues showed that IL-10 treatment could be a potential therapeutic
target in limiting the evolution of cardiac remodelling induced by pressure overload [86].

IL-10 can suppress inflammation, improve LV function and attenuate LV remodelling
after MI by reducing fibrosis through inhibition of HuR (cytokine mRNA stabilizing protein)
and activation of signal transducer and activator of transcription 3 (STAT-3), by increasing
capillary density [87].

The antiatherosclerotic effect of IL-10 was intensely discussed. IL-10 can have effects on
macrophages and T cells, modulating several cellular processes, which may interfere with
the formation, evolution and stability of the atherosclerotic plaque. IL-10 was associated
with low signs of inflammation, but was also a protective factor against environmental
pathogens which can promote atherosclerosis in animal subjects [88].

In the case of ischemia-reperfusion injury, TNF-α is increased, which further initiates
and sustains inflammation as well as cardiac injury. IL-10, being an anti-inflammatory cy-
tokine, inhibits signalling pathways which participate in the pathogenesis of HF controlled
by TNF-α [89].

Diminished seric concentrations of IL-10 were identified in patients with advanced
CHF [90].
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In special populations, such as patients suffering from chronic kidney disease (CKD),
IL-10 was observed to increase along with the reduction of kidney function. Elevated IL-10
concentrations were associated with the risk of CV events [91].

Barcelos and colleagues evaluated the association between IL-10 and coronary artery
disease in patients suffering from metabolic syndrome. In this category of patients, high
IL-10 concentrations were associated with a lower incidence of severe coronary artery
disease. This suggests a protective effect given by the anti-inflammatory activity even when
there are significantly high concentrations of proinflammatory cytokines [92].

IL-10 proved to be cardioprotective in diabetic MI through the upregulation of heme
clearance pathways. IL-10 lowered the myocardial infarct size and improved cardiac
function in diabetic animal subjects, improved capillary density and lowered apoptosis
rate and inflammation in the marginal zone of the infarct [93].

2.6. IL-18

IL-18, also named interferon gamma (IFN-γ) inducing factor, is a proinflammatory
cytokine, belonging to the IL-1 cytokine superfamily. It has effects on immunity and the
infectious and inflammatory response of the host, due to the production of IFN-γ. However,
it also possesses other effects, independent of IFN-γ. IL-18 can be produced, as a response
to injury, by infiltrated neutrophils, macrophages, endothelial cells, smooth muscle cells
and cardiomyocytes. It is produced in an inactive form (pro-IL-18), being converted into
the active form by caspase 1 (IL-1beta converting enzyme) [94].

High concentrations of IL-18 have been detected in myocardial tissue and circulation
after MI and in sepsis [94].

IL-18, being a proinflammatory cytokine, is also involved in atherosclerosis. Jia et al.
concluded that both IL-6 and IL-18 were associated with global CV disease and death [95].

Plausible molecular mechanisms regarding IL-18-induced myocardial injury can be
represented by the promotion of inflammation, enhanced apoptosis, hypertrophic effect on
cardiomyocytes, effects on mitogen activated protein kinase activation and alterations of
the intracellular calcium transport and concentrations [94].

In patients with congestive HF, a high secretion of IL-18 is induced and is correlated
with the severity of myocardial damage and dysfunction, according to Seta et al. [96].

O’Brien and colleagues evaluated IL-18 as a potential therapeutic target in acute MI
and HF. In animal subjects, it is known that IL-18 influences cardiomyocyte hypertrophy
and favours contractile dysfunction and extracellular matrix remodelling in cases of acute
MI or pressure overload. In human subjects, elevated IL-18 levels were correlated with a
higher risk of appearance and progression of HF and with a worse prognosis in patients
with already established CVD [97].

Inhibition of IL-18 alters not only the pathological, but also the physiological hypertro-
phy response in cases of high pressure, which can result in improper remodelling [96].

Genetic deletion or neutralization in animal subjects of IL-18 lowered the rate of
myocardial hypertrophy in cases of pressure overload [97,98].

IL-18 displays effects on both systolic and diastolic functions of the heart. The rapid
negative inotropic effect of IL-18 implies that blocking IL-18 may represent an important
treatment for acute decompensated HF or chronic, symptomatic HF [97,99].

Inflammatory cytokines are involved in the progression of HFpEF, considering that
in this phenotype significant fibrosis and hypertrophy can be found [60]. IL-18 could
be a possible treatment target for HFpEF since it has pro-hypertrophic and profibrotic
effects [97,100,101].

There is evidence suggesting that plasma IL-18 concentrations are associated with
coronary events [102,103].

2.7. Fibrinogen

Fibrinogen, a major acute phase protein, is widely recognized as a strong contributor to
cardiovascular risk, high concentrations being associated with coronary heart disease, inci-



J. Clin. Med. 2023, 12, 7738 9 of 25

dent stroke, development of peripheral artery disease and total mortality. In inflammation,
the abundance of cytokines elevates plasmatic concentrations of fibrinogen. Fibrinogen has
several roles, such as influencing endothelial function, favouring smooth muscle cell prolif-
eration and migration, modulating the interaction between plasmin and the corresponding
receptor, creating the substrate for thrombin, constituting the final step in the coagulation
process and being involved in platelet aggregation [104,105].

In over 2000 subjects from the Framingham Offspring Population (cycle 5), fibrinogen
was associated with traditional cardiovascular risk factors, levels of fibrinogen being higher
among individuals with known cardiovascular disease, compared to those without cardiac
afflictions [106].

Even in healthy individuals, fibrinogen is a considerable risk factor for cardiovascular
disease. In patients who suffered a coronary event, high levels of fibrinogen are a risk
factor for recurrence of myocardial ischemia or a risk factor for mortality, predicting
fast-developing atherosclerosis. Acute or chronic elevations of fibrinogen concentrations
can favour atherosclerotic events by fibrinogen infiltrating the wall vessels, rheological
effects caused by high blood viscosity, augmented thrombocyte aggregation, thrombus
development and accentuated fibrin formation [107].

There is evidence that plasmatic fibrinogen concentrations are positively associated
with cardiovascular events and are a contributor to atherosclerotic events [107].

The role of fibrinogen in the prognosis of critically ill patients with acute decompensa-
tion of chronic HF was evaluated by Meng et al. Their work concluded that high fibrinogen
levels (over 284 mg/dL) predicted, independently, the mortality in the previously men-
tioned category of patients [108].

2.8. CRP

Continuous, but low-grade inflammation is present in the context of HF. One can aim
to discuss the role of CRP, as an inflammatory marker, in the pathogenesis and development
of HF.

CRP has several roles in the mechanism of atherogenesis, such as increasing LDL
uptake and oxidation, inhibition of NO production, upregulation of the expression of
adhesion molecules, inhibition of fibrinolysis (by amplifying the expression of PAI-1),
inducing complement activation and favouring monocyte infiltration into the vascular
wall [109].

In patients with acute coronary syndromes, high CRP levels at admission are associated
with poorer short- and long-term prognosis. CRP value on admission shows the baseline
inflammatory status of the subject, elevated CRP concentrations in patients with acute
coronary syndromes being linked to more cardiovascular complications during follow-
up [109]. The more elevated the CRP levels, the greater the chances for severe acute coronary
syndrome, ventricular remodelling, lower EF, cardiac rupture, HF and cardiac death. It is
interesting to note that in STEMI patients, peak CRP levels were higher when compared to
NSTEMI patients, drawing attention to the possible role of CRP in risk stratification after
myocardial infarction [110].

Microvascular inflammation is involved in the pathogenesis of HFpEF. In these pa-
tients, higher levels of CRP were associated with higher comorbidity burden and markers
of disease severity, although normal CRP levels were observed in 40% of subjects [111].

In HFpEF, elevated CRP concentrations were associated with considerable comorbidity
burden [111].

A systematic review and a meta-analysis conducted by Lakhani et al, which assessed
the diagnostic and prognostic role of CRP in HFpEF, underlined that CRP could be used as
a biomarker to predict the development of HFpEF and the long-term clinical outcomes in
this category of patients [112].

Inflammatory markers, such as IL-6, TNF-α and CRP were independently associated
with incident HF. IL-6 and CRP were associated with HFpEF, but not with HF with reduced
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or moderately reduced EF. This conclusion can underline that the activation of IL-6 and the
CRP pathway could be specifically attributed to HFpEF [113].

When assessing the predictive value of CRP in patients with HFpEF, it proved to be
an independent and strong predictor of mortality in patients suffering from HFpEF. CRP
added prognostic value to NTproBNP, the highest mortality risk being in the group with
both the highest CRP and highest NTproBNP concentrations. These results draw attention
to the immunology phenomena which negatively impact the evolution of HFpEF [114].

Regarding the distribution depending on gender, CRP was strongly and independently
associated with HF in men. However, for women, the association of CRP and HF was
weaker and disappeared after accounting for CV risk factors [115].

In patients already diagnosed with CV disease, CRP proved to be an independent
risk marker of incident HF (as defined by the first hospitalization for HF), according to
Burger et al. [116].

A systematic review conducted by Araujo and colleagues evaluated the link between
hsCRP (as a marker of low-grade inflammation) and the prediction of HF in general and
high-risk populations. They also evaluated the prognostic role of hsCRP in patients already
diagnosed with HF. Past studies indicated that hsCRP is a powerful independent predictor
of acute myocardial infarction and CV death. HsCRP was associated with incident HF in
high-risk but also general populations and it possessed prognostic information in patients
suffering from HF. Although different cut-off values for hsCRP were assessed in the studies
included in the analysis, hsCRP had an important prognostic power in cases of both incident
HF and already diagnosed HF in various populations [117].

Plasmatic levels of hsCRP were associated with more congestion and a worse prog-
nostic in patients with chronic HF [118]. In ambulatory patients suffering from HF, higher
hsCRP plasmatic concentrations were a strong mortality predictor and pointed out patients
with higher natriuretic peptides, who were more prone to die of non-CV causes [118].

CRP concentrations are associated with prognosis in CV diseases, acute coronary
syndromes included. CRP levels at admission are associated with hospital mortality in
acute decompensated HF patients and with a high risk of long-term mortality [119].

A prospective study on STEMI patients who underwent coronary angioplasty indi-
cated that peak CRP levels in these patients predicted the emergence of HF. Peak CRP
levels (usually reached after 48 h) were also a strong predictor of global and CV mortality
in the first year after the acute coronary event. A positive correlation between maximum
CK levels and peak CRP and a negative correlation between LVEF and peak CRP were
observed [120].

When assessing a possible connection between central sleep apnoea and CRP levels in
patients with chronic HF, it was observed that severe central sleep apnoea in HF patients is
associated with high seric concentrations of CRP, suggesting a negative prognostic marker
for chronic HF in this category of patients [121].

The prognostic values of CRP and statins in patients with HFrEF and HFpEF were
evaluated in a study conducted by Park et al. The results indicated that CRP was a very
good prognostic marker for HFrEF, HFmrEF and HFpEF, and also that statins could be
beneficial in cases of HF with high CRP concentrations [122].

HsCRP has been associated with outcomes in adult congenital heart disease (ACHD).
Geenen and colleagues evaluated approximately 600 patients with ACHD over a mean
period of 5.9 years. Higher baseline hsCRP was independently associated with greater
risk of death or HF. Therefore, according to their results, it can be stated that hsCRP has
incremental prognostic value for the risk of death or HF, independent of NTproBNP and hs
troponin T. The clinical decline of patients with ACHD was anticipated by elevated hsCRP
concentrations, which were increased before symptoms of HF or death [123].

2.9. iNOS (Inducible Nitric Oxide Synthase)

Nitric oxide (NO) is a diffusible free radical gas with a very short half-life. It is
synthesized from l-arginine through the catalytic reaction of nitric oxide synthases (the
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neuronal type 1 isoform—nNOS or NOS1; the inducible type 2 isoform—iNOS or NOS2;
and the endothelial, type 3 isoform—eNOS or NOS3). The activity of nNOS and eNOS is
triggered, therefore it is transient. On the other hand, iNOS activity is sustained, as it does
not depend on stimulating agonists and calcium [124].

nNOS is found in nerve endings (neurotransmission of norepinephrine) and eNOS in
endothelial cells, endocardial cells and cardiomyocytes [124].

The effects of NO in the human heart include the inhibition of the positive inotropic effect
as a result of beta-adrenergic stimulation in cases of LV dysfunction or severe HF [125,126].

The inducible nitric oxide synthase (iNOS or NOS2) is normally expressed in low
concentrations in myocardial tissue. In specific cases, such as inflammation or ischemia,
significant amounts of NO are generated, after the activation of iNOS [127].

NO has roles in preserving vascular tone and preventing platelet aggregation or
adhesion. Therefore, altered NO production will lead to inflammation and cellular destruc-
tion [128].

iNOS activation leads to large quantities of NO, which can be cytotoxic or inhibit
myocardial contractility [129].

Evidence suggests that iNOS is also associated with significant oxidative stress and
insulin resistance [130], both of which are known to be involved in the pathophysiology of
HFpEF. Animal studies indicate that stress produced by iNOS leads to HFpEF phenotype
progression, while its inhibition leads to an improvement of HFpEF in mouse models [131].
Considering the evidence from animal studies, it is promising to evaluate a possible
therapeutic role of iNOS inhibition in HFpEF [128].

Cardiac iNOS activity in conditions involving myocardial and systemic inflamma-
tion, such as in severe HF patients and septic shock, can reduce the response to beta-
adrenergic activation. NO has a negative effect on inotropism after beta-adrenergic stimula-
tion through cGMP inhibition of calcium influx caused by voltage dependent Ca2+ channels
(L-type) [132].

NO can lower beta-adrenergic stimulation in HF cases, while elevated cardiac iNOS
activity is linked to the early debut of relaxation [124].

Chronic HF is associated with iNOS expression and activity. In cases of dilated
cardiomyopathy, iNOS is expressed in cardiomyocytes, along with TNF-α [133].

Significant expression of iNOS can be noted in patients with ischemic cardiomyopathy,
suggesting that iNOS myocardial expression is a consequence of HF and it is not necessarily
related to the cause of HF [124,134].

There is, however, conflicting evidence regarding eNOS. Its activity was noted to be
high in some cases of HF, but other studies identified it as diminished [124].

Zhang et al. underlined that iNOS expression has a role in the maladaptive response
(myocardial hypertrophy and cardiac chamber dilation) caused by pressure overload.
They also indicated that iNOS inhibition could be a solution for systolic-induced cardiac
dysfunction [135].

Transgenic models imply that intense iNOS activity can lead to significant structural
and functional cardiac changes. Mungrue and colleagues indicated that there is a correlation
between chronic overexpression of iNOS and cardiac dilatation, conduction abnormalities,
sudden cardiac death and HF. Accentuated cardiac iNOS activity has pathogenic potential,
implying that selective inhibition of iNOS may be an important therapeutic strategy for
cardiovascular afflictions [136].

Liu et al. concluded that iNOS did not appear to be a pathological mediator of HF, but
the absence of iNOS improved cardiac reserve after ischemic events (such as myocardial
infarction), especially when constitutive NOS isoforms were blocked. Further studies are
needed to establish if diminished oxidative stress or other adaptive mechanisms could be
responsible for this effect [137].

Ferreiro and colleagues evaluated the expression of iNOS in HF caused by ischemic
disease. They concluded that HF downregulated eNOS activity and expression in the
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myocardial tissue of patients with HF and an EF below 35%, but they also emphasized that
iNOS activity and expression were higher in HF cases caused by ischemic disease [138].

In patients with advanced, refractory HF, iNOS protein expression was elevated before
heart transplantation. Mechanical unloading with ventricular assist devices lowered iNOS
protein concentrations, in concordance with a lower rate of cardiomyocyte apoptosis [139].

2.10. Myeloperoxidase (MPO)

MPO is a leukocyte-derived enzyme, a heme peroxidase, mainly expressed by neu-
trophils, which belongs to the innate immune response. MPO-derived oxidants are respon-
sible for tissue destruction in inflammatory scenarios [140,141].

MPO has the ability to generate reactive species, with important roles in the innate
host immunity and therefore antimicrobial activity. High circulatory levels of MPO are
associated with inflammation, increased oxidative stress, poor prognosis and high risk of
CVD-related mortality [140].

MPO can be regarded as an important target for cardiovascular protection. Circulating
MPO can be regarded as an indicator of high risk in patients with acute coronary syndromes,
atherosclerosis, heart failure, hypertension or stroke [140].

The role of MPO in atherosclerosis can be suggested by the MPO catalysed reac-
tions, with pro-atherogenic effects, transforming MPO and its inflammatory pathways into
potential therapeutic targets for the prophylaxis of atherosclerosis [141].

In chronic HF patients, MPO plasmatic levels were a predictor of adverse clinical
outcomes, being also associated with the severity of HF, according to Tang et al. [142].

The risk prediction for adverse clinical events in chronic HF had a stepwise increase
when patients were stratified according to hsCRP, MPO and NTproBNP. Moreover, hsCRP
and MPO delivered complementary prognostic value for chronic systolic HF patients
involved in the study of Wilson Tang and colleagues [143].

Another study which evaluated chronic HF patients underlined the differences in
MPO concentrations between HF patients and healthy subjects. A positive correlation
was identified between MPO and chronic HF severity, as MPO was significantly higher in
patients who had higher mortality rates [144].

Elevated systemic MPO levels proved to be independently associated with the risk
of HF development over a long follow-up for more than 3000 healthy elderly subjects,
especially in subjects without traditional CV risk factors [140,145].

In cases of HFpEF, seric MPO concentrations were evaluated as potential early biomark-
ers for diastolic dysfunction. MPO concentrations were independently correlated with
echocardiography parameters associated with diastolic dysfunction [146]. However, there
are studies on animal subjects which failed to identify a positive correlation between MPO
and HF severity [147].

2.11. Anti-Inflammatory Targeted Therapies in HF

Several trials have tried to evaluate the potential clinical effects of anti-inflammatory
agents in heart failure, driven by the pathophysiological ability to counteract inflammatory
cytokines. The trials are listed below, sorted by the targeted cytokine (Table 1).
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Table 1. The trials evaluating targeted therapies against pro-inflammatory cytokines. (↓ = decrease,
↑ = increase).

Target Trial Acronym and
Reference Study Population Sample

Size Intervention Drug Mechanism of
Action Follow-Up Outcomes

TNF α

ATTACH
(Anti-TNF-α

Therapy Against
Congestive Heart

Failure)
Chung et al., 2003

[44]

HFrEF patients
with III or IV

NYHA functional
class and

LVEF ≤ 35%

150

Intervention
group: 2 h

intravenous
infusion of
infliximab
5 mg/kg
(n = 50),

10 mg/kg
(n = 51) at 0.2 and

6 weeks
Placebo group

(n = 49)

TNF-α inhibitor
(anti-TNF

mouse–human
chimeric monoclonal

antibody)

28 weeks

-No clinical status
improvement at
14 weeks
-10 mg/kg
infliximab: ↑
death from any
cause or
hospitalization for
HF
-5 mg/kg: ↓ CRP,
IL-6; LVEF ↑

RENEWAL
(Randomized

Etanercept
Worldwide
Evaluation):

combined data of
RENAISSANCE and
RECOVER trials in a
prespecified study
Mann et al., 2004

[17]

HFrEF patients
with II to IV NYHA

functional class
and LVEF ≤ 30%

1673

Intervention
group:

etanercept
subcutaneous

injection 25 mg
3× weekly

(n = 308), 25 mg
2× weekly
(n = 683)

Placebo group
(n= 682)

TNF-α inhibitor
(dimeric recombinant

protein fusing the
TNF receptor

2 to the Fc region of
the human IgG1

antibody)

24 weeks
-No effect on the
rate of death or
hospitalization

IL-1

CANTOS
(Canakinumab

Anti-Inflammatory
Thrombosis

Outcome Study)
Ridker et al., 2017

[148]

Patients with prior
acute myocardial

infarction and
hsCRP ≥ 2 mg/L

10,061
canakinumab 50,

100 or 300 mg
every 3 months

IL-1β inhibitor
(monoclonal

antibody blocking
interaction between

IL-1β and IL-1
receptors

48 months

-↓rate of recurrent
cardiovascular
events,
independent of
lipid level
lowering

MRC-ILA
Morton et al., 2014

[149]

Acute NSTEMI
(<48 h) 182 anakinra 100 mg

daily

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

2-week
treatment

(1 year
follow-up)

-↓ CRP at 7 and
14 days (no effect
on ischemic
events at 30 days
and 3 months,
but ↑ at 1 year)

VCUART/VCUART
2/VCUART 3

Abbate et al., 2022
[150]

Acute STEMI
(<12 h) 139 anakinra, once

or twice daily

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

2-week
treatment
(3 months
and 1 year
follow up)

-↓ CRP, ↓
incidence of HF,
↓ hospitalization
for HF (no effect
on ischemic
events)

D-HART (Diastolic
Heart Failure

Anakinra Response
Trial)

Van Tassell et al.,
2014
[151]

HFpEF 12
anakinra,

100 subcutaneous
daily for 28 days

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

28 days

-↓ in CRP
-↑ peak aerobic
exercise capacity
and quality of
life at 2 weeks

Van Tassell et al.,
2016
[151]

Acute
decompensated

heart failure
patients with
LVEF ≤ 40%

30

anakinra, twice
daily for 3 days,

followed by once
daily for 11 days

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

14 days
-↓ systemic
inflammatory
response
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Table 1. Cont.

Target Trial Acronym and
Reference Study Population Sample

Size Intervention Drug Mechanism of
Action Follow-Up Outcomes

REDHART
(Recently

Decompensated
Heart Failure

Anakinra Response
Trial)

Van Tassell et al.,
2017
[152]

Acute
decompensated

heart failure
patients with
LVEF ≤ 50%

60

anakinra, daily
subcutaneous
injection for

2 weeks,
12 weeks, or

placebo

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

24 weeks

-↓ CRP values
-↑ peak VO2
(volume of
oxygen
consumption)

D-HART 2
(Diastolic Heart
Failure Anakinra
Response Trial 2)

[151]

HFpEF patients 31
anakinra, 100 mg
daily or placebo

for 12 weeks

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

24 weeks -↓ CRP
-↓ NT pro-BNP

AIR-HF
Van Tassell et al.,

2012
[153]

Stable NYHA II-III
HF patients with
LVEF≤ 50% and
CRP ≥ 2 mg/L

10
anakinra, single
arm 200 mg daily

for 14 days

Inhibits IL-1 binding
to the IL-1 type I

receptor (recombinant,
non-glycosylated form

of the endogenous
IL-1 receptor

antagonist peptide)

12 days

-↓ in CRP
-↑ aerobic
exercise capacity
and ventilatory
efficiency

IL-6

RESCUE
(Reduction in

Inflammation in
Patients with

Advanced Chronic
Renal Disease

Utilizing Antibody
Mediated IL-6

Inhibition)
Ridker et al., 2021

[154]

Moderate to severe
patients with

chronic kidney
disease and

hsCRP ≥ 2 mg/L,
9 high

cardiovascular
risk)

264

ziltivekimab
7.5 mg, 15 mg,

30 mg or placebo
every 4 weeks

IL-6 antibody
(monoclonal

antibody directed
against the IL-6

ligand)

24 weeks -↓ hsCRP

CRP

CORONA
(Controlled

Rosuvastatin
Multinational Trial

in Heart Failure)
Kjekshus et al.,

2017
[155]

NYHA II to IV
functional class
HFrEF patients

with LVEF ≤ 35%

5011

rosuvastatin 10
mg daily for at

least 3 months or
placebo

HMC-CoA reductase
inhibitor with

pleiotropic actions
(antioxidant,

anti-inflammatory,
improvement of

endothelial function)

32.8 months

-↓ CRP
-↓ hospitalization
for HF
-No effect on the
composite of
cardiovascular-
related death,
non-fatal MI or
stroke

GISSI-HF (Gruppo
Italiano Per Lo

Studio Della
Sopravvivenza

Nell’Insufficienza
Caridiaca-Heart

Failure)
Tavazzi et al., 2008

[156]

NYHA II to IV
functional class

ischemic and
dilated

cardiomyopathy
with mean

LVEF ≤ 45%

4574

rosuvastatin
10 mg daily for at
least 3 months or

placebo

HMC-CoA reductase
inhibitor with

pleiotropic actions
(antioxidant,

anti-inflammatory,
improvement of

endothelial function)

46.8 months

-↓ hsCRP values
at 3 months
-No effect on
all-cause death or
composite of
all-cause death or
hospitalization for
cardiovascular
causes

NOS

LINCS (L-NAME
[a NO synthase
inhibitor] in the

treatment of
refractory

Cardiogenic Shock)
Cotter et al., 2003

[157]

Refractory
cardiogenic shock

patients
30

Intervention
group (n = 15):

Supportive care in
addition to L-

NAME—1 mg/kg
bolus 1 mg/kg/h
continuous drip

for 5 h;
Control group

(n = 15):
supportive care

alone

L-NAME (Non-
selective NOS

inhibitor)
4 months

-↑ blood pressure
-↑ urinary output
-↓ time of
mechanical
ventilation
-↓ time of
intra-aortic
balloon pump
support
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Table 1. Cont.

Target Trial Acronym and
Reference Study Population Sample

Size Intervention Drug Mechanism of
Action Follow-Up Outcomes

SHOCK 2 (Should
we inhibit NO in

Cardiogenic
Shock 2)

Dzavik et al., 2007
[158]

Acute MI patients
complicated by

persistent
cardiogenic shock

despite PCI

79

Intervention
groups

(n = 15/15/15/14):
L-NMMA

0.15/0.5/1/
1.5 mg/kg/h

infusion for 5 h;
Placebo group
(n = 20): 0.9%

normal saline IV
bolus

L-NAME (Non-
selective NOS

inhibitor)

2 h after
study

initiation
(mean
arterial

pressure
outcome) or

30 days
(mortality
outcome)

-↑ blood pressure
at 15 min
-No effect on
blood pressure at
2 h
-No effect on
urinary output
-No significant
differences on
mortality at
30 days

TRIUMPH
(Tilarginine Acetate

Injection in a
Randomized

International Study
in Unstable MI
patients with

Cardiogenic Shock)
TRIUMPH

Investigators et al.,
2007
[159]

Acute MI patients
complicated by

persistent
cardiogenic shock

despite PCI

398

Intervention
group

(n = 206):
Tilarginine

(LNMMA)—
1 mg/kg bolus
and 1 mg/kg/h
infusion for 5 h;
Placebo group

(n = 190)

L-NAME (Non-
selective NOS

inhibitor)
6 months

-No effect on
30-day all-cause
mortality
-↑ systolic blood
pressure at 2 h
-No effect on the
resolution of
shock, on
reinfarction or on
renal function

Besides these trials of active substances, there are also other emerging therapies
studied as potential treatments. One trial which is expected to have its conclusions this
year is the REGRESS-HFpEF trial, which investigates the potential benefit of treatment with
allogenic cardiosphere-derived cells delivered intracoronary in HFpEF patients [160]. The
research is based on the role of mesenchymal stromal cells in the improvement of cardiac
function [161]. Also, the mesenchymal stromal cells and their derived extracellular vesicles
have shown a role in the modulation of T- and B-type lymphocytes [162], which resulted
in an improvement in diastolic dysfunction and cardiac stiffening in a diabetes mellitus
type 2 murine trial [163]. The REGRESS-HFpEF trial will focus on clinical functional status,
myocardial interstitial fibrosis (evaluated using MRI), macroscopic fibrosis using delayed
gadolinium enhancement and diastolic function [164].

Obesity leads to deposits of fat on vessels promoting not only atherosclerosis, but
also visceral fat accumulation [165,166]. In normal conditions, the epicardium produces
cytokines that contribute to the nourishment of the myocardium [167]. Because the epi-
cardium has continuous contact with the myocardium through microcirculation, in chronic
inflammatory diseases like metabolic syndrome, there is an overactivation of adipogenesis.
This leads to the production of proinflammatory adipokines that can cause atrial and
ventricular fibrosis, leading to HFpEF [167,168]. Besides bariatric surgery for the reduction
of epicardial fat and systemic inflammation [169], there are also other pharmacological
options, such as those used in the treatment of dyslipidaemia, diabetes mellitus and heart
failure. For instance, statins (a dose of 80 mg of atorvastatin showed a reduction in the epi-
cardial fat) [170] and antidiabetic drugs from the glucagon-like peptide 1 receptor agonist
class (liraglutide and exenatide) reduced epicardial fat [171,172]. Blockade of the mineralo-
corticoid axis has also shown a reduction in the epicardial fat, by increasing the expression
of adiponectin [173]. An inhibition of adipokines and proinflammatory cytokines is also
cited in the context of neprilysin inhibitors, leading the way for future clinical trials of
ARNI that could reduce the myocardial stiffening in HFpEF patients.

2.12. The Inflammatory Pathway of Microvascular Injury

Microvascular dysfunction, which appears in the context of atherosclerosis, surrounds
cardiovascular disease, diabetes mellitus and chronic kidney disease [174]. In patients



J. Clin. Med. 2023, 12, 7738 16 of 25

where atherosclerotic plaques are clearly identified, there is a strong recommendation for
the prevention of cardiovascular events (myocardial infarction, stroke or acute peripheric
ischemia) provided by antiplatelet therapy (with acetylsalicylic acid or clopidogrel) [175].
At least two clinical studies tried to find a better cardiovascular prevention strategy using
an anticoagulant therapy in additionto antiaggregant therapy [176,177]. One of the studies
(COMPASS) focused on the net clinical benefit of rivaroxaban 2.5 mg twice daily, added
to acetylsalicylic acid 75 mg once daily [176]. This therapy showed a reduction in the
cardiovascular events reaching statistical significance in a cohort of 27,935 high-risk patients
with coronary or peripheral artery disease. And even more important is the fact that these
results were also consistent in the high-risk subgroups and patients with multiple risk
factors, while severe bleedings were less frequent and had smaller clinical impact [176].
This shows the clinical benefit in patients undertreated because of the fear of fatal or severe
bleeding events, who can safely benefit from this combination [178]. However, other trials
such as COMMANDER HF, evaluated the same therapy (rivaroxaban 2.5 mg twice daily
versus placebo) in 5022 patients with coronary artery disease, hospitalized for worsening
of chronic heart failure with LVEF of ≤40%. The results showed no superior protection
against cardiovascular events (death, myocardial infarction or stroke) in the trial group
versus placebo [177].

2.13. The role of Epigenetic Factors in Heart Failure

Beginning with the Framingham Heart Study, launched in 1948, which extended over
more than 70 years, a correlation between biochemical, environmental, behavioural and
genetic factors and cardiovascular disease has been observed [179]. More recent studies
have shown that epigenetic modification has an important role in the pathophysiology
of heart failure. Considered to be a major regulator mechanism of cell response to envi-
ronmental change, epigenetic factors can induce a modulation of different gene functions,
expressions or activities [180]. The main methods of epigenetic-induced cardiovascular
disease are DNA methylation, histone modification and noncoding RNA regulation.

DNA methylation, which is the most frequent form of gene expression regulation in
mammals, transfers genetic information to offspring DNA, through DNA methyltrans-
ferases (DNMT) [181]. Madsen et al. showed in a study that the inhibition of DNMT3a func-
tion led to cardiomyocyte mitochondrial damage and impaired glucose metabolism [182].
In another study, Glezeva et al. found five genes (HEY2, MSR1, MYOM3, COX17 and
miRNA-24-1) that were hypermethylated in the interventricular septum of patients with
hypertrophic obstructive cardiomyopathy, ischemic cardiomyopathy and dilated cardiomy-
opathy [183]. Three other genes were in a hypomethylated state (CTGF, MMP2 and
miRNA-155) [183]. Also, Zhu et al. showed that the inhibition of the DNMT2-induced
DNA methylation of the glutathione peroxidase 1 gene promoter, through selenium sup-
plementation, had a cardioprotective effect by reducing the production of reactive oxygen
species inside cells and inhibiting cardiomyocyte apoptosis [184].

Histone modification can be produced by several processes such as: methylation,
acetylation, phosphorylation, adenylation, ubiquitination and adenosine diphosphate
ribosylation [185]. SIRT2 deficiency decreased AMPK activation, leading to age-related
and angiotensin II-induced cardiac hypertrophy [186]. SIRT3 induces phosphorylation and
degradation of SMAD3, reducing the TGF-beta induced myocardial fibrosis, while low
levels of SIRT4 decreased angiotensin II-induced cardiac fibrosis [187]. In another study,
Baldi et al. concluded that SIRT7 deacetylated p53, increasing the stress resistance and
inhibiting myocardial apoptosis [188].

The noncoding RNAs are nucleotide structures that are not encoding proteins, con-
sisting of ribosomal RNAs, transport RNAs, microRNAs (miRNAs), small interfering
RNAs (siRNA), mRNA, small nuclear RNAs and small nucleolar RNAs [189]. Wu et al.
showed that decreased levels of miRNA-92b-5p serum exosome in patients with acute
heart failure were correlated with reduced ejection fraction [190]. In another trial Wang
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et al. observed that miRNA-425 and miRNA-744 inhibited angiotensin-induced collagen
production, reducing the cardiac remodelling [191].

In conclusion, epigenetic factors can be regarded as future diagnostic markers and
treatment targets in stopping heart failure progression [192].

3. Conclusions

Even if the components of the pathophysiological pathways responsible for cardiac
fibrosis and remodelling, which further generate heart failure, have been studied for
decades and in a major part already discovered, the importance of each of them is still
yet to be completely established. The elevated levels of inflammatory cytokines and
chemokines are present across the whole spectrum of chronic heart failure, irrespective of
ejection fraction, and at the same time in acute heart failure and cardiogenic shock scenarios.

The results of trials evaluating the effect of therapeutic agents targeting cytokines,
aiming to inhibit the chronic low-grade inflammation present in heart failure, have proven
to be unsuccessful until now. However, given the high prevalence of these inflammatory
components in HFrEF and HFpEF, there is a great perspective that new clinical trials
will succeed in identifying specific immunomodulators capable of reducing the mortality
and morbidity of this cardiac burden. Due to the presence of diverse inflammatory infil-
trate, with an established prognostic role, the treatment needs to be individualized and
tailored accordingly, targeting the unique immunopathogenic profile corresponding to each
particular individual.
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A.J.S.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42,
3599–3726. [CrossRef] [PubMed]

4. Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al.
Heart Failure: Preventing Disease and Death Worldwide. ESC Heart Fail. 2014, 1, 4–25. [CrossRef] [PubMed]

5. Dick, S.A.; Epelman, S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ. Res. 2016, 119, 159–176.
[CrossRef] [PubMed]

6. Mann, D.L. The Evolution of Modern Theory Therapy for Heart Failure. Prog. Pediatr. Cardiol. 2014, 37, 9–12. [CrossRef]
7. Greene, S.J.; Khan, M.S. Quadruple Medical Therapy for Heart Failure: Medications Working Together to Provide the Best Care. J.

Am. Coll. Cardiol. 2021, 77, 1408–1411. [CrossRef]
8. Francis, G.S. Neurohormonal Control of Heart Failure. Cleve Clin. J. Med. 2011, 78 Suppl. 1, S75–S79. [CrossRef]
9. Straw, S.; McGinlay, M.; Witte, K.K. Four Pillars of Heart Failure: Contemporary Pharmacological Therapy for Heart Failure with

Reduced Ejection Fraction. Open Heart 2021, 8, e001585. [CrossRef]
10. McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand,
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