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Abstract: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease. Recently, sev-
eral retinal layers in PSP compared to healthy controls. were found to be thinner. However, no
studies evaluating the correlation between retinal layers and cerebral white matter changes, nor
eventual choroidal changes in PSP, have been conducted so far. The goals of the present study
were to explore potential differences in choroidal structure between PSP and healthy controls, and
to describe the relationship between retinal layers’ thickness and volume, using spectral-domain
optical coherence tomography (SD-OCT) and age-related white matter change scores (ARWMC)
using magnetic resonance imaging (MRI) of the brain. Choroidal structures of 26 PSP patients and
26 healthy controls using standard SD-OCT with an enhanced depth imaging (EDI) approach were
analyzed; then, retinal the structures of 16 of these PSP patients using standard SD-OCT were ex-
amined; finally, the same patients underwent brain MRI, and their cerebral white matter changes
were calculated. Non-statistically significant differences between PSP patients’ and healthy controls’
choroidal structure were found. On the contrary, PSP patients’ inner retinal layers (INR), retinal
pigmented epithelium (RPE) and all retinal layers’ thicknesses in the macular region were found
to be significantly correlated with ARWMC, independently from age and axial length (AL). PSP
patients’ neurological alterations go hand in hand with retinal ones, independently from age and axial
length. Our results suggest a mutual relationship between cerebral and retinal structure pathological
alterations. On the other hand, no significant differences in the choroidal evaluation compared to
healthy controls have been found.

Keywords: progressive supranuclear palsy; retina; choroid; optical coherence tomography;
neuroradiology; white matter age-related changes

1. Introduction

Progressive supranuclear palsy (PSP) is a rare, degenerative disease of the central
nervous system. It is associated with a specific four-repeat tau neuropathology and con-
sists of dementia, balance impairment, akinesia and conjugate gaze palsy in a vertical
direction [1,2]. A growing body of evidence suggests an important role and contribution of
vascular pathology to a variety of neurodegenerative diseases, including PSP. Notably, cere-
bral small vessel disease (CSVD) is considered the main responsible cause of Alzheimer’s
disease as well as PSP [3,4].
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Many neurodegenerative diseases can be studied in vivo and in a non-invasive method
through the examination of the eye. In particular, changes in the neuronal and vascular
structure of the retina may reflect similar changes occurring in the corresponding brain
structures [5].

The retina and choroid are currently examined using spectral-domain optical coher-
ence tomography (SD-OCT), a safe and reproducible imaging technique, offering high-
resolution retinal and choroidal scans without and with an enhanced depth imaging (EDI)
approach, respectively [6].

On OCT images, choroidal structure is estimated, determining subfoveal, nasal and
temporal choroidal thickness (ChT) and scores as total choroidal area (TCA), luminal
choroidal area (LCA), stromal choroidal area (SCA) and the choroidal vascularity index
(CVI) [7].

Previously, we demonstrated PSP patients to show significant thinning of the inner
retinal layer (IRL), the ganglion cell layer (GCL) and the inner and outer plexiform layer
(IPL and OPL, respectively) compared to age-matched healthy controls (HC) [8]. To date,
there are no studies examining the link between CSVD and retinal layers’ thickness or
choroidal structure in patients with PSP.

The purpose of the present study is to describe the potential variations in the choroidal
structure in PSP patients compared with HC. In addition, the relationship between CSVD
evaluated with brain magnetic resonance imaging (MRI) and both retinal layers’ thickness
and volume, as well as choroidal thickness and vascular scores, have been explored [9].

2. Materials and Methods
2.1. Participants and Methods

The study is consistent with the Tenets of the Declaration of Helsinki and Institutional
Review Board (CECS, Cometico Campania Sud prot. n◦16544). Approval has been achieved.
Written clinical permission was acquired after all participants had been informed on the
objective of the study. Between June 2018 and December 2019, a total of 26 PSP patients
diagnosed according to the Movement Disorders Society (MDS) criteria and 26 healthy
controls with a comparable age and axial length (AL) were included and examined in this
prospective, non-randomized study [1]. Patients affected by corneal leukomas, diabetic
retinopathy, hypertensive retinopathy from grade II to IV, senile macular degeneration, cen-
tral serous chorioretinopathy, glaucoma, macular hole, uveitis, hypertension not controlled
by medications, autoimmune disorders and ocular or systemic diseases, which could have
changed retinal features, have been excluded. One eye of each patient was evaluated.

2.2. Clinical and Instrumental Examination

Preoperative visit consisted of a comprehensive ophthalmological examination, includ-
ing medical history collection, visual acuity measurement using the Snellen chart, both with
and without vision correction. Additionally, an evaluation of the anterior segment, intraoc-
ular pressure (IOP) measurement, fundus examination, AL measurements with IOLMaster
(Carl Zeiss Meditec AG, Jena, Germany, version 5.4.4.0006) and spectral-domain (SD) OCT
evaluation using EDI mode in 840 nm (Spectralis; Heidelberg Engineering; Heidelberg,
Germany, version 6.0) was conducted.

2.3. Imaging Protocol and Image Analysis

A skilled examiner, unaware of the patients’ distribution, obtained a horizontal 30◦

linear OCT B-scan passing through the fovea. The scanning angle was set at 308 and each
B-scan consisted of 100 frames. Both EDI and non-EDI approaches were used, but only
EDI-OCT images with a high signal-to-noise ratio (minimum of 20 dB) that allowed for
adequate visualization of the choroid were selected for analysis. To minimize bias related to
diurnal ChT variations, all examinations were conducted between 2:00 p.m. and 3:00 p.m.

The measurements were performed using the software integrated into the Heidelberg
Eye Explorer HEYEX device, version 5.3. An experienced OCT evaluator (MDB) reviewed
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all collected and analyzed imaging data. The thickness of the retinal layers within a 1 mm
diameter circle centered on the fovea, as well as in five foveal and parafoveal zones with a
diameter of 3 mm, was determined according to the Early Treatment Diabetic Retinopathy
Study grid (ETDRS), following established protocols [8].

The retinal layers’ segmentation, the macular layers’ thickness (Mt) and volume (Mv)
in the 1 mm diameter-macular area and their mean thickness (Meant) and volume (Meanv)
in the 3 mm diameter-macular area were achieved using the instrument’s automatic algo-
rithm on volume scan without EDI approach.

Choroidal assessment was obtained on a single line scan with EDI approach: ChT in
subfoveal region and at 750 microns nasally and at 750 microns temporally to the fovea
were calculated on images in micron scale, using a line perpendicular to retinal pigment
epithelium (RPE) that extends between RPE–Bruch interface and sclerochoroidal junction
(as shown in Figure 1).
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Figure 1. Choroidal thickness (ChT) measurement in a PSP patient. ChT(n), nasal choroidal thickness;
ChT(sf), subfoveal choroidal thickness; ChT(t), temporal choroidal thickness; star symbol, 750 microns
of horizontal distance from fovea.

Macular B-scan images were exported using a 1:1 pixel ratio and processed utilizing
the ImageJ 1.52q software from the National Institutes of Health in Bethesda, MD, USA.
The examiner, who was unaware of the patient’s status, as suggested by previous studies,
measured and calculated TCA, LCA, SCA, and CVI [7,8].

To determine the scanned choroidal area in OCT B-scans, the polygon tool was used
after converting the image to 8-bit. Niblack’s auto-local threshold was then applied to
binarize and identify LCA and SCA areas, as illustrated in Figure 2, following established
protocols [10]. Color thresholding highlighted TCA, which was added to the region of
interest (ROI) manager. In each eye, the measurements for TCA and LCA were obtained
while CVI (defined as LCA/TCA) was computed [11]. Finally, SCA results are derived by
subtracting LCA from TCA.

Both PSP patients and healthy controls were evaluated with an IOLMaster (5.4.4.0006;
Carl Zeiss Meditec AG, Jena, Germany) to measure the AL. The mean of at least three
measurements with the highest signal-to-noise ratio was considered. To obtain comparable
data, the assessment of AL of the groups was performed, and no statistically significant
difference was shown.

2.4. Brain MRI Protocol and Vascular Scoring

Brain MRI was performed for 16 out of 26 PSP patients within a time window of
15 days before or after the eye examination [9]. All patients underwent an MRI scan of the
brain at 3 Tesla, with an imaging protocol including axial Fast Spin- Echo T2-weighted and
FLAIR sequences.

White matter changes were defined as ill-defined hyperintensities larger than 5 mm
on both T2 and FLAIR images [12]. The differentiation of lacunes and perivascular spaces
was based on size and signal intensity. We used the validated visual age-related white
matter changes scale (ARWMC) to rate white matter changes. The degree of white matter
changes was evaluated on a 4-point scale (from the absence of any lesion—score 0, to the
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presence of confluent lesions—score 3), in five different regions on each hemisphere (frontal,
parieto-occipital, temporal, infratentorial and basal ganglia) (total ARWMC score from
0 to 30) [12]. The ARWMC scale was performed by an experienced neuroradiologist (FD),
blinded to the results of both clinical and eye evaluation.
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2.5. Statistical Analysis

To assess the normal distribution of the data, a Kolmogorov–Smirnov test was con-
ducted. The comparison of categorical variables was performed using a chi-squared test.
Parametric or non-parametric tests, namely the unpaired samples t-test or Mann–Whitney
U test, were used to find differences between patients’ and controls’ ChT and vascular
scores, namely TCA, LCA, SCA and CVI. Spearman’s correlation was used to explore
the link between the ARWMC and (a) retinal layers’ thickness, (b) retinal layers’ volume,
(c) choroidal thickness and (d) choroidal vascular scores, namely TCA, LCA, SCA and CVI.

The statistical analyses were conducted using SPSS version 20. A two-sided p value of
less than 0.05 was chosen as the threshold for determining statistical significance. Since this
study had an exploratory focus, no correction for multiple comparisons was implemented.

All measurements were acquired as the distance from the RPE–Bruch interface to the scle-
rochoroidal junction, drawing a perpendicular line to the retinal pigment epithelium (RPE).

In this area, total choroidal area (TCA), luminal choroidal area (LCA), then stromal
choroidal area (SCA) and choroidal vascularity index (CVI) utilizing ImageJ 1.52 were
evaluated. After drawing the polygon tool, the image was converted into 8-bit, then
Niblack’s auto-local threshold and color threshold were applied.

3. Results

Demographic characteristics and axial length of 26 PSP patients and 26 healthy controls
are listed in Table 1. The two groups were similar in terms of age and AL. Enrolled PSP
patients had a disease duration of (mean ± standard deviation) 2.41 ± 1.08 years.

ChT in subfoveal, nasal and temporal sites and choroidal scores as TCA, LCA, SCA and
CVI of both patients and healthy controls are shown in Table 2. No significant difference
regarding ChT and choroidal vascularity scores was found between the two groups.
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Table 1. Demographic characteristics and axial length of PSP patients and HC.

Total PSP Patients HC p

n. 26 26
0.043

M/W 13/13 6/20

Age

Mean ± SD 69.89 ± 6.71 71.39 ± 7.56

0.284Median 72.25 73.91

min–max 53.08–82.25 48.17–83.25

AL

Mean ± SD 23.29 ± 0.82 23.27 ± 0.83

0.923Median 23.41 23.36

min–max 22.03–25.34 22.06–25.43
Abbreviations: PSP, progressive supranuclear palsy; HC, healthy controls; M, men; W, women; SD,
standard deviation.

Table 2. Comparisons of choroidal vascularization scores between PSP patients and HC.

PSP Patients (26) HC (26) p

ChT subfoveal (µm)
Mean ± SD 243.15 ± 70 214.58 ± 50.26

0.097
Range 123–416 125–339

ChT nasal (µm)
Mean ± SD 230.77 ± 70.71 199.38 ± 58.78

0.088
Range 121–403 99–327

ChT temporal (µm)
Mean ± SD 238.12 ± 67.73 207.19 ± 53.12

0.073
Range 124–372 130–334

TCA (mm2)
Mean ± SD 2.04 ± 0.51 1.86 ± 0.46

0.200
Range 1.34–3.19 1.12–2.66

LCA (mm2)
Mean ± SD 1.36 ± 0.33 1.23 ± 0.31

0.145
Range 0.91–2.06 0.69–1.78

SCA (mm2)
Mean ± SD 0.67 ± 0.21 0.63 ± 0.16

0.621
Range 0.35–1.13 0.39–0.94

CVI
Mean ± SD 67.3% ± 5% 66.1% ± 3.3%

0.308
Range 50.1–75.6% 60%–73.1%

Abbreviations: PSP, progressive supranuclear palsy; HC, healthy controls; M, men; W, women; SD, standard
deviation; ChT, choroidal thickness; TCA, total choroidal area; LCA, luminal choroidal area; SCA, stromal
choroidal area; CVI, choroidal vascularity index.

Thickness and volume of retinal layers in macular and five central regions (diameter
3 mm) for PSP patients are shown in Table 3.

Finally, ARWMCs for each lobe of each hemisphere for PSP patients are summarized
in Table 4.

In PSP patients, ARWMC score in occipital lobes is positively correlated with mtRPE
(r = 0.502, p = 0.048) and negatively with macular thickness (Mt) (all layers) (r = −0.533,
p = 0.034), mtIRL (r = −0.533, p = 0.033) and MvIRL thickness (r = −0.499, p = 0.049), Meant
inner nuclear layer (INL) (r = −0.535, p = 0.33) and MeanvINL (r = −0.519, p = 0.039). None
of these is correlated with age and AL: instead, there is a negative correlation between
age and MeantIPL (r = −0.716, p = 0.002), MeanvIPL (r = −0.794, p = 0.00), MeantGCL
(r = −0.617, p = 0.011), MeanvGCL (r = −0.672, p = 0.004), Meant retinal nerve fiber layer
(RNFL) (r = −0.552, p = 0.027), and a positive correlation between AL and MeantOPL
(r = 0.0529, p = 0.035).

No other significant correlations were detected.
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Table 3. Retinal layers’ thickness in PSP patients.

PSP Patients (16)

Fovea (1 mm Diameter) Mean ± SD Range

Thickness (Mt) (µm)

Photoreceptors (Bruch-OLM) 87 ± 5.45 79–98

IRL (OLM-ILM) 182.19 ± 26.74 148–236

RPE (Bruch-RPE) 15 ± 1.63 12–17

ONL 87.69 ± 10.98 67–108

OPL 24.19 ± 6.66 14–35

ONL/OPL 3.96 ± 1.42 1.97–7.71

All layers 269.19 ± 25.4 231–321

Volume (Mv) (µm2)

Photoreceptors (median) 0.07 0.06–0.08

IRL thickness 0.14 ± 0.022 0.12–0.19

RPE 0.01

ONL (median) 0.07 0.05–0.08

OPL (median) 0.02 0.01–0.03

Macular volume (median) 0.21 0.18–0.25

5 central regions (3 mm) Mean ± SD Range

Thickness (Meant) (µm)

Photoreceptors 82.71 ± 3.65 76.2–89.8

IRL (median) 225.50 205.6–264.8

RPE 14.53 ± 1.34 12.8–17.4

ONL 72.25 ± 7.71 52.4–85.6

OPL 30.88 ± 3.42 25.6–36.2

ONL/OPL 2.38 ± 0.40 1.45–2.81

INL 37.05 ± 3.80 31–46

IPL 33.25 ± 4.30 25–45.6

GCL 37.63 ± 6.24 23–45.6

RNFL 19.03 ± 2.09 16.4–25

Macular thickness 312.34 ± 13.91 285.6–343.2

Volume (Meanv) (µm2)

Photoreceptors (median) 0.12 0.108–0.126

IRL (median) 0.33 0.3–0.378

RPE (mean ± SD) 0.02 ± 0.002 0.018–0.024

ONL (mean ± SD) 0.10 ± 0.011 0.122–0.072

OPL (median) 0.04 0.054–0.036

INL (median) 0.06 0.064–0.044

IPL (median) 0.05 0.036–0.178

GCL (median) 0.06 0.036–0.066

RNFL (median) 0.03 0.024–0.038

Macular volume (median) 0.45 0.414–0.49
Abbreviations: PSP, progressive supranuclear palsy; Mt, retinal layer thickness in macular site; Mv, retinal layer
volume in macular site; Meant, mean retinal layer thickness in macular site; Meanv, mean retinal layer volume in
macular site; IRL: inner retinal layer; INL: inner nuclear layer; IPL: inner plexiform layer; OPL: outer plexiform
layer; GCL: ganglion cell layer; RNFL: retinal nerve fiber layer.
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Table 4. ARWMC scale for PSP patients (n = 16).

ARWMC Scale

Mean ± SD Median Range

Frontal 0.5 ± 0.65 0 0–2

Parietal 0.16 ± 0.38 0 0–1

Temporal 0.06 ± 0.25 0 0–1

Occipital 0.13 ± 0.34 0 0–1

Basal ganglia 0

Total 1.81 ± 2.56 0 0–8
Abbreviations: PSP. progressive supranuclear palsy; ARWMC. age-related white matter changes.

4. Discussion

Herein, we compared ChT in PSP patients and healthy controls with similar age and
axial length, as both such parameters may influence ChT and retinal measurements [13].
According to the literature, age and ChT, especially for the subfoveal one, have a neg-
ative correlation [14,15]. Similarly, ChT indirectly varies with AL [13]. According to
Gyawali P et al. ChT decreases by 40.32µm (95% CI: 32.58µm to 48.06µm, and p < 0.001)
for every 1 mm increase in the axial length [16].

Although we failed to detect significant changes in ChT in PSP compared to healthy
controls (p > 0.05) (Supplemental Figure S1) and a significant correlation between ChT and
ARWMC in PSP (ρs > 0.05), we demonstrated specific correlations between retinal layers
and ARWMC in PSP.

In addition to a growing body of evidence [17–19], we previously demonstrated that
PSP presents significant differences in thickness of specific retinal layers compared to HC,
with similar age and AL. In particular, a significant thinning of the IRL, OPL, IPL and GCL
was detected in PSP patients compared to HC, when considering the central five macular
regions (as showed in Supplemental Figures S2 and S3) [8].

ChT and structures have been studied in several diseases [10,20,21], but the possible
involvement of choroidal structure in retinal diseases is controversial [22,23].

Characterizations of retinal and choroidal microvasculature were conducted in Parkin-
son’s disease, but no data are available in PSP [24,25].

Cerebral small vessel disease (CSVD), which can be assessed with the ARWMC, is
considered a major pathogenic contributor to several neurodegenerative diseases, such as
Alzheimer’s disease and PSP [3,4,12,26].

In the present study, the presence of an association between PSP patients’ neuro-
radiological and ophthalmologic degenerations is the innovative finding. The negative
correlation of macular retinal layers’ thickness, especially the INL, and the positive correla-
tion of RPE of PSP patients with the ARWMC score in their occipital lobes further support
the mutual relationship between retinal and occipital lobe structures. In line with previous
reports, greater retinal thinning may represent a marker of a more severe form of disease
involving the occipital lobe [8,27].

The association between RPE and ARWMC is subject to debate. RPE arises from
the neuroectoderm, a layer of cells that develop into optic grooves. These grooves then
form optic vesicles under the influence of mesenchymal stimulation. The optic vesicle
further develops by invaginating at four weeks gestation, resulting in the formation of an
optic cup with two layers: an internal layer and an external one responsible for generating
RPE [28]. Similarly, cerebral white matter consists of myelinated axon tracts that facilitate
communication between different brain regions; this white matter also originates from the
neuroectodermal germ layer, just like its covering myelin [29,30].

In contrast, the choroidal vascular network arises from the mesoderm and is initially
part of the uveal vascular system that surrounds the outer layer of the optic cup [31]. By
studying embryology and examining similarities between cerebral and retinal microvas-
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culatures’ composition [32], it is possible to hypothesize about a significant correlation
between findings in both areas.

No correlation between white matter changes and choroid of PSP patients was found,
but further studies are needed. The potential influence of the choroid on retinal develop-
ment and pathology should not be disregarded, given the role of mesenchymal stimulus
in neuroectodermal differentiation [28] and evidence suggesting similarities between em-
bryology, anatomy and metabolism among retinal, choroidal and cerebral vascularization.
Geerling CF et al. conducted a study comparing 20 patients diagnosed with cerebral
small vessel disease (CSVD) to 10 healthy controls. They found significant differences in
choriocapillaris reflectivity standard deviation measured by optical coherence tomography
angiography (OCT-A) between the cases and controls (p = 0.039). Additionally, they ob-
served associations between logarithmically transformed white matter index values and
characteristic lesions seen on MR images with vessel density, vessel diameter index in
superficial and deep plexus layers as well as choriocapillaris parameters during unadjusted
analyses [33].

Furthermore, correlations are independent from age and AL, factors that could in-
troduce a bias in the analysis of correlation [34]. In terms of ChT, we failed to detect any
difference between the two groups.

We acknowledge some limitations of the present study: there is a different gender
distribution among the two groups; however, its role in influencing ChT is uncertain [35–41].
In the HC group, no MRI and ARWMC computation was performed; therefore, the eventual
correlation between this neuroradiological score and retinal layers was not evaluated.
However, PSP was the main target population of our study. Further ophthalmological
investigations together with neuroradiological findings may provide new insights into the
physiopathological mechanisms of PSP.
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PSP: progressive supranuclear palsy; OCT: optical coherence tomography; MRI: magnetic
resonance imaging; ChT: choroidal thickness; IRL: inner retinal layer; INL: inner nuclear layer; IPL:
inner plexiform layer; OPL: outer plexiform layer; GCL: ganglion cell layer; RNFL: retinal nerve fiber
layer; ARWMC: age-related white matter changes; EDI: enhanced depth imaging; AL: axial length;
TCA: total choroidal area; LCA: luminal choroidal area; SCA: stromal choroidal area; CVI: choroidal
vascularity index; mtIRLthickness: IRL thickness in macular zone; vIRLthickness: IRL volume in
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macular zone; mtRPE: RPE thickness in macular zone; MeantINL: INL mean thickness in 3 mm
central macular area; MeanvINL: mean volume in 3 mm central macular area; mtMACULAR THICK-
NESS all layers: all retinal layers’ total thickness in macular area; MeantIPL: IPL mean thickness in
3 mm central macular area; MeanvIPL: IPL mean volume in 3 mm central macular area; MeantGCL:
GCL mean thickness in 3 mm central macular area; MeanvGCL: GCL mean volume in 3 mm central
macular area; MeantRNFL: RNFL mean thickness in 3 mm central macular area; MeantOPL: OPL
mean thickness in 3 mm central macular area.
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