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Abstract: Electromagnetic radiation, notably visible light (VL), has complicated effects on human
skin, particularly pigmentation, which have been largely overlooked. In this review, we discuss the
photobiological mechanisms, pathological effects, clinical applications and therapeutic strategies
of VL at varying wavelengths on melanocyte biology and skin pigmentary disorders. Different
VL wavelengths may impose positive or negative effects, depending on their interactions with
specific chromophores, photoaging, ROS production, circadian rhythm and other photon-mediated
reactions. Further in vivo and in vitro studies are required to establish the pathologic mechanisms
and application principles of VL in pigmentary disorders, as well as optimal photoprotection with
coverage against VL wavelengths.

Keywords: visible light; pigmentary disorders; vitiligo; melasma; laser; LEDs; IPL

1. Introduction

Visible light (VL) refers to the narrow spectrum of electromagnetic radiation (EMR)
that human eyes can perceive, with a wavelength range of 400 to 700 nm, although some
individuals can also sense wavelengths from 380 to 780 nm [1]. Different wavelengths of
VL cause various sensations to the human eyes, exhibiting different colors, which is also
the principle of further division (Figure 1). Sunlight is the major source of VL, which makes
up approximately 50% of sunlight encountering the Earth’s surface. Artificial sources of
VL include flashlights, fluorescent lights, lasers, light-emitting diodes (LEDs), and other
therapeutic devices [2]. In modern society, electronic devices such as computers and
smartphones are also becoming increasingly prevalent as a source of radiation. Therefore,
as the first barrier of the body, skin is bound to be affected by visible light exposure.

Skin pigmentary disorders, such as melasma and vitiligo, are characterized by hy-
perpigmented or depigmented lesions, and have a rapidly growing incidence worldwide.
These disorders have serious impacts on people’s appearance as well as mental health [3],
making it an urgent task to unveil the mystery of their pathogenesis and optimized treat-
ment. While previous studies have mainly focused on the effect of ultraviolet (UV) radi-
ation, the effect of VL on the skin, especially melanocyte biology, has been overlooked
or considered negligible. The objective of this review is to enhance the understanding of
the pathogenesis and management of pigmentary disorders by exploring the respective
effects of VL at different wavelengths on melanocyte biology and diverse phototherapies
for pigmentary disorders, using various light sources within the VL spectrum.

VL can be classified into primarily four categories, according to the wavelength and
color: these are blue light, green light, yellow light and red light, with the wavelength of
400–490 nm, 490–570 nm, 570–595 nm, and 630–770 nm, respectively. The longer the
wavelength, the deeper the VL cand penetrate into the skin. Therefore, red light can
penetrate through the full thickness of the epidermis and dermis, reaching the subcutaneous
layer, while blue light has less penetration. The sources of VL can be divided into three
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categories: natural light, artificial light and electronic devices. UV refers to ultraviolet; IR
to infrared radiation.
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2. The Photobiological Effects of Visible Light on Skin

It was previously believed that VL had minimal biological effects. However, a large
number of researches in the past decades has made it evident that VL can exert signifi-
cant impacts on various biological processes of skin, including chromophore activation,
photoaging, oxidative stress, DNA damage and circadian rhythm, all of which may thus
contribute more or less to skin pigmentation. It is to be note that different wavelengths of
VL can have a synergistic or antagonistic effect on the same biological process.

2.1. The Activation of Chromophores by Visible Light

When a photon reaches the skin’s surface, it can be reflected, scattered, or absorbed
(Figure 1), but only absorbed light can cause photobiological changes by interacting with
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chromophores [4]. Chromophores are photoreceptor molecules that can be activated
and energized by photons to mediate biological effects [5]. Hemoglobin, cytochrome C
oxidase (CCO), opsins (OPN) and melanin are the primary chromophores responsible for
VL absorption, which is the premise and basis of the use of VL in laser therapy, intense
pulsed therapy (IPL), and especially in low-level light therapy (LLLT) [6]. Chromophores
absorb specific wavelengths of light, excite electrons to higher-energy states, and then
activate second messengers such as ROS, Ca2+, ATP, cAMP, and NO, followed by the
modulation of subsequent cascades of signaling pathways related to fundamental activities
such as migration and proliferation, protein synthesis and tissue repair, inflammation,
anti-apoptosis and redox reactions [7].

The relation between chromophore activation by VL and pigmentation in melanocytes
has also been proved [8]. One study demonstrated that shorter wavelengths of VL
(415 nm, 50 J/cm2) can activate OPN3, which senses blue light and then activates CAMKII,
CREB, ERK and p38, thus up-regulating MITF signaling and inducing potent and sustained
hyperpigmentation [9]. However, the activation may be dose-dependent, for another study
showed that, under much smaller doses, blue light (450 nm, 200 mJ/cm2) and green light
(550 nm, 200 mJ/cm2) failed to initiate human OPN3, which can act as a negative regu-
lator of melanogensis when treated, by regulating the α-MSH–induced MC1R-mediated
cAMP signaling [10]. Furthermore, Campiche et al. reported that LED blue light (450 nm,
60 J/cm2) resulted in changes in skin chromophores and signs of skin photoaging, including
hyperpigmentation [11].

Different chromophores may exist in different layers of the skin. The depth of light
radiation penetration is inversely proportional to the absorption rate and scattering rate,
which are both inversely related to the wavelength [12]. Therefore, the longer the wave-
length, the deeper the light can penetrate into the skin, meaning that VL can go even deeper
than ultraviolet, and that VL in different wavelengths may activate chromophores present
in different layers, resulting in diverse subsequent reactions.

Taken together, with deep penetration into the skin and multiple chromophore-
mediated activities, VL has a profound and substantial impact on skin, including the
epidermal melanin-unit system.

2.2. The Regulation of Skin Aging by Visible Light

Skin photoaging is a complex process that involves degenerative changes in the skin,
such as mottled hyperpigmentation and decreased elasticity and laxity caused by exposure
to sunlight. This process is caused by the dysfunction of the nucleus, mitochondria, and
the extracellular matrix (ECM) resulting from DNA damage and ROS generation [13].

Considering that VL participates in inflammation, oxidative stress, and the production
of matrix metalloproteinases (MMPs), which is thought to be one of the crucial factors
participated in ECM degradation in the skin [14], it is closely involved in the regulation
of skin aging. However, different types of VL affect skin aging by distinct mechanisms,
primarily targeting fibroblasts [15]. For instance, blue and green light have been proved
to precipitate photoaging by increasing ROS and MMP-1, decreasing collagen type I in
human fibroblasts [16–19] and inducing the production of singlet oxygen, followed by
nuclear DNA damage in epithelial cells [20]. Besides inducing oxidative stress, blue light
has also demonstrated the ability to damage fibroblast mitochondrial functionality [21]. In
contrast, yellow light has been shown to protect against skin aging by increasing collagen I
in the dermis [22] and upregulating the expression of antioxidant enzymes, to reduce the
generation of UVA-induced MMP-1, phosphorylated stress-activated protein kinase (pJNK)
and ROS, in human fibroblasts [23]. Similarly, low red light has been shown to stimulate
fibroblast growth, upregulating antioxidant-related genes in human fibroblasts, reducing
ROS, down-regulating MMP and reversing collagen I degradation of skin cells, exerting
anti-aging effects [15,24–26].
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As mentioned above, dermal fibroblasts, as the major skin cell implicated in VL-
induced skin photoaging, have been shown to engage in the signal crosstalk between
dermal and epithelial cells related to pigmentary disorders, acting on melanocytes by
releasing abundant proteins, cytokines and growth factors [27]. Therefore, pigmentation
is closely related to photoaging, and some pigmentary disorders, such as melasma, have
been considered as photoaging disorders [28]. One study also inferred that photooxidation
may be involved in the mechanism of pigmentation after blue-light irradiation [21]. Hence,
it is essential to enhance the comprehension of the mechanisms through which yellow and
red light can potentially impede the photoaging process, while blue and green light may
give rise to exacerbation.

2.3. The Disruption of the Skin Circadian Rhythm by Visible Light

It is now well established that circadian oscillators exist not only in the suprachias-
matic nucleus (SCN) of the hypothalamus, but also in peripheral tissues, including the
skin [29]. Studies have demonstrated that VL can disrupt the normal circadian rhythm,
negatively affecting skin homeostasis. Exposure to blue and green light emitted from
computer screens significantly suppresses and delays nocturnal melatonin secretion, dis-
rupting the sleep–wakefulness cycle [30–33]. In addition, red-light (631 nm) exposure was
shown to potentially delay the circadian clock and the onset of sleep, inducing circadian
resetting, despite small samples [34]. VL also regulates the skin’s circadian rhythm by
interacting directly with skin circadian clock genes, such as PER1 and BMAL1, in peripheral
pathways [35].

Circadian rhythm has intricate influences on physiological processes in the skin, in-
cluding melanogenesis. Hardman et al. showed that silencing peripheral clock genes
BMAL1/PER1 in human skin and isolated melanocytes upregulated melanogenesis and
thus increased melanin content [36]. A subsequent study further proved that the peripheral
clock was crucial for well-organized melanin synthesis in normal melanocytes [37]. BMAL1
also transcriptionally upregulates microphthalmia-associated transcription factor (MITF)
and prevents UVB-induced DNA damage through enhanced melanin synthesis [38]. Since
circadian disruption or altered clock genes can result in multiple skin diseases [39], consid-
ering its effect on melanin synthesis, it is highly possible that the circadian rhythm may
participate in the process of skin pigment regulation, to some extent. And disruption of
the circadian rhythm may accelerate skin aging, increase pigmentation and even induce
pigmentary disorders [40].

3. Visible Light as an Enhancer of Skin Pigmentary Disorder

Different regions of the VL spectrum are more likely to contribute to distinct pigmen-
tary disorders. While blue or green light is generally considered one of the significant
causes of disorders of hyperpigmentation under most conditions, in some cases, yellow or
red light may serve as a crucial facilitator for the development of hypopigmentary diseases
(Figure 2).

Blue and green light may induce disorders of hyperpigmentation through several
possible pathways: (a) direct interaction with OPN3; (b) photoaging aggravation;
(c) circadian rhythm disruption; and (d) melanogensis upregulation.

Yellow and red light impose possible stimulation on the onset and aggravation of
vitiligo by affecting the viability and survival of melanocytes and the progression of melanin
production. OPN3, opsin3; MITF, microphthalmia-associated transcription factor; TYR,
tyrosinase; MC, melanocyte; ERK, extracellular regulated protein kinases; ROS, reactive
oxygen species; MMP, matrix metalloproteinase; By figdraw.
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3.1. Blue Light and Green Light Induce Hyperpigmentation

It is now well accepted that the short wavelength of VL plays a stimulatory role in
hyperpigmentation. Multiple studies have shown that VL has synergistic effects with
long-wavelength UVA1 on pigmentation [6,41,42]. VL-induced hyperpigmentation was
found more potent and long-lasting than UVA1-induced hyperpigmentation in individuals
with dark skins [6,43], even though the mechanism of hyperpigmentation caused by VL
has been proved similar to that caused by UV [44]. Typically, three mechanisms are
involved in the responsive reaction of melanocytes to VL, with increased melanin content:
immediate pigment darkening (IPD), persistent pigment darkening (PPD), and delayed
tanning (DT) [45]. IPD and PPD result from the oxidation of melanin precursors and the
redistribution of melanin, while DT is associated with melanogenesis [46]. Randhawa et al.
performed a series of ex vivo and clinical studies, and demonstrated that a single exposure
to VL was ineffective in generating persistent pigmentation, while multiple exposure to
VL induced PPD both in vivo and ex vivo [47]. In contrast, a classic study conducted by
Mahmoud et al. demonstrated that a single dose of VL irradiation was enough to induce
IPD and PPD in skin-type IV–VI individuals, and that higher doses (80–120 J/cm2) could
induce DT [6]. Another study also revealed that both single high-dose (135 J/cm2) and
repetitive (45 J/cm² over 5 consecutive days) exposure to blue light (450 nm) would result in
IPD [48]. Those results indicate that VL, especially in the short wavelength, is able to induce
apparent darkening via regulation of melanin redistribution, melanosome maturation or
melanin synthesis.

While numerous studies have documented that irradiation with blue light and green
light can induce a dose-dependent hyperpigmentation response [6,11,43,45,49–51], the
skin phototype plays a crucial role in this process. For instance, it has been proved that
blue light (453 nm,18 J/cm2) can induce IPD in type I–III healthy skins [52], which is in
line with the findings of Kleinpenning et al., who explored the clinical and histological
effects of blue light (420 nm, 20 J/cm2) on normal skin types I–III. The authors observed
transient melanogenesis and inexplicable vacuolization without melanocyte apoptosis [51].
Likewise, Moreiras et al. demonstrated that both blue light (450 nm) and green light
(530 nm) induced melanin production in healthy human skin of types II and III ex vivo,
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without any detectable increase in DNA damage or cell apoptosis, even under fairly high
doses of exposure (140 J/cm2) [53]. The same study evaluated melanin induction histologi-
cally in the epidermis of blue- and green-light-irradiated phototype I skin, although it was
invisible, which is somewhat inconsistent with Mahmoud’s findings that melanogenesis
induced by blue light (495 nm) and green light (595 nm) at 8–480 J/cm2 tends to occur in
phototypes IV–VI skin, yet remains undetectable in lighter skin [6].

The clinical relevance of the capability of blue light and green light to induce pigmenta-
tion highlights the pathologic role of VL in photo-induced disorders of hyperpigmentation.
It has been proposed that broad-spectrum sunscreens that do not adequately protect against
VL fail to prevent worsening of post inflammatory hyperpigmentation (PIH) [54] and re-
lapse of melasma [55,56]. A study involving 22 melasma patients showed that blue light
induced melanogenesis both in the lesional and the neighboring skin, suggesting that
blue light imposed a stimulatory effect on the onset and progression of melasma for the
first time [57]. Although short-term exposure to blue light from electronic devices is not
considered to exacerbate melasma [58], the low energy of artificial indoor VL is sufficient
to induce hyperpigmentation in melasma patients [59]. Blue light emitted by the sun has
also been proved to accelerate relapse of melasma [60].

3.2. Yellow Light and Red Light Induce or Aggravate Hypopigmentation

Yellow light inhibits melanogenesis and downregulates melanin content. In our
former study, a dose-dependent inhibition of melanogenesis was observed, along with
the induction of human epidermal melanocyte autophagy by yellow light irradiation
(585 nm, 5–20 J/cm2) [61]. On the other hand, 630 nm red light (10–150 J/cm2) was found
to have no promotion effect on melanogenesis in a study by Duteil L et al. [43], and
turned out to impose an inhibitory effect on melanin synthesis, both in vitro and in vivo.
Additionally, 633 nm (96 J/cm2) red light LED was reported to decrease melanin levels
significantly after phototherapy of patients with acne vulgaris [62]. Similarly, 660 nm red
light showed a depigmenting effect with downregulation of tyrosinase and MITF, due to
increased ERK activity [63]. We previously revealed that red light (630 nm, 5–20 J/cm2)
might decrease cell viability and increase apoptosis of melanocytes [61], which might also
lead to hypopigmentation.

Limited clinical studies could be found on the promoting effect of VL on hypopig-
mentary diseases. However, several case reports showed that yellow light and red light
may potentially induce depigmentation. Lee’s study showed that the melanin levels of
the treated area in acne vulgaris patients slightly increased when treated with blue light
(415 nm, 48 J/cm2) LED for 20 min, twice a week, for a duration of four weeks, while they
significantly decreased when treated with red light (633 nm, 96 J/cm2) LED in the treated
area [62]. What’s more, a 41-year-old woman who had no previous history of vitiligo or
halo nevus developed vitiligo patches on the treatment site after IPL treatment for reju-
venation [64]. Moreover, using a 585 nm pulsed dye laser to treat port-wine stains was
reported to induce depigmented patches and cause the Koebner phenomenon in vitiligo
patients [65,66], something which has also been reported after 755 nm laser (red light)
treatment [67,68].

3.3. Measures to Protect against Cutaneous Damage by Visible Light
3.3.1. Exposure Reduction

As discussed previously, it is important to control light exposure, especially blue
light from electronic devices and sunlight exposure. To prevent disruption of circadian
rhythm by VL, reducing screen time by taking frequent breaks from long-period device
usage and restricting artificial light at night are effective ways [69]. Simple but efficient
physical methods for reducing sunlight exposure include seeking shade or staying indoors
during peak hours, using a parasol and wearing photoprotective clothing and accessories,
such as sunglasses or wide-brimmed hats [70], which have been proved to lower the
chance of sunburn more significantly than photoprotection products on the market such
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as sunscreen and antioxidants [71]. While, theoretically, using standard window glass
such as reflective or tinted automobile windows and window films that filter out VL
may also help in reducing VL exposure, most glasses are mainly used for UV reflection,
with little effect on VL protection [72,73], and are awaiting more exploration from the
VL-protection perspective.

3.3.2. Sunscreens

Over the past decade, sunscreens have undergone significant changes, due to the
growing recognition that traditional broad-spectrum sunscreens with only organic or
inorganic (ZnO and TiO2) UV filters do not provide adequate protection against VL [54].
Tinted sunscreens have emerged as a promising solution, which combines UV filters
with different concentrations and ratios of iron oxides and titanium dioxide to protect
against VL for individuals of all skin types. The critical component of tinted sunscreens is
Fe2O3, which has three different colors, depending on its oxidation state: yellow, red, or
black [70]. Among them, yellow Fe2O3 offers the strongest protection against VL-induced
hyperpigmentation [74]. Studies have demonstrated that iron-oxide-containing tinted
sunscreen significantly lessens the development of VL-induced hyperpigmentation [75]
and that the efficiency increases to over 93% with increasing iron oxide content [76]. It has
also been proved to benefit individuals with hyperpigmentation disorders such as melasma
and PIH [60,77–79]. Additionally, Fe2O3-containing products with multiple shades and
tones can be used to cover pigmentary blemishes [78], making them a novel cosmetic-
friendly strategy for full-spectrum photoprotection beyond the UV range, and with a
profound influence on patients with pigmentary disorders.

3.3.3. Antioxidants

It has been estimated that 50% of ROS generation can be attributed to VL and in-
frared radiation [80], which may induce melanogenesis [81] and exacerbate pre-existing
hyperpigmentation [82]. Antioxidants can mitigate the harm caused by VL through ROS
neutralization or melanogenesis pathway regulations [80] (Table 1).

WH130, a kind of licorice extract, inhibits melanogenesis by suppressing tyrosinase
activity, particularly when heated, making it a promising option for treating various disor-
ders of hyperpigmentation, including brown spots, ephelides, and melasma [83]. French
maritime pine bark extract (PBE), with its antioxidant property, has also proved to reduce
VL-induced melanin synthesis in vitro, via inhibiting tyrosinase and other pigmentation-
related mediators [84]. Furthermore, a clinical study comparing antioxidant-enriched
sunscreens with tinted sunscreens showed that the former had comparable or even better
efficacy than the latter [85]. Another study also demonstrated that topical antioxidants
inhibited erythema and reduced pigmentation caused by VL and UVA1, suggesting that
antioxidants may prevent the exacerbation of pigmentary disorders due to sunlight expo-
sure [86].

On the other hand, multiple studies have provided theoretical evidence that antioxi-
dants may attenuate hyperpigmentation by reducing oxidative damage and preventing
VL-triggered photoaging. Sunscreens containing antioxidants have been shown to repair
some clinical signs of photoaging [87]. Hydroxytyrosol from olive fruits prevents human
keratinocytes and fibroblasts from blue-light-induced photoaging [18], while resveratrol
can potently scavenge ROS induced by blue light (415 nm) in fibroblasts [16]. Licochalcone
A, a Nrf2 inducer, has been reported to reduce ROS formation in vitro and prevent intra-
dermal carotenoid depletion in vivo [19]. Furthermore, polypodium leucotomos extract
(PLE) may also offer protection against VL-induced photoaging. PLE treatment led to a
significant decrease in VL-induced PPD and DT and a reduction in the markers for cellular
damage [88]. PLE was also reported to prevented human dermal fibroblast damage and mit-
igate photoaging-related ECM degradation in vivo by reducing VL-induced MMP-1 [89,90].
Relatively, scientific and commercially available antioxidants against UV radiation are
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much more abundant than those against VL [91]. Therefore, the potential of antioxidants
targeting VL remains to be extensively explored.

Table 1. The hyperpigmentation attenuated functions of antioxidants targeting VL.

Antioxidants Mechanisms Origins Objects

WH130 Inhibits melanogenesis by suppressing
tyrosinase activity

Extract from Licorice
(Wongam);

Murine melanoma B16F10
cells [83]

PBE

Reduces VL-induced melanin synthesis
by reducing tyrosinase activity and
decreasing ED1, and PPAR α, δ, and γ

production

Extract from French maritime
pine bark (Pinus pinaster) Human melanocytes [84]

Resveratrol Scavenges ROS induced by blue light
(415 nm) LED in human fibroblast

Root extract from Veratrum
grandiflorum Human Skin Fibroblasts [16]

Hydroxytyrosol

Protects keratinocytes and fibroblasts
from damage induced by blue light
through preventing ROS formation,
reducing MMP levels, preserving
collagen type I production, and
decreasing DNA damage

Extract from olive fruits Human keratinocytes and
fibroblasts [18]

Licochalcone A

Decreases VL-induced ROS formation
in human fibroblast to a level
equivalent to unirradiated fibroblast
cells, or even below, in vitro, and
prevents intradermal carotenoid
depletion by VL irradiation in vivo

Root extract from Licorice
(Glycyrrhiza inflata);

Human dermal fibroblasts
and 10 healthy subjects with
Fitzpatrick skin phototype II
or III [19]

PLE

1. Decreases PPD and DT;
2. Decreases cyclooxygenase-2 and cell
damage;
3. Prevents alterations in morphology,
cell survival and cell cycle of human
dermal fibroblasts and changes in the
expression of MMP-1, CTSK, fibrillins 1
and 2 and elastin, caused by VL

Extract from Polypodium
leucotomos;

22 subjects with Fitzpatrick
skin phototype IV–VI [88]
Human dermal
fibroblasts [90]
7 healthy subjects [89]

Carotenoid Filters out high-energy blue-light rays Diets 46 healthy subjects [92]

Flavonoid
Decreases photosensitivity of
phospholipids to blue-light oxidative
damage

Extract from green tea

Langmuir monolayers of
1,2-dipalmitoyl-sn-glycero-3-
[phospho-rac-(1-glycerol)
(sodium salt) (DPPG) [93]

Vitachelox

Protects human keratinocytes by
reducing oxidative damage (protein
carbonylation) induced by blue-light
radiation.

A mixture of three natural
extracts: grape (Vitis vinifera)
seeds, green tea (Camellia
sinensis green) leaves, and oak
(Quercus robur)

Human keratinocytes [94]

4. Visible Light as a Therapeutic Option for Pigmentary Disorders

Visible-light therapy (VLT) is commonly used for various skin diseases, mostly as a
second-line option. Likewise, it plays a primary or adjunctive role in the clinical manage-
ment of pigmentary disorders. In the treatment of pigmentary disorders, there are three
primary types of visible-light therapies utilized: laser, IPL, and LED therapy. Each type
of light has unique features and mechanisms that cater to different skin conditions and
disorders (Table 2).
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Table 2. Differences between LED, Laser and IPL.

Laser IPL LED

Intensity High High Low

Pulse width Unadjustable Continuous and adjustable Continuous and adjustable

Coherence Coherent Incoherent Incoherent

Directionality High/Single Low/Multiple Low/Multiple

Wavelength and
Chromaticity Monochromatic 500–1200 nm,

Polychromatic
400–800 nm
Polychromatic

Spot Size Small point:
<1 cm × 1 cm Medium: 5 cm × 2 cm Large: 30 cm × 30 cm

Mechanism Selective Photothermalmolysis Selective
Photothermalmolysis Photobiomodulation

Indications for
pigmentary disorders

Benign epidermal pigmented lesions
(ephelides, lentigo, PLH, café au lait
macules, pigmented seborrheic
keratoses. . .);
Benign dermal pigmented lesions
(CMN, nevus of Ota/Ito. . .);
Mixed (epidermal/ dermal) pigmented
lesions (Becker’s nevus, melasma, PIH);
Tattoos;
Vitiligo

Benign epidermal pigmented
lesions (ephelides, lentigo,
café au lait macules, . . .);
mixed (epidermal/dermal)
pigmented lesions (Becker’s
nevus, melasma, PIH,
poikiloderma of Civatte)

Melasma;
Vitiligo

Adverse effects Relatively common, mainly
hyperpigmentation, sometimes scarring

Infrequent,
sometimes erythema and
hyperpigmentation

Rarely seen

4.1. Laser-Emitting Lights in the Visible Range

Visible lasers are a class of laser devices that emit light in the visible-spectrum region,
containing pulsed dye laser (PDL), copper vapor laser, potassium titanyl phosphate laser
(KTP), helium-neon (He-Ne), ruby laser, argon laser and krypton laser [95]. As a coherent
light, laser has the advantages of high intensity, low divergence, and precise control over
the amount and location of skin heating [96], which makes it an ideal method for treating
skin diseases based on the principle of selective photothermalmolysis [97].

While PDL was initially designed for cutaneous vascular disorders, recent studies
have shown that 595 nm and 607 nm PDL can also be used to treat benign epidermal
pigmented lesions (EPLs) [98–104]. And 585 nm and 595 nm PDL have also been found
to be effective in improving melasma lesions that exhibit increased vascularity, with or
without the combination of other therapies [105–107].

Another type of laser that is highly specific for vascular lesions is copper vapor
laser, emitting a dual wavelength comprising 10% 511 nm and 90% 578 nm, which is
at the proximity of the absorption peak of hemoglobin [108]. Nonetheless, the dual-
wavelength copper vapor laser shows great efficacy in eliminating congenital melanocytic
nevi (CMN) [109], yet demonstrates less efficacy in treating melasma patients [108,110],
except for those with pronounced vascular abnormality [111].

The KTP laser, also known as the (Q-switched) Nd:YAG double-frequency 532 nm laser,
is another type of laser that has been proved effective in treating EPLs, such as ephelides or
solar lentigines [112–115], physiological lip hyperpigmentation (PLH) [116,117], and even
tattoos [118,119]. When combined with IPL, it has been successful in treating postoperative
inflammatory hyperpigmentation [115].

The 633 nm He-Ne laser emitting red light is a popular choice for low-level light
therapy (LLLT), and has been found to be effective for vitiligo. Yu et al. discovered that
low-energy He-Ne lasers (632.8 nm) enhance melanocyte migration and proliferation, and
even rescue damaged melanocytes, creating a positive microenvironment for repigmen-
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tation [120]. The same group also investigated the molecular mechanism and biological
effects of the low-energy He-Ne laser on pigment cells at different maturation stages. They
found that the laser induced differentiation and mitochondrial biogenesis of primitive
pigment cells through calcium-dependent mitochondrial retrograde signaling [121], as well
as stimulating the differentiation of immature melanoblasts through enhanced pp125FAK
expression and the melanogenesis of more mature melanoblasts [122]. Furthermore, they
explored the role of the low-energy He-Ne laser in melanocytes, and demonstrated en-
hanced functional melanocyte proliferation via increased expression of α2β1 integrin and
increased attachment to collagen IV [123]. These studies provide a solid theoretical basis
for understanding how low-level laser therapy induces repigmentation in vitiligo. Clin-
ical evidence also supports the application the of low-energy He–Ne laser in treating
segmental-type vitiligo, with an effectiveness comparable to conventional therapies [120].

Interestingly, red light can also be used as an effective and safe modality for further
depigmentation of vitiligo. The cosmetically disturbing remnants of normal pigmentation
in patients with vitiligo whose skin has been almost depigmented on the whole can be
removed by the Q-switched 694 nm Ruby laser (QSRL) [124]. The QSRL is particularly
effective for treating benign pigmented diseases, such as tattoos, nevus of Ota and ephelides,
due to its high absorption by melanin [125–130]. While QSRL was previously believed
to be ineffective in treating melasma [131], recent studies with small sample sizes have
demonstrated its efficacy [132–134]. Similarly, the Q-switched 755 nm Alexandrite laser
(QSAL) can also be used to treat a variety of superficial and deep hyperpigmented diseases
such as nevus of Ota/Ito, tattoos, café au lait macules and melasma [129,135–137]. QSRL
and QSAL are considered the best choices as phototherapy for treating dermal pigmented
lesions by Bogdan et al. [102]. Yet the newly developed picosecond laser with higher
efficiency in pigment removal and less thermal damage is worthy of consideration [138,139].

Taken together, the visible laser can attenuate or eliminate hyperpigmentation to
a certain extent, except for the He-Ne laser, which is usually used for depigmentation.
Among them, the PDL and copper vapor laser are classic modalities for vascular lesions,
with recently discovered use in benign EPLs and melasma with a vascular component.
KTP can tackle both epidermal and dermal hyperpigmentation, with a better effect on the
former. QSRL and QSAL are best applied in dermal hyperpigmentation, but also have
solid efficacy on EPLs, with new findings relating to melasma treatment that may renew
the conventional views.

4.2. Intense Pulsed Light (IPL)

IPL is a polychromatic and noncoherent light released by a high-energy tritium flash-
lamp under high voltage, featuring high intensity, a relatively concentrated wavelength,
and a wide and tunable pulse width. The IPL spectrum primarily falls in the range of
500–1200 nm, and can be selectively filtered by filters based on the skin type and lesions.
IPL also works based on the principles of selective photothermalmolysis effects, as does
laser [140]. Clinical studies have demonstrated that IPL is capable of effectively decreasing
melanin production and accumulation at the cellular level, making it a suitable treatment
option for various types of hyperpigmented skin conditions [141].

IPL has been proven effective in treating lentigines, ephelides, poikiloderma of Ci-
vatte and other epidermal hyperpigmentation, as well as benign melanocytic nevi such
as Becker’s nevus [98,142–147]. However, it should be noted that the Q-switched laser
still remains the preferred choice in light therapy for treating benign pigmented lesions.
Furthermore, IPL is not a viable solution for tattoo removal, as it lacks the ability to perform
Q-switching in incoherent light sources [148].

In the treatment of melasma, IPL has demonstrated superior efficacy when compared
to laser treatment. In a split-face comparative study conducted by Hassan et al., IPL
was observed to more effectively lighten epidermal melasma and melasma lesions with
vascular alteration, in comparison to PDL [106]. Li et al. also demonstrated that IPL was
ideal for melasma treatment with minimal and acceptable adverse events [149], which
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is consistence with Yi’s conclusion [150]. In addition to skin brightening, IPL has been
popularly employed for skin rejuvenation, owing to its remarkable efficacy in addressing
photoaging concerns [151].

4.3. Light-Emitting Diodes (LEDs)

LEDs emit incoherent light with a narrow spectrum and low intensity, which in-
duces a mild effect on cells for regulating biological activity, rather than a thermal or
exfoliative effect. This process is referred to as photomodulation or photobiomodulation
(PBM), also known as LLLT [152]. A vast array of LED semiconductor materials has
been available at lower wavelengths, and research over the past decade suggests that
LED therapy is more suitable than laser therapy for LLLT, due to its mild output and
convenient accessibility [153]. LED therapy using VL for pigmentary disorders has been a
controversial approach, but recent studies have shed light on its potential application in
melasma (Figure 3).
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As previously mentioned, 585 nm yellow LED light has been showed to inhibit
melanogenesis in melanocytes by the inducing of autophagy [61]. This was further explored
by our later study, which demonstrated that irradiation with 585 nm LEDs resulted in the
containment of melanin synthesis by upregulating H19 and its exosomal miR-675 derived
from keratinocytes in vitro [154]. Our subsequent study further demonstrated in vivo and
in vitro that 590 nm yellow LED decreased the secretion of melanogenic factor and reduced
the angiogenesis of the human microvascular endothelial cell (HMEC-1) by dampening
the PI3K/AKT/mTOR signaling pathway, thus prominently attenuating erythema and
hyperpigmentation in melasma [155]. This series of experimental data is consistent with
Mpofana’s study, in which 633 nm-LED combined with 830 nm-LED exposure significantly
ameliorated melasma in patients with skin types V and VI [156]. In addition, our recent
clinical trial focusing on melasma patients who underwent 590 nm LED treatment further
proved that home-based 590 nm LEDs exhibited a similar efficacy and safety as in-hospital
1064 nm QSNY, with higher portability and lower cost [157].
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From another point of view, phototherapy using LED to treat skin photoaging is
increasingly prevalent. Lee et al. conducted a prospective split-face clinical study on LED
phototherapy for skin rejuvenation, and indicated an altered enzymatic activity related to
dermal matrix remodeling, as well as a reduction in melanin content after irradiation with
633 nm red LED [158]. Moreover, 590 nm-LED or 660 nm-LED therapy increased collagen
and decreased MMP-1 activity in the dermis, with pigmentation reduction [22,23,25,159],
suggesting a novel perspective for LED therapy to tackle melasma, which is now defined
as a photoaging disorder [28].

While yellow and red LEDs are promising for treating disorders of hyperpigmentation,
LED blue light has been applied for vitiligo repigmentation. Research indicates that blue
LED, combined with Buddleja officinalis, can be used to treat vitiligo through induced
melanin production by promoting melanogenic signaling, in addition to CREB/MITF/TYR
pathways [160]. A retrospective study also demonstrated that 417 nm blue LED induced
repigmentation in 30 patients with localized vitiligo, of varying ages and different skin
types [161]. Despite the relatively small sample, these results encouraged the utilization of
LED on melanin-deficiency skin diseases.

Of note, LED treatments have the special advantages of high safety and convenience
with fewer side effects, yet well-designed studies with larger sample sizes and repeated
measures of response are sorely lacking and highly required.

LED can be applied in disorders of hyperpigmentation treatment by directly affecting
melanin production through various pathways or by alleviating the photoaging process,
including antioxidant enzyme and collagen I production. Red cross refers to inhibition;
Red arrows refer to upregulation or downregulation. ROS, reactive oxygen species; MMP,
matrix metalloproteinase; PIP, phosphatidylinositol phosphate; PI3K, phosphatidylinositol
3-kinase; mTOR, mammalian target of rapamycin; SCF, stem cell factor; VEGF, vascular
endothelial growth factor; By figdraw.

5. Perspectives

The threat posed by hyperpigmented or depigmented lesions to patients and so-
ciety as a whole prompts deeper and more extensive research from angles beyond the
traditional etiology and therapeutics. VL has thus emerged as a rapidly evolving field in
photomedicine, and here we collated and clarified the detrimental and beneficial impacts of
VL on melanocyte biology and pigmentary disorders, hoping to better instruct the preven-
tion and treatment strategies of refractory pigmentary disorders in clinical practice. Despite
this, studies attempting to determine the effects of VL on skin pigmentary disorders are
still woefully inadequate and require further exploration, on multiple levels.

Firstly, the harmful effects of VL, including skin photoaging and circadian disruption,
highlight the importance of proper protection against VL. As the evidence continues to
mount, additional research on VL photoprotection is needed for sunscreens and antioxi-
dants. Moreover, greater attention must be paid during medical treatments to take into
account intensity, dose, exposed area, exposure duration, expose frequency, operation
mode, and skin phototype-dependent differences in the pigmentary response of VL.

Secondly, despite some limited clinical evidence regarding the inducement of vitiligo
by red or yellow light, the exact pathologic role of VL in depigmenting diseases has not
been clearly determined. More fundamental and clinical studies are needed to clarify the
precise role of VL in disorders of hypopigmentation.

Thirdly, in the last 5–8 years, the progress and development of pigment removal
using QSRL has been slow, due to the lack of clinical and in vivo research. It is crucial to
conduct studies with larger samples and more-strictly conducted procedures, to confirm
the effectiveness of QSRL on melasma.

Last but not least, it is worth noting that LED, particularly yellow light, has exhibited
great potential for melasma treatment, with the emerging fundamental and clinical studies.
Considering its portability and economic applicability, LED yellow light is highly promising
as a therapeutic alternative for treating melasma. There is a need for further clinical research,
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though, to determine the specific benefits of LED in treating other pigmentary disorders
besides melasma, and to thus open up new fields of investigation and markets for both
skin darkening and skin lightening.

In conclusion, like a double-edged sword, VL plays distinct roles in the onset, pro-
gression, and treatment in skin pigmentary disorders under different parameters and
modes, targeting different skin-phototype individuals. More basic and clinical studies are
merited to explore the precise mechanisms of pigment metabolism through VL regulation,
which may provide a scientific basis for more effective prevention and management of
photo-aggravated pigmentary disorders.
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