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Abstract: Between 30–40% of patients with cardiac resynchronization therapy (CRT) do not show an
improvement in left ventricular (LV) function. It is generally known that patient selection, LV lead
implantation location, and device timing optimization are the three main factors that determine CRT
response. Research has shown that image-guided CRT placement, which takes into account both
anatomical and functional cardiac properties, positively affects the CRT response rate. In current
clinical practice, a multimodality imaging approach comprised of echocardiography, cardiac magnetic
resonance imaging, or nuclear medicine imaging is used to capture these features. However, with
cardiac computed tomography (CT), one has an all-in-one acquisition method for both patient
selection and the division of a patient-tailored, image-guided CRT placement strategy. This review
discusses the applicability of CT in CRT patient identification, selection, and guided placement,
offering insights into potential advancements in optimizing CRT outcomes.

Keywords: heart failure; cardiac resynchronization therapy; computed tomography

1. Introduction

No improvement of left ventricle (LV) function (non-response) after cardiac resyn-
chronization therapy (CRT) is still a present-day concern which affects more than 30% of
patients [1] and is associated with significant morbidity and mortality rates [2]. Careful
patient selection, informed positioning of the ventricular pacemaker lead, and optimal
timing of electrode activation are important considerations for increasing the effect of
CRT [1]. “Response” to CRT has, however, been expressed by numerous parameters as
no definite response has been defined. Commonly, a response to CRT has been reported
as a reduction of the LV end-systolic volume of at least 15%. A clinical response (e.g.,
reduction of heart failure or mortality) or a functional improvement class (increase in
exercise tolerance or New York Heart Association (NYHA)) are other parameters used
to express a response to therapy [3]. To attain the greatest possible effect, the LV lead
is usually targeted to the posterolateral part of the LV, since epidemiologic studies have
shown that is when the greatest benefit can be expected [4,5]. However, image-guided
LV lead placement, compared to standard implantation, is associated with increased LV
reverse remodeling [3]. The echocardiographic response rate may favor image guidance,
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although this advantage does not always directly translate to clinical response in available
trials [3]. A multimodality approach using echocardiography, cardiac magnetic resonance
imaging (CMR), or nuclear medicine imaging is traditionally used to visualize cardiac
viability, function, and dyssynchrony [6,7]. In addition to being labor-intensive, these
imaging modalities may not suit every patient. Poor acoustic windows, claustrophobia,
or the presence of cardiac implantable devices limit the use of echocardiography or CMR.
Technological advances, however, have driven cardiac computed tomography (CT) for-
ward as a promising multipurpose modality. With an accuracy of left ventricular ejection
fraction (LVEF) measurement similar to CMR, CT may be used for selecting patients with
an LV function of less than 35% [8–10] and for patient follow-up after device placement.
Furthermore, studies have shown contrast-enhanced CT can detect myocardial fibrosis by
late iodine enhancement (LIE) with a strong correlation to late gadolinium enhancement
(LGE) by CMR, which is considered the gold standard [11–14]. Lastly, CT-derived strain
could be leveraged to locate the most favorable position for LV lead placement [15]. In this
review, these applications of a multipurpose CT approach for CRT patients will be further
discussed along with their implications.

2. Relevant Advances in Cardiac Computed Tomography

CT was first discovered in the 1960s, but there has been an exponential growth in
the use of CT in cardiology since the introduction of 64-slice CT scanners in 2004. In re-
cent decades, high spatial resolution, rapid image acquisition, and standardized imaging
protocols producing high-quality images have contributed to its adoption into clinical
practice. Next to dual-source, wide-detector CT and dual-energy CT, the photon-counting
technique has recently been introduced for cardiac imaging [16]. With these hardware
systems, advances have been made in spatial resolution (0.25–0.5 mm isotropy) and tem-
poral resolution (up to 66 ms) with rapid image acquisition (240–270 ms gantry rotation)
and improved contrast resolution (e.g., by increased tube-power and low kV) as well as in
radiation dose reduction [15,17,18]. Essential developments in post-processing methods,
such as iterative reconstruction or deep-learning image reconstruction for noise and artifact
reduction, multi-energy CT-based virtual reconstructions for monochromatic (monoener-
getic) images, and iodine (perfusion) maps have further enhanced image quality [19–22].
Software improvements that allow for (semi-)automated cardiac segmentation and function
analysis have contributed to the adoption of cardiac CT into clinical practice [23]. As a
result, a high-image quality cardiac CT scan can provide reliable information on myocardial
tissue, atrial and ventricular dimensions, cardiac function, and myocardial perfusion and
allow for assessment of the coronary system. With continued game-changing technological
developments, further evolution of cardiac CT is to be expected.

3. Multipurpose Cardiac Computed Tomography for Cardiac Resynchronization
Therapy Patients

Cardiac CT is a versatile imaging tool with significant potential for the CRT patient.
First, it can identify heart failure patients who meet the criteria for CRT by assessing LV
function and ruling out obstructive coronary artery disease. Second, it can be used to
gather additional information that could influence the placement of the LV lead through
techniques like CT venography, LIE-CT, and CT strain analysis. Finally, by combining these
parameters, it may facilitate the development of a personalized approach for lead delivery
for each patient. An overview of these CT-derived parameters is shown in Table 1 and
discussed below. In practice, acquisition of these CT images is combined in an optimized
protocol. Afterwards, the clinically required information can be obtained through analysis
of the appropriate CT images with additional postprocessing tools.
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Table 1. Overview of CT studies useful for CRT.

CT Study Purpose

Cardiac Left ventricular dimension and function: baseline (and follow-up)

Coronary Coronary artery and venous system anatomy and patency

Late phase Myocardial fibrosis delineation (LIE) and extracellular volume (ECV)

Strain * Mechanical dyssynchrony
CRT: cardiac resynchronization therapy; CT: computed tomography; LIE: late iodine enhancement; ECV: extracel-
lular volume. * Not a separate scan but attained by post-processing.

3.1. Identifying Patients with Cardiac Computed Tomography That May Benefit from Cardiac
Resynchronization Therapy

Cardiac CT allows for assessment of the coronary arteries and the LV volume and
ejection fraction. Based on these parameters, potential CRT candidates can be identified.
The guidelines’ criteria for CRT placement are shown in Table 2, in addition to optimal
medical treatment [24]. It is noteworthy that in patients with a left bundle branch block,
CRT is indicated to improve symptoms and reduce morbidity and mortality, whereas for
patients with a non-left bundle branch block, this is for improvement of symptoms and
reduction of morbidity only [24].

Table 2. Summary of the 2021 European Society of Cardiology (ESC) guideline recommendations for
cardiac resynchronization therapy (CRT).

Patient Sub-Type with an Indication for CRT Class Recommendation

Left ventricular ejection fraction < 35% with
a left bundle branch block with a QRS duration of:

• More than 150 ms I

• 130–149 ms IIa

Left ventricular ejection fraction < 35% with
a non-left bundle branch block with a duration of:

• More than 150 ms IIa

• 130–149 ms IIb

Source: 2021 ESC Guidelines on cardiac pacing and CRT [24].

3.1.1. Evaluation of the Coronary Artery System

Cardiac CT is already extensively used for the noninvasive evaluation of coronary
anatomy. There is substantial evidence showing coronary computed tomography an-
giography (CCTA) can be used to rule out obstructive coronary artery disease with high
certainty [25]. As such, CCTA may also be used in heart failure patients to rule out ischemic
heart disease as the underlying cause of heart failure and influence the recommendation for
a defibrillator functionality [24]. Indeed, meta-analysis in patients with a reduced ejection
fraction has demonstrated that CCTA retains its high diagnostic accuracy and negative
predictive value [26,27].

3.1.2. Assessment of Ventricular Volume and Function

CMR is considered the gold standard for the determination of LV volume and function.
Meta-analysis showed no significant difference between these measurements on CT and
CMR [8–10]. In this comparison, a number of factors need to be taken into account. Due to
the relatively recent advances in the field of CT, the total number of patients in the included
papers is limited. Additionally, in several of the included studies, to reduce heart rate
and increase temporal resolution, beta-blockers were administered prior to CT but not
CMR. Furthermore, all patients in the included analysis were, at the very least, suspected
of cardiac disease [8–10]. This demonstrates the wide clinical range of the application of



J. Clin. Med. 2023, 12, 6212 4 of 15

CT but may limit the interpretation of more specific patient categories. Nonetheless, a
Bland–Altman analysis showed a small bias [8,9] and a good correlation [10] between LVEF
on CT compared to CMR. Good correlation between both modalities was also reported
for end-diastolic volume (EDV), end-systolic volume (ESV), and stroke volume (SV) as
well [9,10]. The mean difference between EDV, ESV, and SV on CT and CMR was 2.62 mL,
1.61 mL, and 3.21 mL [9], with a significant correlation coefficient of 0.93, 0.95, and 0.85,
respectively [10]. Hence, if the appropriate images were recorded, calculation of the LVEF
on a cardiac CT scan allows for identification of a potential CRT patient.

3.2. Comprehensive Assessment of Patients Eligible for Cardiac Resynchronization Therapy with
Cardiac Computed Tomography

At present, echocardiography is routinely used to evaluate CRT patients. CMR may
additionally be performed, when indicated. However, CT holds the potential to become the
all-around imaging modality for CRT patients. An overview of how cardiac CT compares
to echocardiography and CMR is shown in Figure 1.
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Figure 1. Cardiac computed tomography as the all-around imaging modality. A comparison of
relevant features that differ between the imaging modalities is shown [15,17,28,29]. A “plus” indicates
an association between the imaging modality and the specific factor, whereas a “minus” indicates no
association. The “plus/minus” indicates a point could be made for both the presence and absence of
an association.

3.2.1. Coronary Venous System

Retrograde balloon angiography is routinely acquired during CRT placement to evalu-
ate venous anatomy and LV lead position. Variations of the coronary venous system such
as anomalous insertion of the coronary sinus ostium, aberrant venous anatomy, or the
presence of valves, small caliber branches, or tortuous veins can affect the implantation
procedure [30,31]. This heterogeneity between the individual patients underscores the
potential benefit of pre-procedural imaging. Fortunately, global venous anatomy is similar
between patients with and without heart failure [32,33]. CT venography can be leveraged
to assess the coronary venous system prior to LV lead placement [6,7,15,29,32–40]. The
accuracy of CT at detecting the venous branches was shown to be, at least, equally as good
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as retrograde balloon angiography [35–37,41]. Additionally, the evaluation of valves in the
coronary venous system on CT is difficult, but feasible [42].

The diameter of the venous branches is another parameter that can be measured using
coronary CT [43]. Vessels where the ostium was at least 5 mm in diameter in the absence of
tortuosity were considered potential target veins in one trial [41]. However, the relatively
small size of the LV pacemaker lead (4 F, diameter 1.3 mm) and experience with novel
delivery techniques should facilitate lead placement into vessels with a diameter smaller
than 5 mm as well.

3.2.2. Scar Identification

An intermediate-to-large scar burden is detrimental for patients receiving CRT. When
the LV lead is placed within the scar, outcomes have been shown to be worse [44]. Myocar-
dial scar can be identified due to a longer retention of contrast agents in fibrotic tissue than
in healthy tissue. On CMR, which is considered the gold standard technique, late gadolin-
ium enhancement (LGE) is used for myocardial scar identification. Ironically, the first
reported image that utilized late enhancement imaging to identify myocardial scarring was
acquired on CT in 1976, at a time before CMR existed [45]. The iodine-based CT contrast
agent is similarly retained longer in fibrotic tissue and can, as a result, be used to detect scar
tissue on CT as late iodine enhancement (LIE). An example of scar tissue on LIE-CT images
is shown in Figure 2. In patients with ischemic and non-ischemic heart failure, a strong
correlation was found between the extent of myocardial scarring and the ability to differ-
entiate between an ischemic and non-ischemic attenuation on LIE-CT [11–14]. However,
inter-operator variability in correctly classifying LIE-CT is high and has a long learning
curve [11,13,14].
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Figure 2. Late iodine enhancement on cardiac tomography. Images are of a 67-year-old male patient
suffering from frequent monomorphic ventricular extra systoles. The arrows indicate areas of non-
ischemic, subepicardial late iodine enhancement, shown in the short axis view (panel (A)), and the
3-chamber view (panel (B)).

Several trials have investigated the correlation between LIE-CT-based scar, LV lead lo-
cation, and CRT outcome. Similar to LGE-CMR-based studies, increased echocardiographic
reverse remodeling and better outcomes were reported when the LV lead was not placed
within or adjacent to the scar tissue identified on the LIE-CT [29,39,44,46–48]. When the
lead was placed within the scar tissue, this resulted in a higher mortality rate [44].
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3.2.3. Extracellular Volume

Another parameter that can be used to express myocardial injury is by quantification of
extracellular volume (ECV). Pathological conditions that are accompanied by an expansion
of the extracellular space (comprising of both the interstitial and intravascular space) will
cause a rise in ECV. Therefore, most infiltrative diseases (depending on the disease stage),
oedema, and fibrosis will result in elevated ECV, which is associated with heart failure,
diastolic dysfunction, and increased morbidity and mortality rates [41]. ECV measurement
on CMR is the gold standard, but it may also be done with CT. ECV on CT relies on the
same properties as ECV on CMR by measuring the attenuation of the myocardium before
and 5–7 min after administration of the contrast agent [49]. Similar to CMR, CT ECV can
then be calculated with the formula:

ECVct = (1 − Hematocrit)∗∆Humyocardium
∆Hublood

ECV assessed on CT has a good inter-observer reproducibility [50–55] and a good
correlation to ECV measured on CMR in patients with valve disease and different car-
diomyopathies [51–59]. CT-derived ECV was significantly higher in patients with heart
failure with a preserved ejection fraction, ischemic, and non-ischemic cardiomyopathy
than in controls [60–63]. Healthy myocardium could also be distinguished from ischemic
and non-ischemic myocardium based on CT-derived ECV [53,62,64]. CT-based ECV could
even be determined in patients with a cardiac implantable electronic device [65]. However,
many of these observations have been in non-CRT patients. Therefore, the benefit of ECV
calculation in CRT patients is still unknown. Although an inverse correlation between
CRT outcome and concordance of the LV lead with ECV seems likely, this still needs to be
properly investigated. Furthermore, whether ECV has any additional value over LIE in
relation to ventricular lead location and CRT outcome remains to be seen.

3.2.4. Strain Measurement

Strain is a valuable parameter that provides information on cardiac dyssynchrony,
which is especially relevant for CRT patients. The most commonly used methods to de-
termine strain are speckle tracking echocardiography (STE) and CMR feature tracking.
However, strain can also be determined on cine CT images. When CT strain is compared
to other modalities, CT strain shows a fair-to-good correlation to STE and CMR [66–68].
Furthermore, CT-derived strain is not a static value but can improve after adequate treat-
ment [69] and has prognostic value [70–72].

Strain can be expressed as a global value to inform on overall cardiac function, or as
regional strain which provides information on local myocardial function and serves as a
parameter of dyssynchrony. Based on the temporal difference to maximum regional strain,
the latest activated segment of the LV can be identified and targeted for lead placement [15].
Previous studies have shown that CMR strain can be used to identify this latest activated
region mechanically [73]. Targeted lead placement within this area is associated with
improved reverse remodeling compared to data from literature [6,73]. Furthermore, CT-
based regional strain differences can be used to detect scar in the CRT patient where
infarcted regions showed reduced (relative) strain values [74].

Strain analysis in CRT patients has been largely limited to CMR. However, the CMR
results and CT-based strain in other cardiac patients is interesting and warrants investiga-
tion of CT-based strain in CRT patients. An example of CT-based global circumferential
strain measurement with corresponding strain curves is shown in Figure 3.



J. Clin. Med. 2023, 12, 6212 7 of 15J. Clin. Med. 2023, 12, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 3. Computed tomography based strain. The circumferential strain measurement of the left 

ventricle (panel (A)), with the corresponding strain curve (Y−axis) over time (frame number, 

X−axis) (panel (B)). 

Even though data is scarce, CT strain is also feasible in patients with a cardiac pace-

maker and can be used to assess mechanical dyssynchrony in these patients [28,75]. Pa-

tients that require an upgrade from a right ventricular pacemaker to a biventricular CRT 

device may also benefit from targeted LV lead placement based on CT strain. Such guided 

placement would be more difficult with CMR in these specific patients due to imaging 

artifacts and safety concerns. 

3.2.5. Phrenic Nerve Identification 

Phrenic nerve stimulation during LV pacing is one of the reasons for selecting a dif-

ferent LV lead location than intended. On CT images, the pericardiophrenic bundles, con-

taining the phrenic nerve along with the pericardiophrenic artery and vein, can be located 

and taken into account when selecting the optimal LV lead position [6,76,77]. This may 

help guide LV lead placement and reduce procedure time. 

3.3. Cardiac Computed Tomography Guided Cardiac Resynchronization Therapy 

3.3.1. Guided Left Ventricular Lead Placement 

The benefit of knowledge of the coronary venous system prior to implantation re-

mains controversial and is limited by the amount of recent data. There have been reports 

that show a significant reduction in fluoroscopy duration at the cost of a higher total radi-

ation dose (including the CT scan), with fewer catheters used and less contrast exposure 

[38,41]. However, another randomized controlled trial contradicted these findings and 

saw no significant reduction in procedure time or fluoroscopy duration [29]. 

When knowledge of the coronary venous system is supplemented with functional 

parameters, the value of the coronary venous anatomy becomes more apparent. Retro-

spective analysis of a small number of CRT patients showed that some of the non-respond-

ers had other suitable venous branches over a potentially beneficial area [39]. Prior 

knowledge and LV lead placement in this area could have possibly made these patients 

CRT responders. 

Figure 3. Computed tomography based strain. The circumferential strain measurement of the left
ventricle (panel (A)), with the corresponding strain curve (Y−axis) over time (frame number, X−axis)
(panel (B)).

Even though data is scarce, CT strain is also feasible in patients with a cardiac pace-
maker and can be used to assess mechanical dyssynchrony in these patients [28,75]. Patients
that require an upgrade from a right ventricular pacemaker to a biventricular CRT device
may also benefit from targeted LV lead placement based on CT strain. Such guided place-
ment would be more difficult with CMR in these specific patients due to imaging artifacts
and safety concerns.

3.2.5. Phrenic Nerve Identification

Phrenic nerve stimulation during LV pacing is one of the reasons for selecting a
different LV lead location than intended. On CT images, the pericardiophrenic bundles,
containing the phrenic nerve along with the pericardiophrenic artery and vein, can be
located and taken into account when selecting the optimal LV lead position [6,76,77]. This
may help guide LV lead placement and reduce procedure time.

3.3. Cardiac Computed Tomography Guided Cardiac Resynchronization Therapy
3.3.1. Guided Left Ventricular Lead Placement

The benefit of knowledge of the coronary venous system prior to implantation remains
controversial and is limited by the amount of recent data. There have been reports that
show a significant reduction in fluoroscopy duration at the cost of a higher total radiation
dose (including the CT scan), with fewer catheters used and less contrast exposure [38,41].
However, another randomized controlled trial contradicted these findings and saw no
significant reduction in procedure time or fluoroscopy duration [29].

When knowledge of the coronary venous system is supplemented with functional pa-
rameters, the value of the coronary venous anatomy becomes more apparent. Retrospective
analysis of a small number of CRT patients showed that some of the non-responders had
other suitable venous branches over a potentially beneficial area [39]. Prior knowledge and
LV lead placement in this area could have possibly made these patients CRT responders.

The benefit of CT in CRT patients was shown in 18 patients where CT was used
to guide an upgrade to CRT. By using a novel algorithm that holds a close relation to
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circumferential strain, the myocardial stretch in each segment was determined. When the
final LV lead position was within the predetermined target, the patients showed a greater
composite clinical response rate [28]. Furthermore, during CRT implantation, several other
cardiac veins were cannulated with a pacing wire as well. When stimulating inside the
optimal target, patients had a greater acute hemodynamic response measured by invasive
pressure volume loops than when stimulated in scar tissue [28].

Strategies have also been developed that provide “live” guidance during implantation.
An example of such a model is shown in Figure 4. Live guidance was achieved based on
the fusion of processed images with fluoroscopy in patients receiving CRT.
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Figure 4. CT-based live-guided CRT placement. The maximum radial strain at the end of the cardiac
cycle is located in the anterolateral segment (AL) of the left ventricle as is shown on the bulls-eye
plot (panel (A)), and the scar is located in the septal-posterolateral (S2-PL) part of the myocardium
(panel (B)). These areas are combined with the CT venogram to create a 3D rendering of the bulls-eye
plot (with the optimal target in green and scar in red) and the coronary veins, which are projected on
top of the angiography image during CRT implantation (panel (C)). The final lead position is within
the target area, outside of the scar (which is omitted for clarity in this recording) (panel (D)).
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Only a few reports have been published on live-guided CRT implantation based on
pre-procedural CT images. In one study, just the CT-derived coronary venous system
was available. During the procedure, the implanting physician had an overview of all
coronary branches which was fused with the live angiography [78]. Additionally, in the
second reported study, the optimal target was selected based on the latest activated region
(identified by wall motion or strain) in the American Heart Association (AHA) model [41].
On top of that, in the last study, the location of the scar was also taken into account when
selecting the optimal target [15]. The coronary veins traversing and adjacent to the selected
target were also defined based on the CT. Both the optimal AHA target along with the
coronary veins were overlain on the angiography during implantation to facilitate the
live guidance [15,41]. Even though all of these trials have shown proof that CT-guided
lead placement is possible, due to the small number of patients included, the results
are still ambiguous. The CT-based guidance led to a significant reduction in the total
fluoroscopy time but an increase in the total radiation dose in one study [41]. Others have
shown a greater acute hemodynamic response based on invasive pressure-volume loops
when pacing within the predefined target than when outside of this area. Unexpectedly, a
reduction of LV end-systolic volume of more than 15% only occurred in 60% of patients.
This may have been the result of the ability to place the lead within the target in only 83%
of patients due to coronary sinus angulation, phrenic nerve stimulation, and the size of the
coronary vein being too small [15]. Patients that were undergoing an upgrade from a right
ventricular pacemaker to CRT were also included. Nonetheless, after proof of concept in
these small studies, larger trials are needed.

3.3.2. Cardiac Computed Tomography to Determine the Method of Left Ventricular
Lead Delivery

Proceeding with endovascular implantation seems logical when a target and corre-
sponding epicardial vein have been identified. However, when there is no coronary vein
near the optimal target or when there is no target at all, other strategies like conduction
system pacing (CSP) or a surgical lead placement should be considered [79]. This is in
line with the guideline that recommends a similar approach, as class IIa indication, when
coronary sinus lead implantation has failed [24].

3.3.3. Follow-up after Guided Cardiac Resynchronization Therapy

After CRT implantation, the response to the therapy needs to be monitored. In patients
with poor echocardiographic windows and a CRT implant that can cause image artifacts
on CMR, a CT scan seems the best option. The feasibility of CT-based follow-up in patients
after CRT placement has already been shown [79].

4. Implications
Financial and Safety Considerations

The mean cost of a single CRT device, including implantation, ranges from approxi-
mately €11,000 to €16,600 depending on the presence of a defibrillator function [80]. Image-
guided LV lead placement positively affects response rate, but comes at a higher cost than
the current standard of care. However, in a cost-effectiveness estimation, it was found that
image-guided lead placement could save between €300–€20,000 per patient [81]. Addi-
tionally, a CT scan is cheaper than a CMR scan [65], further driving the cost effectiveness
towards CT-guided lead placement. On top of that, a CT scan is typically faster with shorter
waiting lists than a CMR scan [29,82]. This reduces the time between patient selection and
CRT implantation, potentially limiting the deterioration of heart failure while awaiting
implantation.

Despite the advantages of the multipurpose CT approach, radiation exposure remains
a constant concern. However, a significant reduction in radiation exposure from CCTA
has been seen over time. Between 2007 and 2017, the mean radiation dose dropped by
78% [83]. With new scanners and scanning protocols, strain analysis is feasible with a total



J. Clin. Med. 2023, 12, 6212 10 of 15

effective dose of 1.78–2.8 mSv with a temporal resolution of 66 ms or 17 frames/cardiac
cycle [23,84]. Multi-segment reconstruction of cardiac cine CT can also be used to reduce
the radiation dose [85]. When only end-systolic strain is required, the effective dose can
be as low as 1.7 mSv, one study showed [23]. Prospective ECG-triggered CTA, high-pitch
scanning, iterative reconstruction, and the use of artificial intelligence are other strategies
for reducing radiation exposure [21].

The other safety concern is contrast exposure, which can be as much as 120 mL for an
entire cardiac CT protocol [15,28]. According to local guidelines, patients with impaired
kidney function require extra preparation and monitoring for contrast scans that contain
iodine. However, there is evidence that a lower contrast dosage does not affect ECV
calculations [86]. With the continuing development of CT technology, further reductions
in radiation and contrast exposure are likely to improve patient safety. Whether these
techniques can be applied in evaluating the CRT patient needs to be investigated.

5. Limitations and Future Perspective

The reviewed literature shows promising developments that enable the application of
CT in new fields like CRT. However, other imaging modalities such as CMR and echocar-
diography already have a more established role in these patients. Consequently, there is
more data available on these imaging modalities than CT. As a result, standard values have
been defined for these established imaging modalities. Furthermore, technical differences
between CT and these gold-standard imaging modalities make comparison inherently more
challenging. Fortunately, CT is catching up, with strain and ECV already being investigated
with CT. However, this fast development is also a limitation of the wider application of CT,
especially the use of CT in non-specialized centers and the requirement of up-to-date CT
systems or post-processing tools. As a result, large prospective trials are lacking. In time,
with more widespread application of these techniques, like strain and ECV, comparison
should be possible in larger patient groups.

Additionally, with the adoption of CSP in patients with dyssynchronous heart failure,
the developments within the field of cardiac resynchronization also need to be considered.
Even though initial results may point toward a benefit of CSP over conventional CRT
placement [87,88], larger comparative trials (that include image-guided CRT placement)
are still needed. Furthermore, pre-procedural planning or guidance during CSP device
implantation are other avenues that need to be explored as well.

6. Conclusions

Based on the reviewed literature, CT is a multipurpose tool that has the potential to be
used for the identification of the appropriate patient for CRT, as well as treatment planning
based on the evaluation of multiple patient-specific aspects. Integration of this information
into the implantation procedure may enable a live, guided, patient-tailored CRT placement
strategy to maximize therapy effect and prognosis.
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