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Abstract: Coronary computed tomography angiography (CCTA) currently represents a robust imag-
ing technique for the detection, quantification and characterization of coronary atherosclerosis.
However, CCTA remains a challenging task requiring both high spatial and temporal resolution to
provide motion-free images of the coronary arteries. Several CCTA features, such as low attenuation,
positive remodeling, spotty calcification, napkin-ring and high pericoronary fat attenuation index
have been proved as associated to high-risk plaques. This review aims to explore the role of CCTA
in the characterization of high-risk atherosclerotic plaque and the recent advancements in CCTA
technologies with a focus on radiomics plaque analysis.

Keywords: CCTA; atherosclerosis; prognosis; radiomics

1. Introduction

Nowadays, despite the incontrovertible progress both in the diagnostic and therapeu-
tic field, atherosclerotic coronary disease remains the leading cause of death in European
countries [1]. The primary cause of the disease consists in the formation of an atheroscle-
rotic plaque in the intima of the coronary arteries. However, most coronary atherosclerotic
plaques do not induce any symptoms; some can clinically manifest in numerous disease
subtypes, generally classified as chronic coronary syndrome and acute coronary syndrome
(ACS). Several pivotal papers and surveys, such as the Multi-Ethnic Study of Atheroscle-
rosis (MESA), the Framingham Heart Study (FHS) and the Cardiovascular Health Study
(CHS) showed that the prevalence of coronary artery disease (CAD) considerably increases
with age and that men are affected more than women [2–4].

Nowadays, cardiac imaging includes multiple methods to diagnose CAD, both via
the detection of the ischemic myocardium triggering the ischemic process or via the direct
visualization of coronary artery stenoses [5].
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Since most coronary stenoses do not cause any ischemia, generally the first approach
in these patients is to identify myocardial ischemia by an imaging-based stress test, such
as SPECT, PET or stress echocardiography and stress MRI. These functional non-invasive
imaging methods are capable of detecting myocardial ischemia through ECG changes, wall
motion abnormalities by stress CMR or stress echocardiography or perfusion changes by
SPECT [6,7].

The second option consists of the direct visualization of the coronary anatomy, which
can be obtained by invasive coronary angiography (ICA), which is the diagnostic reference
standard in stable chronic coronary disease and acute coronary syndrome. This technique
can also provide the measurement of the fractional flow reserve (FFR) to evaluate the
stenosis significance [8].

However, ICA, besides being invasive, is a luminography technique, thus unable to
provide any information about the vessel wall. New imaging modalities have been recently
proposed for the non-invasive assessment of coronary artery disease. In particular, intravas-
cular ultrasound (IVUS) and optical coherence tomography (OCT) can be valuable [9] while
coronary computed tomography angiography (CCTA) has been established as an accurate
and robust imaging technique which allows the quantification and characterization of coro-
nary atherosclerosis [10,11]. Thanks to its high negative predictive value, CCTA is often
used to conclusively exclude CAD in patients with a low pretest probability of disease.

In acute coronary syndrome (ACS) [12], non-invasive cardiovascular imaging has
a limited role. Electrocardiography is always the first test performed for STEMI and if
positive, patients are immediately led to a coronary angiography room. In the case of
NSTEMI, electrocardiographic findings together with troponin and echocardiography can
be used to exclude other differential diagnoses in order to take a decision about invasive
angiography [13].

Currently, CCTA has a critical role in ruling out CAD in patients with stable chest
pain [14]. However, it cannot exclude other frequent causes of chest pain, such as acute
myocarditis, myocardial infarction with normal coronary arteries and cardiomyopathies; for
these reasons, researchers suggested the addition of a delayed scan to enhance myocardial
scars via late iodine enhancement (LIE) and to evaluate extracellular volume (ECV) [15,16].
Furthermore, FFR derived from CCTA has emerged in the last decade as a promising tool
for evaluation of the physiologic significance of a coronary artery stenosis [17].

Cardiac MRI has a limited role in the emergency setting, but it has a pivotal role early
after coronary angiography, to determine risk stratification and prognosis and to detect
complications [13,18].

In this review, we explore the role of CCTA in the characterization of high-risk
atherosclerotic plaque and the recent advancements in CCTA technologies with a focus on
radiomics plaque analysis.

2. Atherosclerosis

Atherosclerosis is a slow chronic inflammatory disease characterized by the formation
of lipid-rich plaques. This pathological process probably starts early in life as diffuse
intimal thickening of the arterial walls, as the consequence of the deposition of lipids,
fibrous tissue, calcium and smooth muscle cells in the intimal layer of coronary artery
walls [5]. Furthermore, atherosclerotic risk factors such as hypertension, diabetes mellitus
and smoke can damage the arterial wall, mainly at the endothelial level. Here, blood
monocytes migrate to the subendothelial space and differentiate into macrophages that can
incorporate low-density lipoproteins (LDL), becoming foam cells. These cells represent an
essential element to the formation of fatty streaks that will progress to the atherosclerotic
lesions [19–21]. The advanced stages of atherosclerotic lesions are represented by atheroma,
fibro-lipid plaque and fibroatheroma which typically form in proximal coronary sectors and
near bifurcations [10]. These plaques present a lipid or necrotic nucleus covered by a thick
fibrous cap consisting of smooth muscle cells, collagen matrix and calcifications. Those
with a thinner fibrous cap are identified as vulnerable plaques because of their potential to
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rupture and are also known as thin-cap fibroatheromas (TCFA). Other typical features of
vulnerability are plaque vascularization, plaque volume, matrix metalloproteinase expres-
sion, collagenase activity, and macrophage infiltration of the fibrous cap (Figure 1) [22]. In
case of plaque rupture, the contact of lipid material with blood activates the coagulation
process, which can determine endoluminal thrombosis with partial or total occlusion of the
vessel eliciting an acute coronary syndrome. Total coronary artery occlusion can determine
myocardial necrosis and subsequent STEMI or NSTEMI, while partial occlusion can induce
ischemia without myocardial necrosis that clinically shows as unstable angina; however, in
most cases, the plaque undergoes a healing process and remains clinically silent [23,24].
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Figure 1. Exemplificative image of the atherosclerotic process.

Instead, the slow-growing plaques can lead to the development of coronary stenosis
of different grades of severity, which can generally exacerbate symptoms during physical
exercise, triggering stable coronary artery disease. Plaque size and the degree of remodeling
define the percentage of luminal narrowing. Under stress conditions, stenosis between
50% and 90% induce a gradual and proportional reduction of the coronary flow reserve,
secondary to a reduced capability of the coronaries to vasodilate and supply oxygen to the
myocardial tissue, with consequent myocardial ischemia and thoracic pain [25].

3. CCTA Imaging Technique

Coronary imaging with CT remains a challenging task requiring a high spatial res-
olution and high temporal resolution to provide motion-free images of the coronary ar-
teries [26]. CT scanners could obtain an x–y plane spatial resolution of 0.3 mm even prior
to the multislice CT era, but the resolution along the z-axis was limited by the need to
acquire wider slices to complete the scan in a single breath-hold. The advantage of cur-
rent CT systems, capable of imaging 64 slices or more, is to achieve an isotropic spatial
resolution [27].

To avoid significant image blur, a good temporal resolution (TR) is also needed,
which can only be provided by a scanner with a fast gantry rotation speed. To improve
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TR, specialized cardiac reconstruction algorithms utilizing only 180◦ of data for image
reconstruction can be employed. This enables an intrinsic TR of approximately half the
gantry rotation time in a CT scanner with a single X-ray source. On dual-source CT scanners,
with the two X-ray tubes located at approximately 90◦ to each other, sufficient data can be
acquired in approximately one-fourth of an entire gantry rotation [27,28].

The length of the heart that must be included in a CTCA scan is generally around
120–140 mm. Since the many high-end CT scanners use a z-axis detector length shorter
than this, they generally cannot image the whole cardiac volume within a single gantry
rotation, but they acquire a series of slabs over several heartbeats. Recently introduced
volume CT scanners can acquire the whole cardiac volume (16 cm) in a single heartbeat,
consequently avoiding misregistration artefacts, particularly in patients with arrhythmias,
reducing the volume of the iodine-based contrast agent and furthermore these scanners
have the capability of performing dynamic myocardial perfusion studies [29]. Beyond
impressive coronary arterial imaging, these scanners significantly reduce the acquisition
time to less than 1 s, also decreasing the radiation dose to the patient. Volumetric scan
also eliminates stair-step artifacts, and it is particularly useful for myocardial function
evaluation and perfusion imaging [27].

Another approach to achieve whole volume coverage within a single heartbeat, avail-
able on Siemens dual-source scanners, is to perform a prospectively ECG-triggered helical
scan at a very high pitch (>3). The high table speed allows the whole cardiac volume to be
covered in around 250 ms. In this “Flash” mode, the cardiac volume can be acquired within
a single heartbeat, although this mode is generally limited to patients with low heart rates,
typically 65 bpm [27].

Cardiac CT scanners have evolved from electron beams, capable of detecting coronary
calcification, to multidetector scanners, capable of undertaking contrast-based cardiovascu-
lar imaging. The advent of wide detector technology, dual-source X-ray, and high-pitch
acquisition platforms have significantly improved temporal resolution, but none of these
strategies have improved spatial resolution. In CCTA imaging, the primary determinant of
spatial resolution is the voxel size that in current clinical scanners is limited to 0.4 mm3.
Higher spatial resolution relies on thinner collimation, a small detector size and advanced
reconstruction algorithms [30]. Other factors involved in the assessment of plaque character-
ization are tube current and voltage, contrast agents and imaging processing reconstruction.
Dual-energy CCTA provides additional data and could improve the differentiation of
plaque components. It has been shown that using dual energy-CCTA at 80 and 140 kV, the
differentiation between calcified and non-calcified plaques has improved [31].

An overview of technical specifications from the latest available CT scanners by
different manufacturers has shown in Table 1.

Table 1. Overview of technical specifications from the latest available CT scanners.

Revolution
Apex
(GE)

IQon
Spectral CT

(Philips)

Somatom
Definition

Flash
(Siemens)

Somatom
Definition

Drive
(Siemens)

Somatom
Definition

Force
(Siemens)

Naeotom
Alpha

(Siemens)

Aquilion One
(Canon)

Detector type Gemstone
scintillator

Spectral Detector
–NanoPanel

Prism

2× Multislice
Stellar

detector

2× Multi-slice
StellarInfnity

2× Multislice
StellarInfinity

2×
QuantaMax

2× Pure
Vision

Detector rows 256 64 rows, 256 slice 128 (2 × 64) 128 (2 × 64) 384 (2 × 192)
288 (2 × 144)

or
240 (2 × 120)

640

Gantry
aperture, cm 80 70 78 78 78 82 78

z-axis,
mm 160 40 38.4 38.4 57.6 60 160

Rotation time,
sec 0.23 0.27 0.28 0.28 0.25 0.25 0.27
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Contrast material affects plaque imaging in relation to its volume, injection rate, iodine
concentration, cardiac output and heart rate [32]. Among imaging processing factors,
iterative reconstruction significantly lowers noise compared to filtered back projection.
This is very important in the case of a thin-cut acquisition to mitigate the increased noise;
furthermore, it has been shown that the reconstruction kernel considerably influences
plaque characterization. Indeed, a soft reconstruction kernel enhances visual detectability
of low-density plaques while the opposite effect may be observed in the evaluation of small
calcification [33,34].

At present, 64-detector row CT is considered the minimum standard for CCTA.
Image quality improves substantially when the heart rate is regular and lower than
65 beats/minute (b/m), so patients’ preparation is another crucial element. In the ab-
sence of contraindication, the administration of beta-blockers and nitrates to lower the
heart rhythm and vasodilate coronary arteries is recommended to improve image quality
and coronary evaluation. However, the latest CT scanners enable cardiac acquisitions at
high frequencies, ensuring sufficient image quality without the need for beta blockers.
Moreover, these state-of-the-art CT scanners offer enhanced diagnostic quality, even in
cases of heart rate irregularities, such as patients with atrial fibrillation, with the capability
of acquiring images in a single beat.

Different acquisition strategies are available to obtain the best image quality based on
the patient’s heart rate, BMI and ability to breath-hold.

4. ECG Gating

ECG gating is mandatory to perform cardiac CCTA because all images must be frozen
in defined points of the cardiac cycle. Three approaches for ECG gating are mainly used:
1. Retrospective ECG gating with spiral data acquisition. 2. Prospective ECG gating with
a sequential data acquisition. 3. Prospective ECG gating with spiral data acquisition and
high pitch (Figure 2).
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4.1. Retrospective ECG Gating

Using the retrospective ECG-gated spiral scanning technique with multidetector
scanners grants high-speed acquisition of the entire heart with a submillimeter spatial
resolution and without motion artefacts during a single breath hold.

In this approach, CCTA projections are constantly acquired in the spiral mode, and the
ECG signal is recorded at the same time; afterwards, software algorithms can extrapolate
the data from different phases of the cardiac cycle by progressively shifting the temporal
window relative to the R wave. Through retrospective gating, every position of the heart
is acquired by a detector row at every point of the cardiac cycle while the table moves
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continuously but advances no more than the total width of active detectors for each
heartbeat [35]. For this reason, using a 4 cm detector, the coverage of the entire heart
volume takes four beats [30,36]. This approach requires a low table feed (pitch < 1) to ensure
coverage of the whole heart with a constant tube current and to allow the selection of the
optimal reconstruction window throughout the cardiac phase. However, the acquisition of
multiple phases is often avoidable in patients with a low and regular heart rate, in which
diastole is generally sufficient for optimal reconstruction of coronary arteries.

In the retrospective ECG-gated spiral scanning technique, the radiologist can use the
ECG-controlled tube current modulation to increase tube current during a pre-determined
cardiac phase and drastically lower the current for all the other phases that are not con-
sidered useful for the diagnosis. Nowadays, ECG-controlled tube current modulation
represents one of the most useful CCTA techniques, since it grants an optimal imaging qual-
ity reducing the effective dose by approximately 30–50% and consequently the lifetime risk
of developing cancer in all patients, particularly for women and younger patients [37–39].
In terms of dose reduction, benefits are particularly evident in patients with a low and
regular heart rate, which have a full dose window duration shorter than those with a
higher and variable heart rate [38]. In CT, the radiation dose is proportional to the square
of the tube voltage and proportional to the tube current. Therefore, diminishing the tube
voltage lowers the radiation dose far better than reducing the tube current. Lowering the
tube voltage from 120 kVp to 100 or 80 kVp can significantly limit radiation dose without
losing image quality in children and patients with BMI < 25 kg/m2 [40–42]. Because of
a greater photoelectric effect, diminishing the tube voltage also increases the attenuation
of iodinated contrast media which can also grant a smaller volume of contrast medium
without lowering attenuation within vessels [38,43].

4.2. Sequential Mode Prospective ECG Gating

In the prospective ECG-gated axial scan, or step-and-shoot scan, CT scanning is limited
to a defined point of the cardiac cycle, usually during diastole, depending on the patient’s
heart rate. Since axial scanning is used, the table is not moving during but only between
data acquisition. The X-ray beam activates on the preselected cardiac phase to obtain
the necessary data to reconstruct images during the minimal acquisition window, which
corresponds to the time for the gantry to rotate 180◦ plus the size of a fan angle. The total
number of heartbeats and number of image stacks for a cardiac CT depends on the width
of the detector; in most adult hearts, a scanning of about 12 cm in the z-axis is required
to cover the total heart volume. Currently, prospective ECG gating is the most widely
used technique for data acquisition in cardiac CT since it is associated with an average
radiation dose of 2.7 mSv [44–46]. Compared with the retrospective ECG-gated helical
scan, this technique lowers the radiation dose essentially by reducing the acquired cardiac
phases and by increasing the pitch to 1, with minimum overlapping between the scans.
Furthermore, this approach can also limit blurring in the coronary arteries, particularly
if calcification or stents are present, and can enhance image quality. For follow-up after
bypass graft surgery, which needs a wider scan coverage to include the grafts and the
native coronaries, the step-and-shoot scan could represent a reasonable choice to reduce
the effective dose in these patients [47].

However, this protocol is generally limited to patients with a regular heart rate inferior
to 70 beats per minute and, since the scan is sequentially obtained, there is no or minimal
flexibility in retrospectively choosing different phases of the cardiac cycle for image re-
construction. The padding technique can “enlarge” the acquisition window, adding extra
tube-on time before and after the pre-determined window to obtain additional data during
different cardiac phases; against, padding obviously increases radiation dose (45% increase
per 100 ms increase in padding time) but also improves image quality for patients with low
heart rate variability [48].
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4.3. Prospective ECG Gating with Spiral Data Acquisition and High Pitch

A dual-source CT scanner can accomplish gapless z-sampling with a pitch as high as
3.4 to obtain full coverage of the heart volume during a single cardiac cycle in a scanning
time of 250–290 ms, providing a “snapshot” of the entire heart, usually during diastole.
The table moves at a very high speed to cover the total heart volume within a single beat.
A quarter rotation of data per measurement system is used for image reconstruction, and
each of the individual images has a temporal resolution of a quarter of the gantry rotation
time. A prerequisite for this approach is a stable sinus rhythm with a heart rate ≤ 60 b/min,
to reduce motion artefacts. The effective radiation dose of this approach can be below
1 mSv [38,49–52]. When applying this technique, the table continuously moves during
scanning and with prospective triggering by the patient’s ECG, one X-ray tube rotates
around the patient without overlap at a pitch as high as 3.4, while the other tube rotates
a quarter rotation later at the same pitch to fill the sampling gaps [50,53]. Afterwards,
images are reconstructed with a temporal resolution of 75 ms (half-scan reconstruction),
and subsequent images are reconstructed at progressively later times within the cardiac
cycle, so that the obtained dataset is not uniform in time, with the most proximal scans
in end-systole or early diastole and with the most distal ones in later diastole [50,53]. In
conclusion, when a dual-source CT scanner is available, a prospective ECG-gated high-
pitch acquisition mode could represent an option to capture a single phase of the cardiac
cycle, with the lowest possible dose in cooperative patients with a stable sinus rhythm
lower than 60 bpm and a maximum patient weight of 100 kgs.

Choosing the right scanning mode depends on the patient’s heart rate. A heart rate
below 70 beats per minute would be desirable: in this type of patient, it is possible to
choose between a high-pitch helical acquisition mode or a prospective sequential scan. In
patients with a heart rate greater than 70 beats per minute or with an irregular rhythm, it is
mandatory to use a retrospective helical scan mode (Figure 3). However, it is important to
consider that in patients uncompliant to breathing commands, the images obtained may
be degraded by motion artifacts. When dealing with patients experiencing extrasystole, it
is essential to be aware of the different acquisition modes. In sequential acquisition, the
extrasystole is deliberately omitted from the recording. On the other hand, in retrospective
mode, the extrasystole is included in the acquisition and can be later edited out during
post-processing.

With the advent of last generation scanners, prospective ECG gating with systolic trig-
gering (45% R–R interval, plus 100 milliseconds of padding if necessary) could represent an
invaluable resource in challenging patients affected by atrial fibrillation (AF). The technique
allows coronary arteries evaluation with high image quality and without an increase in
radiation exposure in AF patients, even with a high heart rate. Prospective gating with sys-
tolic acquisition offers image quality which is at least comparable to retrospectively gated
studies, improving diagnostic confidence at a significantly reduced radiation dose [54].

Regarding radiation dose, the introduction of iterative reconstructions has favored
the development of low kV protocols. Prospective ECG-gating can remarkably reduce
the radiation dose but using low kV scanning will further decrease radiation dosage and
enhance vascular CT value, allowing a lower dose of contrast agent but with a higher noise-
for-image quality. A low-concentration contrast agent reduces the intake of iodine and
possibly decreases its vascular concentration. Iterative reconstruction can increase image
quality by reducing noise. A low kV and low concentration of contrast agent combined with
iterative reconstruction for CTCA imaging produced an image quality consistent with that
of conventional CTCA and significantly reduced the dosage of the radiation and injected
iodine [55]. Furthermore, the recent advancements in artificial intelligence (AI) have led
to the development of different deep-learning image reconstruction algorithms which
offers unique opportunities for reducing image noise without degrading image quality
or diagnostic accuracy in CCTA. These algorithms can provide a reduction in radiation
dose from CCTA even of 43% without significant impact on image noise, stenosis severity,
plaque composition, and quantitative plaque volume [56].
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5. Coronary Artery Calcium Scoring

First developed in the early 1990s, the Agatston coronary artery calcium (CAC) score
is an international guideline-endorsed decision aid for risk assessment and personalized
management in the primary prevention of CAD [57]. With current available CT scanners,
even non-gated studies can allow either semiquantitative or quantitative CAC. Generally,
CAC is evaluated via a standardized protocol using prospective ECG-triggered axial
scanning at 3 mm with 120 kV tube voltage. The calcium scale comprises four categories:
normal (0), mild (1–99), moderate (100–400) and severe (>400). Nowadays, calcium score
can be obtained at about 1 mSy of radiation, without the need for contrast agents. CAC
has been proven valuable in the management of CAD and primary prevention, while the
benefit of moderate values of CAC to predict prognosis is still controversial [57].

6. High-Risk Plaque Features at CCTA

An overview of the main studies assessing high-risk plaque features with CCTA is
shown in Table 2.

6.1. Low Attenuation

CCTA characterization of atherosclerotic plaques relies on morphological features and
on the correct identification of the biochemical composition. The Hounsfield Units (HU)
values for the various plaque constituents range from −30 to 60 for lipid plaques, from 61
to 149 for fibrous plaques and from 150 to 1300 for calcium [58,59] (Figure 4). However, the
CT attenuation value of lipid plaques is similar to that of fibrous plaques, so it is complex
to characterize plaques by CCTA attenuation alone. Furthermore, the CCTA value of
plaques is influenced by various factors such as slice thickness, tube voltage and contrast
agent. CCTA can be a valuable tool to quantify the burden of calcified, non-calcified and
low-attenuation plaques, as well as the total coronary plaque burden, providing important
prognostic information. In a recent study, Williams et al. stated that low-attenuation plaques
represent the strongest predictor of fatal or non-fatal myocardial infarction, surpassing other
well-known cardiovascular risk markers such as score systems, computed tomography
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calcium scoring and coronary artery stenoses. The authors discovered that patients with
a low-attenuation plaque burden > 4% were five times more likely to suffer myocardial
infarction [60].
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Figure 4. CCTA and coronary angiography of a 74-year-old male patient showing: Two plaques in
the proximal segment of RCA with respective napkin-ring sign (green arrowhead, (a–d)) causing
significant stenosis (>70%) and spotty calcification (red arrowhead, (b–d)) producing mild stenosis.
Calcified plaque in the proximal segment of LAD causing mild stenosis (yellow arrowhead (e,f)).
Positive remodeling and low attenuation plaque in the proximal segment of CX (blue arrowhead,
(g–i)). The corresponding coronary angiography images are shown in figure (c–h).

Moreover, Deseive et al. investigated the prognostic value of low-attenuation plaque
volume (LAPV) from the CCTA datasets of 1577 patients with suspected CAD that were
followed for 5.5 years using death and ACS as the primary endpoints. They found that
quantified LAPV provided incremental prognostic information beyond clinical risk, obstruc-
tive CAD and CACS. A combined approach using quantified LAPV and clinical risk may
offer cumulative prognostic information beyond well-known CT risk patterns and could
be helpful for the stratification of patients into low, intermediate and high-risk categories
compared to clinical risk [61].

Furthermore, in a recent retrospective study, Yamaura et al. evaluated the prognostic
impact of low-attenuation non-calcified coronary plaque volume and its association with
epicardial adipose tissue (EAT) volume in 376 patients without known CAD. They deter-
mined the percentage LAP volume (%LAP, <30 HU) as the LAP volume divided by the
vessel volume, while EAT was defined as fat tissue with a CT attenuation value between
−250 and −30 HU. The main aim of the study was to understand how the combination of
these two factors impacted their primary endpoint, described as an event of death, non-fatal
myocardial infarction, unstable angina or worsening symptoms which required unplanned
coronary revascularization. The authors discovered that %LAP was an independent predic-
tor of the primary endpoint (hazard ratio [HR], 3.05) and that CACS and EAV can be useful
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in determining %LAP. These three factors could help improve personalized cardiac risk
management by administering patient-suited therapy [62].

6.2. Positive Remodeling

Atherosclerotic plaque initially tends to grow outwards, leaving the luminal integrity
unchanged [63] (Figure 2). Therefore, many coronary plaques accumulate lipids and
become more complex without causing any clinical symptoms. Autoptic studies on sudden
cardiac death cases found that plaques with positive remodeling have larger lipid cores
and more macrophages, which are markers of vulnerable plaques [64]. The remodeling
index (RI), using CCTA, is expressed by the ratio between vessel cross-sectional area at
the level of maximal stenosis divided by the average of the proximal and distal reference
sites [65]. Given this, RI > 1.1 is considered for positive remodeling [66]. It has been
shown that plaques with positive remodeling are more frequent in patients with acute
coronary syndrome (ACS) compared to those with stable angina [67]. Positive remodeling
has the best sensitivity and specificity for identifying patients with ACS if compared with
low attenuation and spotty calcifications [68]. Positive remodeling is less dependent on
image noise than plaque attenuation and has a more quantitative definition. For these
reasons, it might become a more robust marker to detect vulnerable plaques. However,
more studies are required to assess the effect of positive remodeling on later outcomes. In a
recent SCOT-HEART analysis, Williams et al. investigated the prognostic implications of
adverse coronary plaque characteristics, such as positive remodeling and low attenuation
in patients with suspected CAD. They found that major adverse cardiac events were three
times more frequent in patients with high-risk feature plaques. Positive remodeling was the
most frequent among all the features, followed by spotty calcifications and low attenuation,
which demonstrates that these features confer an increased risk of CAD-related death or
non-fatal myocardial infarction [69].

6.3. Spotty Calcifications

Several histological studies have shown calcified nodules in patients with coronary
thrombosis and in sudden death cases [70–72]. On this basis, some authors speculate
that intra-plaque microcalcification might promote plaque rupture [73]. Spotty calcifica-
tions are defined as <3 mm calcified plaque elements with a 130 HU attenuation value,
surrounded by non-calcified plaque tissue and have been proposed as a CCTA marker
of histological microcalcification [67,74] (Figure 2). However, only calcifications greater
than 0.5 mm in diameter are visible on CCTA, so most of them cannot be recognized since
the current resolution of clinical scanners is under the threshold needed for identifying
microcalcifications [75,76].

Van Velzen et al. were among the first to compare calcification patterns in plaques
on CCTA with plaque characteristics on intravascular ultrasound with radiofrequency
backscatter analysis (IVUS-VH). They identified three different calcification plaque pat-
terns: non-calcified, spotty or dense calcifications. Moreover, spotty calcifications were
distinguished into small (<1 mm), intermediate (1–3 mm) and large (≥3 mm) spotty cal-
cifications. At IVUS-VH, the two main high-risk characteristics are the percentage of a
necrotic core (NC) and the presence of a thin cap fibroatheroma (TCFA). At CCTA, they
found that plaques with small spotty calcifications had higher %NC and %TCFA, suggest-
ing that CCTA may be an exciting tool to assess vulnerable plaques [77]. However, the
literature is still poor concerning the prognostic value of spotty calcification at CCTA since
they are better evaluated through OCT with higher resolution (10–20 µm) compared with
non-invasive CT [78].

In the ROMICAT II trial, spotty calcium was the most common high-risk plaque
feature, being present in 151 patients [79]. Notably, the authors revealed that the detection
of high-risk coronary plaque on CCTA among patients presenting with acute chest pain
was significantly associated with ACS, regardless of the presence of significant CAD and
clinical risk assessment.
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6.4. Napkin-Ring Sign

The napkin-ring sign (NRS) can be evaluated on the cross-section of non-calcified
plaques and exhibits two main features: a low-attenuation central area, surrounded by
annular high attenuation tissue [10,80] (Figure 2). The first one corresponds to the large
necrotic core while the annular area is considered fibrous tissue. Ring density is greater
than that of the inner core but <130 HU in the CCTA scan. At present, this sign is considered
a reliable marker of plaque instability [10,23]. There are many controversies regarding
the predictive value of different CCTA high-risk plaque features to foresee future acute
coronary events [81–83]. However, an analysis of the SCOT HEART study stated that
patients with one or more adverse plaque features, especially in the presence of a stenosis,
had a three-time higher risk of myocardial infarction [69]. To establish which of the feature
has the most significant value is not an easy task.

Otsuka et al. evaluated the predictive value of the napkin-ring sign on CCTA in a
group of 895 patients with CAD that were followed up for 1 to 3 years for ACS events
(sudden cardiac death, myocardial infarction or unstable angina). Their statistical analysis
showed that positive remodeling (p < 0.001), low attenuation plaque (p = 0.007) and the
napkin-ring sign (p < 0.0001) were all independent predictive factors for future ACS events
and that NRS presented a higher risk of MACE compared to the other features, highlighting
that NRS represent a solid independent predictive factor for MACE in CAD [80].

Recently, Feuchtner et al. tried to assess the prognostic value of CCTA for predicting
MACE over a long-term follow-up period in patients with CAD [84]. Their statistical
analysis revealed that LAP < 60 HU and NRS were the strongest MACE predictors with a
hazard ratio of 4.96 (95% CI: 2.0–12.2) and 3.85 (95% CI: 1.7–8.6), respectively, while the
other features were less powerful, demonstrating that NRS, together with low attenuation,
has the most reliable predictive value of MACE.

6.5. Pericoronary Fat

Pericoronary fat is a particular type of adipose tissue. It can interact with adjacent
coronary walls through a paracrine manner, changing its phenotype in response to signal
from the arterial layers [85–87]. Inflamed blood vessels can release biochemical signals
that directly reach the epicardial pericoronary fat, which can stimulate local lipolysis
and enhance microvascular permeability promoting perivascular oedema; these changes
determine different gradients of adipocytes around the vessel. On this basis, the attenuation
of pericoronary fat measured by CCTA has been revealed as an indicator of high-risk
plaques. It has been shown that culprit lesions in ACS were associated with increased
the attenuation of pericoronary fat around the lesion [88,89]. However, the attenuation of
pericoronary fat could also be affected by other factors such as angiogenesis, inflammation
and fibrosis [90]. The pericoronary fat attenuation index (FAI) on CCTA has been suggested
as a new marker of coronary vascular inflammation with a prognostic value for MACEs.

Sun et al. used CCTA to evaluate the pericoronary fat attenuation index (FAI) as a
novel imaging biomarker of coronary inflammation. The main aim was to assess whether
increased pericoronary FAI values were associated with vulnerable plaque features in
patients with non-ST elevation ACS. The authors evaluated 195 lesions in 130 patients with
non-ST elevation ACS. Lesion-specific pericoronary FAI, plaque components and other
plaque features were assessed by CCTA. The group found that plaques with FAI values
>70.1 HU exposed spotty calcification and low attenuation more frequently than plaques
with lower FAI values; moreover, they were associated with an increased proinflammatory
intracellular cytokine profile. These results suggest that a pericoronary FAI value >70 HU
could be considered a marker of local immune-inflammatory response activation strongly
related to plaque vulnerability [91].
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Table 2. Main studies assessing high-risk plaque features with CCTA.

First Author Publication Year Study Design Patients (n) Aim of the Study

Williams [60] 2020 Multicenter randomized
controlled trial 1769

To explore whether the
quantification of low-attenuation

plaque identified by CCTA
enhances the ability to predict fatal
or nonfatal MI when compared to

traditional cardiovascular risk
scores, Agatston scoring and the
severity of obstructive CAD in
stable patients presenting with

chest pain.

Williams [69] 2019 Multicenter randomized
controlled trial 4146

To assess the prognostic
implications of adverse coronary

plaque characteristics with CCTA.

Puchner [79] 2014 Multicenter randomized
controlled trial 1000

To assess whether the
identification of high-risk plaque
features detected by CCTA in the

emergency department can
enhance the diagnostic accuracy of

ACS beyond the presence of
significant CAD and clinical risk

assessment in patients
experiencing acute chest pain but

without objective evidence of
myocardial ischemia or MI.

Otsuka [80] 2013 Prospective study 960

To determine the predictive value
of the napkin-ring sign detected by

CCTA for future ACS events in
patients with CAD.

Sun [91] 2022 Prospective study 130

To examine the correlation
between pericoronary

inflammation and plaque
morphology and components with
CCTA in individuals with non-ST

elevation ACS

MI: myocardial infarction; ACS: acute coronary syndrome; CAD: coronary artery disease.

Similarly, in the Cardiovascular RISk Prediction using Computed Tomography (CRISP-
CT) study, Oikonomou et al. analyzed outcome data obtained prospectively from two
groups of patients undergoing CCTA. They evaluated the prognostic value of FAI for all-
cause and cardiac mortality and discovered that perivascular FAI improves patient cardiac
risk prediction and stratification, offering a quantitative measure of coronary inflammation.
High perivascular FAI values (≥70.1 HU) indicate increased cardiac mortality and could
guide early targeted primary prevention in patients [92].

Finally, in a recent meta-analysis, Sagris et al. evaluated twenty studies to assess
differences in FAI values between stable and unstable coronary plaques and establish
the hazard ratio (HR) of high FAI values to predict future cardiovascular risk events.
From their meta-analysis, it emerged that FAI values are higher in unstable than stable
plaques with a mean difference of 4.50 HU [95% confidence interval (CI): 1.10–7.89, I = 88%.
Furthermore, in prospective follow-up studies (6335 patients), higher pericoronary FAI
values offered incremental prognostic values for MACEs (HR = 3.29, 95% CI: 1.88–5.76).
In conclusion, pericoronary FAI could be considered a promising imaging marker for the
detection of coronary inflammation to discern between stable and unstable plaques, and
for the prediction of future MACEs [93].
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6.6. Geometry of Coronary Plaques

Several authors have explored the relationship between the geometric characteristics
of plaques, the involved segments, and their impact on the development of atherosclerosis
and the occurrence of MACE [94,95]. A wealth of 2D and 3D studies has identified various
geometric parameters that contribute to this understanding. These parameters include but
are not limited to the length of stenosis, the volume of lumen in the stenosed segment as
well as that of calcified and non-calcified components, the cross-section area of non-calcified
components, and the tortuosity of the lesion and of coronary arteries [95]. Interestingly, in
their case-control study the authors showed that among the 548 coronary lesions observed
in 116 patients who experienced incident ACS after CCTA, the lesions situated in close
proximity to the ostium or within vessel bifurcations or tortuous segments were more prone
to evolving into culprit lesions. The assessment of plaque severity is commonly gauged
through diameter and area ratios. Certain secondary geometric parameters, derived from
the 3D extraction of coronary plaques, may hold associations with the specific location of
plaque rupture and subsequent clinical events [94].

7. Future Perspectives and Conclusions

Cardiac imaging has always represented a challenging technique due to cardiac and
respiratory motion. Recent technological developments, such as advanced multi-detector
row scanners, improved gantry rotation times and acquisition and post-processing software
development, pushed to the limit cardiac single energy CT (SECT) scans first, dual source
and dual energy CT (DECT) then, and now have unlocked photon-counting CT (PCCT) [96].

As discussed above, CCTA can identify many high-risk plaque features, such as low
attenuation, positive remodeling, spotty calcifications and the napkin-ring sign.

In this setting, DECT could be of value in evaluating vulnerable plaques thanks to its
capability to use X-rays at different energies, which affect the attenuation values of different
plaque components, such as fibrous tissue and necrotic core. However, the literature on
plaque evaluation by DECT is scarce and contradictory [97]. DECT can discern calcified
from non-calcified plaques without gaining a real advantage over SECT for classifying
plaque subtypes. Nevertheless, Obaid et al. recently demonstrated that the use of CCTA
at two separate energy levels (100 and 140 kV) can enhance the sensitivity and specificity
for recognizing the necrotic core of plaques ex vivo, while the in vivo diagnostic accuracy
for the identification of necrotic core is still suboptimal [98]. Furthermore, Tanami et al.
stated that at lower energy settings (80 kV), CT analysis of ex vivo plaques could ensure
better results in distinguishing lipid-rich plaques from fibrotic plaques [99]. Moreover,
the authors proposed that the ratio of the CT attenuation value at 80 kV divided by the
140 kV value (Hounsfield ratio [HR], 80:140) could represent a practical tool for plaque
classification [99].

Calcium and stent blooming still represent a challenge. Blooming artefacts are recog-
nized for exaggerating the actual volume of both calcium plaques and stent meshes. Conse-
quently, radiologists may encounter a tendency to overestimate the grade of stenosis [100].
These artefacts are related to the partial volume effect, motion artefacts and beam hardening.
In contemporary times, the influence of beam hardening has significantly diminished with
the advent of advanced CT scanners. Possible solutions, therefore, hinge on advancements
in high-resolution CT hardware and reconstruction methodologies, including two-pass
subtraction techniques and sophisticated post-processing methods [100]. In particular, CT
vendors are advancing the field with the development of cutting-edge photon-counting
technologies that boast significantly enhanced spatial resolution capabilities compared to
the majority of available scanners. This innovation is specifically targeted at mitigating
the issue of calcium blooming. Another approach to address blooming involves the uti-
lization of advanced high-resolution CT reconstruction methods. Subtraction techniques
aim to distinguish dense elements from the vessel lumen by leveraging dual-energy data.
Through subsequent material decomposition, these techniques measure the volume frac-
tion of the calcified component in each voxel, allowing for its subtraction. Alternatively, a
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dual-contrast approach envisions employing two scans with varying contrast levels. The
subtraction of these scans proves beneficial in isolating the lumen, resulting in a calcium
or stent-free image that facilitates easier diagnosis. Post-processing techniques, such as
deconvolution or DL algorithms, exhibit considerable promise in effectively correcting
blooming artifacts [100].

In this setting, the recently introduced PCCT could represent a game-changer in
cardiac imaging and plaque characterization. PCCT can count the number of X-ray pho-
tons and their energy distribution, increasing the contrast-to-noise ratios and the energy-
discrimination capabilities. Thanks to its increased spatial resolution, PCCT can also be
helpful to depict high-risk plaque features, such as thin-cap fibroatheroma or microcalcifi-
cations, raising the CCTA predictive value [101]. Holmes et al. recently investigated the
image quality of a dual-source photon-counting CT scanner’s ultra-high-resolution (UHR)
mode in evaluating mixed (soft and hard) coronary artery plaques on a custom-made
phantom with ten mixed plaques of various sizes and compositions. They discovered
that UHR PCCT improves plaque characterization through enhanced spatial resolution,
lowering blooming artefacts and partial volume effects [102].

In a similar study, Rajagopal et al. compared the performance of an energy-integrating
detector (EID) CT, PCCT and high-resolution PCCT (HR-PCCT) for the evaluation of
plaques and the reduction of stent artefacts using a phantom. Their results stated that,
despite the increased noise, HR-PCCT images could visualize coronary plaques better and
reduce stent artefacts compared with EID or PCCT [103].

Recently, Si-Mohamed et al. utilized ex vivo histologic analysis to evaluate the uptake
of gold nanoparticles by macrophages in plaques and to compare macrophage counts with
the measured concentrations in vivo. The uptake of gold nanoparticles was detectable using
PCCT, and they could easily be differentiated from the calcifications and iodine. Histologic
analysis showed a clear linear relationship between the concentrations of nanoparticles
in the plaques and the concentration measured in vivo. The authors demonstrated that
increased amounts of gold nanoparticles at PCCT are firmly related to higher numbers
of macrophages in atherosclerotic plaques. This was the first paper that shed light on the
invaluable potential of PCCT in molecular atherosclerotic plaque characterization, which
can lead to a more accurate depiction of atherosclerotic plaque components adding essential
prognostic information beyond the degree of luminal narrowing [104,105].

Additionally, computational fluid dynamics (CFD) has been used with promising
results to simulate the hemodynamics around plaques [106].

Finally, radiomics represent an emerging research field aimed at gaining diagnosis,
characterization and prognosis of diseases by the automatic or semi-automatic quantita-
tive analysis of standard medical images [107]. Although radiomics is mainly applied to
oncologic research to extract information concerning tumor features [108], there is an in-
creasing interest in its usage in cardiac imaging [109,110] and many authors are wondering
if radiomics could play a role in the characterization of vulnerable plaques [111].

Since visual and histogram-based assessments of CCTA angiography have limited ac-
curacy in the identification of vulnerable plaques, Kolossvary et al. developed a radiomics-
based machine learning (ML) model to evaluate its diagnostic performance in advanced
atherosclerotic lesions. In their prospective study, the group imaged 21 coronary arteries
from seven hearts ex vivo with CCTA. Of 95 coronary plaques, they coregistered 611 his-
tologic cross-sections with CCTA cross-sections. Early fibroatheroma, late fibroatheroma
or thin-cap atheroma were considered advanced plaques. Upon visual evaluation, CCTA
lesions were divided into homogeneous, heterogeneous or napkin-ring sign plaques.
The authors also considered the low attenuation (<30 HU) and the average HU of the
plaques. Among eight radiomics-based ML models trained on the training set (75% of
the cross-sections), the best-performing one was compared to the visual assessment and
histogram-based evaluation on the validation set (25% of the cross-sections). The selected
radiomics-based ML model outperformed visual assessment (AUC = 0.73 vs. 0.65), area
of low attenuation (AUC = 0.55) and average HU (AUC = 0.53) in the detection of ad-
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vanced atheromatous plaques, suggesting that radiomics-based ML analysis increases the
capability of CCTA in characterizing atherosclerotic plaques [112].

Similarly, Li et al. explored radiomics-based ML model performances in detecting
vulnerable plaques at CCTA. The researchers utilized pathological cross-section samples of
350 plaques from 36 end-stage hearts collected and coregistered them to patients’ preopera-
tive CCTA images. Afterwards, the authors derived eight radiomics-based ML models for
lesion vulnerability prediction and tested them on an independent set of 196 plaques from
another group of patients. In the validation group, diagnosis based on CCTA parameters
demonstrated moderate ability (AUC: 0.656 [95% CI: 0.593–0.718]), while the radiomics
model showed better diagnostic performances (0.782 [95% CI: 0.710–0.846]), suggesting
that radiomics models could reach a better diagnostic accuracy than conventional CCTA
features at assessing plaque vulnerability [113].

In a recently published paper, Chen et al. evaluated the performance of CCTA-based
radiomic signature of vulnerable plaques defined with intravascular US to predict an
increased risk for MACE. The signature of vulnerable plaques was developed through a
data set including patients undergoing CCTA and then intravascular US. Afterwards, the
authors evaluated the prognostic value of the radiomics signature for predicting MACE
on a prospective cohort with suspected CAD. After an accurate analysis, sixteen radiomic
features were chosen to build the signature, which gained a moderate-to-good AUC in
the training, validation, internal and external test sets (AUC = 0.81, 0.75, 0.80, and 0.77,
respectively). A high radiomic signature (≥1.07) was independently associated with MACE
over a median 3-year follow-up (hazard ratio, 2.01; p = 0.005), suggesting it could represent
a valuable tool for the detection of vulnerable plaques with increased risk for MACE [114].
Many ML and DL algorithms have been proposed for the automatic detection and classi-
fication of coronary plaques. These algorithms can improve clinical workflow efficiency,
enhancing radiologists’ performance, improving early diagnosis and risk stratification and
increasing timeliness of image interpretation [115]. In addition, CCTA cannot completely
replace other invasive imaging techniques such as IVUS or OCT to detect essential plaque
characteristics such as erosion and neovascularization. There are few studies that have
explored the feasibility and development of ML or DL algorithms capable of collecting, com-
paring and merging data from various modalities to characterize vulnerable plaques [115].
AI algorithms using ML- and DL-based methods have merits for identifying plaques, and
can be used as a valuable resource in the medical decision-making process.

In conclusion, CCTA represents a robust imaging technique to noninvasively detect,
quantify and characterize coronary atherosclerotic plaque, but technical optimization and
image quality are mandatory. Imaging features related to high-risk plaques include low
attenuation, positive remodeling, spotty calcification, napkin ring and high FAI, with
several prognostic data provided with CCTA. The non-invasive detection of high-risk
plaque features via CCTA can improve the risk assessment for MACE, particularly in
patients with non-obstructive CAD, younger patients and women. CCTA high-risk plaque
features may represent a pivotal element for risk stratification and an invaluable tool for
clinical management and personalized therapy [92].

Promising future perspectives for plaque characterization are expected with the intro-
duction of PCCT and the implementation of radiomics and AI approaches.
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