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Abstract: Background: The liver plays an important role in maintaining copper homeostasis. Copper
ion accumulation was elevated in HCC tissue samples. Copper homeostasis is implicated in can-
cer cell proliferation and angiogenesis. The potential of copper homeostasis as a new theranostic
biomarker for molecular imaging and the targeted therapy of HCC has been demonstrated. Recent
studies have reported a novel copper-dependent nonapoptotic form of cell death called cuproptosis,
strikingly different from other known forms of cell death. The correlation between cuproptosis and
hepatocellular carcinoma (HCC) is not fully understood. Materials and Methods: The transcriptomic
data of patients with HCC were retrieved from the Cancer Genome Atlas-Liver Hepatocellular
Carcinoma (TCGA-LIHC) and were used as a discovery cohort to construct the prognosis model.
The gene expression data of patients with HCC retrieved from the International Cancer Genome
Consortium (ICGC) and Gene Expression Omnibus (GEO) databases were used as the validation
cohort. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was used
to construct the prognosis model. A principal component analysis (PCA) was used to evaluate the
overall characteristics of cuproptosis regulator genes and obtain the PC1 and PC2 scores. Unsuper-
vised clustering was performed using the ConsensusClusterPlus R package to identify the molecular
subtypes of HCC. Cox regression analysis was performed to identify cuproptosis regulator genes
that could predict the prognosis of patients with HCC. The receiver operating characteristics curve
and Kaplan–Meier survival analysis were used to understand the role of hub genes in predicting
the diagnosis and prognosis of patients, as well as the prognosis risk model. A weighted gene
co-expression network analysis (WGCNA) was used for screening the cuproptosis subtype-related
hub genes. The functional enrichment analysis was performed using Metascape. The ‘glmnet’ R
package was used to perform the LASSO regression analysis, and the randomForest algorithm was
performed using the ‘randomForest’ R package. The ‘pRRophetic’ R package was used to estimate
the anticancer drug sensitivity based on the data retrieved from the Genomics of Drug Sensitivity in
Cancer database. The nomogram was constructed using the ‘rms’ R package. Pearson’s correlation
analysis was used to analyze the correlations. Results: We constructed a six-gene signature prognosis
model and a nomogram to predict the prognosis of patients with HCC. The Kaplan–Meier survival
analysis revealed that patients with a high-risk score, which was predicted by the six-gene signature
model, had poor prognoses (log-rank test p < 0.001; HR = 1.83). The patients with HCC were grouped
into three distinct cuproptosis subtypes (Cu-clusters A, B, and C) based on the expression pattern of
cuproptosis regulator genes. The patients in Cu-cluster B had poor prognosis (log-rank test p < 0.001),
high genomic instability, and were not sensitive to conventional chemotherapeutic treatment com-
pared to the patients in the other subtypes. Cancer cells in Cu-cluster B exhibited a higher degree
of the senescence-associated secretory phenotype (SASP), a marker of cellular senescence. Three
representative genes, CDCA8, MCM6, and NCAPG2, were identified in patients in Cu-cluster B using
WGCNA and the “randomForest” algorithm. A nomogram was constructed to screen patients in
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the Cu-cluster B subtype based on three genes: CDCA8, MCM6, and NCAPG2. Conclusion: Pub-
licly available databases and various bioinformatics tools were used to study the heterogeneity of
cuproptosis in patients with HCC. Three HCC subtypes were identified, with differences in the
survival outcomes, genomic instability, senescence environment, and response to anticancer drugs.
Further, three cuproptosis-related genes were identified, which could be used to design personalized
therapeutic strategies for HCC.

Keywords: hepatocellular carcinoma; cuproptosis; genomic instability; senescence; the Cancer
Genome Atlas program

1. Introduction

Due to the high degree of malignancy, the prognosis of patients with advanced hepa-
tocellular carcinoma (HCC) is usually poor. Due to the late diagnosis, most cases present
beyond a cure, restricted to resection, transplantation, and radiofrequency ablation (RFA).
The 5-year survival of patients with HCC is less than 30% [1]. Various studies have shown
heterogeneity in the phenotypic and molecular features of HCCs [2]. Hence, the current
focus is on understanding the heterogeneity of HCC, which will aid in the effective diagno-
sis, prognosis, and treatment of patients. Therefore, exploring the molecular subtypes of
HCC at the transcriptomic level will assist in identifying clinically relevant gene signatures
and prognosis factors [3,4]. Together, these results will aid in designing personalized and
novel therapeutic strategies for the treatment of patients with HCC.

Recent studies have demonstrated a new atypical form of cell death called cuproptosis.
According to a new study published by Science, the intracellular accumulation of copper
(Cu) causes the aggregation of mitochondrial lipoylated proteins, thus destabilizing Fe-S
cluster proteins, which results in a distinct form of cell death known as cuproptosis [5].
Elesclomol transports copper (Cu2+) from the outside to intracellular compartments of
the cells by binding to copper (Cu2+). Cuproptosis primarily occurs due to the increased
aggregation of copper and FDX1-mediated mitochondrial proteotoxic stress. FDX1 facil-
itates the lipoylation (LA) and aggregation of enzymes, specifically dihy-drolipoamide
S-acetyltransferase (DLAT), which controls the mitochondrial tricarboxylic acid cycle by
reducing Cu2+ to Cu+. Simultaneously, FDX1 also destabilizes the proteins in the Fe-S
cluster. In addition to copper ionophores, copper importers such as SLC31A1 and exporters
such as ATP7B control the sensitivity to cuproptosis by altering the intracellular Cu+ levels.
Buthionine sulfoximine (BSO) promotes cuproptosis by depleting glutathione (GSH), which
acts as a copper chelator and contains thiols, thereby preventing cuproptosis. Rotenone and
antimycin A are electron transport chain complexes I/III, as well as mitochondrial pyruvate
carrier (UK5099) inhibitors. They can inhibit the effects of elesclomol on cuproptosis [6].

Previous studies have demonstrated that copper is a transition metal essential for all
living organisms and can act as a cofactor for several enzymes [7]. In vivo studies have
shown that copper can be toxic if it exceeds a certain threshold [8]. The liver plays an
important role in maintaining copper homeostasis. Further, many diseases like metabolic
disorders and cancers are associated with copper homeostasis [9]. Several studies have
shown a significant increase in copper levels in patients with cancer compared to healthy
controls [10–13]. Copper is a cofactor for several enzymes and a key regulator for several
signaling pathways associated with tumorigenesis, which influences cell proliferation and
promotes angiogenesis and metastasis [14,15]. It has been established that copper plays a
pivotal role in tumor progression; hence, several copper-based anticancer agents, including
copper chelators and copper ionophores, are currently being investigated [16,17]. Dithio-
carbamates are a subclass of metal-chelating compounds; they interact with metal ions
to create metal complexes and are used in cancer treatment to target the undecaprenyl
pyrophosphate synthase (UPP). Pyrrolidine dithiocarbamate is a member of the dithiocar-
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bamate family, which binds to copper to inhibit cancer-specific proteasomes and trigger
cell death in breast and prostate cancers [18].

Therefore, cuproptosis could be targeted for the treatment of patients with HCC.
Hence, exploring the heterogeneity of cuproptosis in HCC may aid in the prognosis and
development of therapeutic strategies for HCC. In Supplementary Figure S1, the workflow
of our study is depicted.

2. Materials and Methods
2.1. Data Acquisition and Processing

Data on the clinical information, somatic mutations, and RNA expression of 423 tissue
samples from 371 patients with HCC were obtained from The Cancer Genome Atlas
(TCGA)-LIHC on the GDC website (https://portal.gdc.cancer.gov/ in 1 March 2022).
TCGA-LIHC samples were used as the discovery cohort [19]. Further, clinical information
and transcriptomic profiles of patients with HCC were retrieved from databases like the
International Cancer Genome Consortium and Gene Expression Omnibus. The downloaded
online Uniform Resource Locators (URLs) were “ICGC; https://dcc.icgc.org/ in 1 March
2022” and “GEO; http://www.ncbi.nlm.nih.gov/geo/ in 1 March 2022”, respectively. The
information on the ICGC-LIRI-JP cohort was obtained from the ICGC database, and the
datasets GSE36376, GSE102079, GSE76427, and GSE62061 were retrieved from the GEO
database, which were used as the validation cohorts [20,21].

A previous study described ten genes associated with cuproptosis regulation, in-
cluding FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, and GLS (also known
as cuproptosis regulator genes), which were used for a subsequent analysis [5]. Further,
senescence-associated secretory phenotype (SASP)-associated genes were used for further
analysis, as described by Coppe et al. The genes significantly altered in the pre-senescent
and senescent states are listed in Supplementary Table S1 [22].

2.2. Identification of Cuproptosis Subtypes

We employed the ‘ConsensusClusterPlus’ R package to investigate the expression
patterns of cuproptosis regulator genes via unsupervised hierarchical clustering [23]. The
cuproptosis subtypes were identified using the following parameters: 50 reps, 0.8 pItem,
1 pFeature, and the Euclidean distance. Unsupervised hierarchical clustering was per-
formed for all factors closely associated with SASP. The parameters used were the same as
those used to obtain different senescent subtypes in the TCGA-LIHC cohort.

2.3. Co-Expression Network Construction

We constructed co-expression networks by employing the R package “Weighted Gene
Co-Expression Network Analysis” (WGCNA) [24,25]. We obtained the expression profiles
of 2207 differentially expressed genes between HCC and normal tissues from the Gene
Expression Profiling Interactive Analysis (GEPIA) database. The selection criteria included
|Log2FC| > 1 and FDR < 0.01. These genes were then used as input files for the WGCNA
analysis. To ensure the quality of the data used in our analysis, we calculated the median
absolute deviation (MAD) for all genes. Subsequently, we removed 50% of the genes with
low MAD values. We then employed the ‘goodSamplesGenes’ function in the WGCNA R
package to eliminate any potential outlier samples and genes. Initially, Pearson’s correlation
matrices for all pair-wise genes were established using the average linkage method. Then, a
power function was applied to construct a weighted adjacency matrix. The power function
used was defined by Aab = |Cab|ˆβ.

Cab = Pearson’s correlation between gene a and gene b; Aab = adjacency
between Gene a and Gene b

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
http://www.ncbi.nlm.nih.gov/geo/
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A soft-thresholding parameter β was used to improve the strong gene correlations
and penalize weak correlations. The adjacency matrix was transformed into the topological
overlap matrix (TOM). The WGCNA R package’s “pickSoftThreshold” algorithm was used
to select β = 10.

The power value of 10 was chosen for transforming the adjacency matrix into a topo-
logical overlap matrix (TOM). Subsequently, the genes were grouped into modules based
on similar expression patterns using an average linkage hierarchical clustering algorithm.
The grouping criteria included a minimum size of 30 genes per module and a sensitivity
level of 3 for deep splitting. Further, the modules were merged if the distance between the
modules was equal to or less than 0.25 (a minimum module merge cut height = 0.25), and
a total of four modules were finally obtained.

To assess the correlations between gene modules and clinical features, we employed
two methods. First, we calculated the module eigengene (ME) by deriving the first principal
component of each gene module, which reflects the overall expression patterns of all genes
within the module. The correlations between the MEs and clinical features were calculated
to identify the gene modules associated with the cuproptosis subtypes. In addition, a linear
regression analysis was conducted to examine the relationship between the gene expression
and clinical features. The gene significance (GS) was determined by calculating the p-value
(lgP) of each gene. To integrate the cuproptosis subtypes of interest into the co-expression
network, the module significance (MS) was calculated as the average of the GS for all genes
in each module.

2.4. Pathway and Process Enrichment Analyses

A web-based tool, Metascape, is utilized to estimate the similarities of membership
between enriched items and classify them into different clusters. It was used to perform
the pathway enrichment analysis [26]. The terms with p < 0.01, a minimum count of 3,
and an enrichment factor >1.5 were considered significantly enriched. The accumulative
hypergeometric distribution was used to calculate the p-value, and the q-value was cal-
culated using the Benjamini–Hochberg procedure. To perform hierarchical clustering, we
set the similarity metrics as kappa scores of 4 and identified clusters with a similarity >0.3.
Representative enriched terms were displayed for each cluster based on the ones with the
lowest p-values.

Twenty-two biological processes from previous studies and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database were downloaded for a subsequent analysis and are
listed in Supplementary Table S2 [27]. To estimate the enrichment scores of the biological
processes for all samples, we utilized Single-sample Gene Set Enrichment Analysis (GSEA).

2.5. Drug Sensitivity Prediction

The ‘pRRophetic’ R package was used to predict drug responses and perform ridge
regression to calculate the half-maximal inhibitory concentration (IC50) of drugs for each
patient [28]. Data obtained from the Genomics of Drug Sensitivity in Cancer (GDSC)
database were used for internal cross-validation, which was performed through 10-fold
cross-validation [29]. Proteins translated by the hub genes were the subject of this investiga-
tion, and their crystal structures were retrieved from the Research Collaboratory for Struc-
tural Bioinformatics Protein Data Bank (www.rcsb.org/pdb/home/home.do in 1 March
2022). Additionally, we obtained the 3D structures of the small molecule drugs from the
PubChem database, which can be accessed at https://www.ncbi.nlm.nih.gov/pccompound
in 1 March 2022. To perform molecular docking, Autodock Vina was utilized. The process
involved three steps: protein and ligand preparation, grid setup, and compound docking.
The identification of the best pose included the consideration of both the docking score and
the rationality of the molecular conformation.

www.rcsb.org/pdb/home/home.do
https://www.ncbi.nlm.nih.gov/pccompound
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2.6. Machine Learning for the Candidate Cuproptosis Subtype-Specific Gene Signature (CSGS)

The ‘glmnet’ and ‘randomForest’ R packages were used to perform the least absolute
shrinkage and selection operator COX (LASSO-COX) regression analysis. The randomFor-
est algorithm was used to screen for candidate CSGSs using the TCGA-LIHC cohort [30,31].
We utilized the LASSO-COX regression analysis to compress the insignificant coefficients
to zero. The penalized function was used for reducing the dimensions of the feature
space vector [32]. The final importance of the features and genes was determined using
randomForest algorithms by taking into account the average importance of each feature
in each iteration. The importance of features and genes greater than 5 were used for the
downstream analysis [33]. For further analysis, we used the results from the intersection of
the two methods.

2.7. Protein Expression of CSGSs Using the Human Protein Atlas (HPA) Database

The HPA database provides information on all proteins expressed by normal or
tumor tissues obtained by integrating data from various omics technologies. The protein
expression of CSGSs in normal and HCC tissues was retrieved from the HPA database [34].

2.8. Statistical Analyses

Statistical analyses were performed using R Studio software version 4.0.4 [35]. The
nonparametric Wilcoxon test and Kruskal–Wallis test were used to calculate the p-values.
The nonparametric Wilcoxon test was used for comparing the two groups, while the
Kruskal–Wallis test was used for multiple comparisons. The chi-square test was used to
examine the categorical variables. p < 0.05 was considered statistically significant. The
Kaplan–Meier (KM) survival analysis and the log-rank test were used to calculate the
overall survival (OS) of patients in different subgroups [36]. To predict the efficacy of
the prognosis model, a receiver operating characteristic (ROC) curve was utilized [37].
Variables were analyzed for correlations using Pearson’s correlation analysis [38].

3. Results
3.1. Diagnostic and Prognostic Role of Cuproptosis Regulator Genes in Patients with HCC

The gene expression data of 373 patients with HCC and 50 healthy controls retrieved
from TCGA were analyzed using the Kruskal–Wallis test. The results revealed an increase
in the expression of most cuproptosis regulator genes in patients with HCC compared to
healthy controls, except for FDX1 expression (Figure 1A).

The chromosomal location of the cuproptosis regulator genes and copy number vari-
ation (CNV) regions are shown in Figure 1B. In the TCGA-LIHC cohort, the CNV loss
was significantly high in genes like CDKN2A and MTF1, whereas the CNV gain was sig-
nificantly high in genes like LIAS and GLS (Figure 1C). A low mutation frequency was
observed in the cuproptosis regulator genes in the TCGA-LIHC cohort (4.4%; Figure 1D).

A principal component analysis (PCA) was performed on the expression profiles of
the ten cuproptosis regulator genes [39]. The gene expression profiles were reduced to a
two-dimensional space (PCA1 and PCA2) for visualization. The ROC curve was used to
determine the diagnostic values of PC1 and PC2 in distinguishing patients with HCC and
healthy controls. In the TCGA-LIHC cohort, the area under the ROC curve (AUC) value
for PC1 was 0.72 and PC2 was 0.92. Further, the diagnostic ability of the ten cuproptosis
regulator genes in distinguishing patients with HCC and healthy controls was validated on
the GSE36376 and GSE102079 datasets using PCA, and the results obtained were consistent
with the TCGA-LIHC cohort (Figure 2).
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ulator genes. (C) The frequency CNV of cuproptosis regulator genes in the TCGA-LIHC cohort. The 
column height represents the alteration frequency (red indicates copy number gain, whereas green 
indicates copy number loss). (D) Waterfall (oncoplot) plot of the cuproptosis regulator genes in the 
TCGA-LIHC cohort. 
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iation (CNV) regions are shown in Figure 1B. In the TCGA-LIHC cohort, the CNV loss 
was significantly high in genes like CDKN2A and MTF1, whereas the CNV gain was sig-
nificantly high in genes like LIAS and GLS (Figure 1C). A low mutation frequency was 
observed in the cuproptosis regulator genes in the TCGA-LIHC cohort (4.4%; Figure 1D). 
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Figure 1. (A) Relative expression of cuproptosis regulator genes in the tissues from patients with HCC
and healthy controls (red color represents tumor tissue, and green color represents normal tissue;
the p-values are shown above the boxplots). (B) Chromosomal locations of cuproptosis regulator
genes. (C) The frequency CNV of cuproptosis regulator genes in the TCGA-LIHC cohort. The
column height represents the alteration frequency (red indicates copy number gain, whereas green
indicates copy number loss). (D) Waterfall (oncoplot) plot of the cuproptosis regulator genes in the
TCGA-LIHC cohort.
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Figure 2. Principal component analysis (PCA) of expression patterns of cuproptosis regulator genes.
ROC curve was used to determine the diagnostic accuracy of PC1 and PC2 in patients from the TCGA
cohort and GSE36376 and GSE102079 datasets.

The overall survival (OS) data of the patients obtained from the TCGA database
showed that the longest follow-up duration was 10.07 years, and the average follow-
up duration was 2.39 years. A univariate regression analysis was performed to study
the prognostic value of cuproptosis regulator genes in predicting the OS of the patients
(Figure 3A). Of the ten cuproptosis regulator genes, six genes, including FDX1, LIPT1, DLAT,
PDHA1, MTF1, GLS, and CDKN2A, were risk factors for a HCC prognosis. Based on the
expression profiles of all ten cuproptosis regulator genes, six genes, including FDX1, LIPT1,
DLAT, PDHA1, MTF1, GLS, and CDKN2A, were identified using the LASSO regression
algorithm. These six genes were used to construct the prognosis model (Figure 3B). The
formula for the prognosis model was:

Cu-Riskscore = (0.0971 × CDKN2A exp.) + (0.2549 × DLAT exp.) + (−0.0414 × FDX1 exp.) + (0.0428 × GLS
exp.) + (−0.0667 × LIAS exp.) + (0.2257 × LIPT1 exp).
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Figure 3. (A) Univariate Cox regression analysis used to determine the prognostic ability of cuprop-
tosis regulator genes. (B) Riskscore prognosis model was constructed using a LASSO regression
analysis. (C) The patients in the TCGA-LIHC cohort were classified into the high-risk or low-risk
group based on the median risk score calculated by the prognosis model. The Kaplan–Meier sur-
vival curve shows that a high-risk score indicates a poor patient prognosis (HR= 1.83; log-rank test
p = 0.00065). (D) The ROC curve of the prognosis model predicts the 1-, 3-, 5-, and 7-year OS of
patients. (E) The Kaplan–Meier survival curves for patients with HCC in the independent validation
cohort (ICGC-LIRI-JP cohort).
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The risk score of each patient in the TCGA-LIHC cohort was calculated and ranked
using the formula. The patients were then classified into the high-risk or low-risk Cu-
Riskscore group based on the median value. According to the K–M survival analysis,
patients with a high Cu-Riskscore had a poor prognosis. Therefore, a high Cu-Riskscore
indicates the poor prognosis of patients with HCC (Log-rank p = 0.00065; Figure 3C). The
OS of patients in the high Cu-Riskscore group was significantly less compared to patients in
the low Cu-Riskscore group (median OS: 3.40 versus 6.60 years). The ROC curve for 1-year
OS indicated that the prognosis model constructed using six genes had an outstanding
performance in predicting the OS, with an AUC value of 0.75 (Figure 3D).

The prognosis model was further validated on the ICGC-LIRI-JP cohort. The data
retrieved from the ICGC revealed that the longest follow-up was conducted for 5.92 years,
and the average follow-up duration was 2.18 years. In the ICGC-LIRI-JP cohort, the
prognosis of patients with a high Cu-Riskscore was poor (HR = 2.14, 95% CI = 1.14–4.02;
Figure 3E). Hence, the Cu-Riskscore could be used to predict the prognosis of patients.

To facilitate user-friendly graphical interfaces, a nomogram was constructed with
the Cu-Riskscore and tumor stage (Supplementary Figure S2A). The calibration curves
revealed the accuracy of the nomogram in predicting the 1-, 3-, and 5-year OS of patients
with HCC in the TCGA-LIHC (Supplementary Figure S2B).

3.2. Cuproptosis Subtypes in HCC

Using the ‘ConsensusClusterPlus’ R package, we conducted the unsupervised cluster-
ing of patients with HCC based on the expression of ten cuproptosis regulator genes. As a
result, we classified them into three different subtypes, namely Cu-cluster A, Cu-cluster B,
and Cu-cluster C (Figure 4A). Significant differences in the expression of the ten cuproptosis
regulator genes were observed in the patients in the three clusters (Figure 4B).

Furthermore, the K–M survival analysis was performed to analyze the OS of patients
with HCC. The K–M survival analysis revealed that the median OS of patients in Cu-cluster
B was 3.05 years, which was significantly lower compared to the median OS of patients
in Cu-cluster A and Cu-cluster C (log-rank test p = 0.00065; Figure 4C). The heatmap of
the three cuproptosis clusters based on the expression pattern of ten cuproptosis regulator
genes revealed distinct expression patterns of genes in the patients in the three clusters
(Figure 4B). The expression of most cuproptosis regulator genes was low in patients in
Cu-cluster C (Supplementary Figure S3A). A significant difference in the tumor stage and T
stage among patients in the three clusters was observed based on the chi-square test results
(Supplementary Figure S3B,C). The patients in Cu-cluster B exhibited high expression
levels of GLS and CDKN2A, which was associated with a poor prognosis. Notably, GLS
and CDKN2A were expressed at high and low levels, respectively, in Cu-clusters A and
C. Therefore, we next assessed if the difference in GLS and CDKN2A expression could
contribute to the difference in patient prognosis. The patients were divided based on the
median GLS and CDKN2A expression levels into GLS (low) CDKN2A (low), GLS (low)
CDKN2A (high), GLS (high) CDKN2A (low), and GLS (high) CDKN2A (high) groups. The
results revealed that patients with high GLS and CDKN2A expression had poor prognoses
(Supplementary Figure S3D,E).

The validation cohort (ICGC-LIRI-JP and GSE76427) underwent an unsupervised
clustering analysis using the same workflow. This resulted in the classification of patients
in the validation cohort into three clusters, as shown in Supplementary Figure S3F,G.
The data obtained from the GSE76427 dataset revealed that follow-up was conducted for
7.76 years, and the average follow-up duration was 1.82 years, a significant difference in
the prognosis of patients in the three clusters (Supplementary Figure S3H,I).
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In order to comprehend the basis of the variations in patient prognosis within the
TCGA-LIHC cohort, we conducted a comparison of the enrichment scores for 22 biolog-
ical processes across the three cuproptosis clusters among the patients (as illustrated in
Figure 4D). The biological processes associated with the DNA damage repair function had
the highest median enrichment scores in the patients in Cu-cluster B (Figure 4D). Moreover,
a significant increase in the enrichment scores of processes like epithelial–mesenchymal
transition (EMT) and angiogenesis was observed in patients in Cu-cluster A. The enrich-
ment score for the ECM–receptor interaction was lowest for the patients in Cu-cluster C.

We performed unsupervised hierarchical clustering on 66 SASP regulator genes. The
results revealed that the patients in the TCGA-LIHC cohort were classified into three senes-
cent subtypes (SASP-clusters): intermediate, suppressive, and stimulatory (Figure 5A,B).
Figure 5B illustrates the pattern of expression for SASP regulator genes in patients belong-
ing to the TCGA-LIHC cohort. A significant difference in the prognosis of patients was
observed between the three SASP-clusters (p = 0.0004; Figure 5C). A significantly higher
proportion (56%) of the intermediate SASP subtype was observed in the patients belonging
to Cu-cluster A, as determined by the chi-square test (p < 0.0001). Moreover, the patients
belonging to Cu-cluster B showed a significantly higher proportion of the stimulatory SASP
subtype (determined by the chi-square test; p < 0.0001). In patients belonging to Cu-cluster
C, a high proportion of the suppressive subtype was observed, along with a significantly
low proportion of the stimulatory SASP subtype (as illustrated in Figure 5D and determined
by the chi-square test; p < 0.0001). The expression of four senescence-associated genes was
compared among the patients in the three Cu clusters for further validation. The results
revealed a significant increase in the expression of four senescence-associated genes in the
patients in Cu-cluster B (Figure 5E).

A significant difference in enrichment scores of the biological processes associated with
DNA damage repair function was observed among patients in the three cuproptosis clusters.
Hence, the mutation frequency of the top 15 genes in different cuproptosis clusters was
analyzed. The waterfall plot revealed the prominent activation of TP53 mutation in patients
in Cu-cluster B (Supplementary Figure S4A). Further, the homologous recombination
deficiency (HRD) and loss of heterozygosity (LOH) scores of all patients in the TCGA-
LIHC cohort were obtained from the study by Vésteinn et al. (Supplementary Table S3).
The patients in Cu-cluster B had significantly high HRD and LOH scores. However, no
significant differences in the HRD and LOH scores were observed in the patients in Cu-
clusters A and C (Supplementary Figure S4B,C). In addition, we compared the expression
patterns of 16 HRD-related genes across the patients in all Cu-clusters. Consistent with
our hypothesis, the patients in Cu-cluster B showed higher expression levels of most HRD-
related genes, as shown in Supplementary Figure S4B. Furthermore, the expression levels
of the HRD-related genes were observed to be higher in patients with HCC in comparison
to healthy controls, with the exception of FANCC.
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of the TCGA-LIHC cohort for k = 3. (B) The heatmap shows the expression levels of SASP regulator
genes among the three SASP subtypes. (C) K–M survival analysis shows the OS of patients from the
TCGA-LIHC cohort in different SASP subtypes. (D) The proportion of different SASP subtypes in
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relative expression of four senescence-associated genes in patients in the three cuproptosis subtypes,
and the p-values are above the boxplots.
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3.3. Therapeutic Potential of Cuproptosis Subtypes in HCC

Anticancer drugs, including Sorafenib, Lapatinib, Erlotinib, Axitinib, and Gefitinib,
have been approved by the Food and Drug Administration to treat patients with HCC.
Rucaparib (AG.014699) is a PARP inhibitor, and a correlation was observed between HRD
and a sensitivity to PARP inhibitors. Rebemadlin (Nutlin.3a) can inhibit the MDM2–p53
interaction, thereby inducing p53-mediated apoptosis. Serdemetan (JNJ.26854165) is an E3
ligase HDM2 inhibitor and can promote the apoptosis of p53 wild-type cells.

Therefore, these eight anticancer drugs were selected, as the patients in the different
cuproptosis clusters could respond differently to these drugs. The IC50 value was calculated
using the ‘pRRophetic’ R package for the patients in the TCGA-LIHC cohort. The results
revealed that the patients in Cu-cluster B were less sensitive to all eight anticancer drugs
compared to the patients in Cu-clusters A and C (p < 0.05; Figure 6).
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Figure 6. The “pRRophetic” R package was used to calculate the IC50 values of anticancer drugs like
Sorafenib, Lapatinib, Erlotinib, Axitinib, Gefitinib, Rucaparib (AG.014699), Rebemadlin (Nutlin.3a),
and Serdemetan (JNJ.26854165) in patients in Cu-cluster B and Cu-clusters A and C.

3.4. Identification of Candidate CSGSs using WGCNA and Machine Learning Techniques

As shown previously, the patients in Cu-cluster B were less sensitive to chemotherapy.
The prognosis of the patients in Cu-cluster B was poor and had genomic instability. Hence,
the WGCNA and machine learning techniques were used to explore the candidate CSGS.

Using the “WGCNA” R package and analyzing the expression patterns of 2207 genes
in 371 HCC patients, we established the co-expression module. The independence and
average connectivity degree were significantly affected by the power value, which was
set to soft power 10 to construct a weighted adjacency matrix (Figure 7A,B). A total of
975 genes, including those in the grey module in the TCGA-LIHC cohort, were clustered
into one of four co-expression modules, as demonstrated in the cluster analysis of the
HCC patient samples (Figure 7C). The co-expression modules were visually distinguished
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by different colors in Figure 7D, and the genes clustered in each module are provided in
Supplementary Table S4.
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index for various soft threshold powers (β). (B) Analysis of the mean connectivity for various soft
threshold powers. (C) Clustering dendrogram of 371 patients. Identification of modules closely
associated with the cuproptosis subtypes. (D) Dendrogram of all differentially expressed genes
clustered based on the measurement of dissimilarity (1-TOM). The color band shows the results
obtained from the automatic single-block analysis. (E) Heatmap of the correlation between the module
eigengenes and cuproptosis cluster of patients with HCC. A scatterplot of the gene significance (GS)
for Cu-cluster B versus module membership (MM) in the turquoise module (F), brown module (G),
blue module (H), and grey module (I).
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The correlation between the Cu-cluster B and turquoise modules was found to be
significant (correlation coefficient = 0.55, p < 0.0001) according to the module–trait correla-
tion heatmap shown in Figure 7E. The scatterplot of GS versus module membership (MM)
for turquoise is illustrated in Figure 7F. The turquoise module exhibited a high correla-
tion coefficient and smaller p-value in the correlation analysis (Figure 7G–I). Therefore,
the turquoise module was identified as the characteristic module for Cu-cluster B, which
consisted of 217 unique genes. A total of 102 genes in the turquoise module, meeting
the criteria of |MM| > 0.8 and |GS| > 0.1, were screened as hub genes and are listed in
Supplementary Table S5. Metascape was employed to perform a pathway enrichment
analysis on the 102 hub genes, and the top 20 clusters with enriched representative terms
(one term/cluster) are presented in detail in Supplementary Table S6 and Supplementary
Figure S5A,B.

To screen for potential biomarkers between the patients in Cu-cluster B and Cu-clusters
A and C of the TCGA-LIHC cohort, we employed two algorithms. After performing a
LASSO regression analysis on the 102 genes from the turquoise module, we obtained
a reduced set of 34 genes. These 34 genes were identified as diagnostic biomarkers, as
shown in Figure 8A. The randomForest algorithm was used to identify four genes from
102 hub genes in the turquoise module (Figure 8A). Finally, the three overlapping genes,
CDCA8, MCM6, and NCAPG2, identified using the two algorithms, were considered
candidate CSGSs. The GEPIA database was used to study the expression of the CSGSs.
The results revealed an increase in the expression of the CSGSs in tissues of patients with
HCC compared to normal tissues. Further, the prognosis of patients with high CSGS
expression was poor. Moreover, an increase in the expression of CSGS was observed in
patients with advanced stage HCC. The expression patterns of the CDCA8, MCM6, and
NCAPG2 proteins were retrieved from the HPA database. The immunohistochemistry
results revealed that the expression of CDCA8, MCM6, and NCAPG2 was low in normal
liver tissues but high in HCC tissues (Supplementary Figure S6A–C).
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Figure 8. (A) Flow chart of the screening procedure. (B) Differences in expression of the CSGSs
(CDCA8, MCM6, and NCAPG2) in patients in different cuproptosis clusters (p-values were calculated
using the Kruskal–Wallis test). (C) Pearson’s correlation analysis was used to evaluate the correlation
between CSGSs and cuproptosis regulator genes.
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The Kruskal–Wallis test results revealed that the expression of CDCA8, MCM6, and
NCAPG2 was highest in the patients in Cu-cluster B (Figure 8B). Pearson’s correlation
analysis revealed a moderate correlation between the CSGSs and cuproptosis regulators
(Figure 8C). The diagnostic performance of CDCA8, MCM6, and NCAPG2 for discrimi-
nating patients in Cu-cluster B from the TCGA-LIHC cohort is demonstrated via a ROC
analysis, yielding satisfactory results (Figure 9A). Moreover, a nomogram based on the
aforementioned biomarkers is developed as a clinical tool to facilitate the identification of
patients in Cu-cluster B (Figure 9B).
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diagnosis of patients in Cu-cluster B from the TCGA-LIHC cohort. (B) Construction of a nomogram
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Furthermore, CSGS expression could predict the patient’s sensitivity to anticancer
drugs like Lapatinib, Erlotinib, and Axitinib (Supplementary Figure S7A–C). Based on the
median expression values of CDCA8, MCM6, and NCAPG2, the patients in the TCGA-LIHC
cohort were divided into two groups. The IC50 of Lapatinib, Erlotinib, and Axitinib was
low in patients with low CDCA8, MCM6, and NCAPG2 expression. This indicates that
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CDCA8, MCM6, and NCAPG2 could be used as novel indicators of a patient’s response
to drugs like Lapatinib, Erlotinib, and Axitinib. These results were further validated
by analyzing the Erlotinib resistance in patients from the GSE62061 dataset. The results
revealed that NCAPG2 expression could predict Erlotinib sensitivity in patients with HCC
(Supplementary Figure S8A,B). Molecular docking was performed using Autodock Vina
to check if Erlotinib could directly inhibit NCAPG2 expression. The results revealed that
Erlotinib had a good binding affinity for NCAPG2, with a docking score of −7.2 kcal/mol
(Supplementary Figure S8C,D). Erlotinib is a small-molecule EGFR-specific tyrosine kinase
inhibitor. The 1-cCick Docking database (https://mcule.com/apps/1-click-docking/in
1 March 2022) revealed a docking score of –7.4 kcal/mol observed between Erlotinib
and EGFR.

4. Discussion

Cuproptosis is a novel mechanism of regulated cell death; however, the roles of
cuproptosis in HCC have not been well characterized [5]. In this study, we used various
publicly available databases and bioinformatic tools to identify, as well as characterize,
multiple cuproptosis regulator genes. We explored the distinct alteration/mutation patterns
in cuproptosis regulator genes in patients with HCC. The proposed approach could facilitate
the comprehension of the etiology and advancement of HCC, as well as contribute to the
development of pioneering therapeutic and prognostic tactics for patients with HCC.

A significant difference in the expression patterns of cuproptosis regulator genes was
observed between tissues of healthy controls and patients with HCC; thus, the overall char-
acterization of cuproptosis regulator genes could serve as a potential diagnostic biomarker
for patients with HCC (Figure 2). In tissues of patients with HCC, the expression of most
cuproptosis regulator genes was found to be upregulated. In contrast, the expression of
FDX1 was found to be upregulated in healthy controls. Previous studies have shown that
FDX1 is a critical initiator of cuproptosis; however, the expression of FDX1 is downregu-
lated in various solid tumors [40,41]. Further, the CNV in different cuproptosis regulator
genes was observed, which could be the primary cause for perturbations in the expression
patterns of some cuproptosis regulator genes such as FDX1, LIAS, and GLS. Therefore,
alterations in the CNV of cuproptosis regulator genes could be a potential underlying cause
of cuproptosis heterogeneity in HCC [42].

We performed a further analysis to investigate if cuproptosis regulator genes could be
used as prognostic biomarkers for HCC. Previous studies mostly concentrated on examin-
ing single regulator genes, neglecting the comprehensive characterization of the collective
involvement of multiple cuproptosis regulator genes in HCC. Goh et al. [43] demonstrated
the role of DLAT in cell proliferation, carbohydrate metabolism, and reprogramming in gas-
tric cancers. A study by Sievers et al. [44] showed that the homozygous deletion of CDKN2
could be used as a prognostic biomarker for meningiomas and an independent molecular
biomarker for grading tumors. Ji et al. [45] demonstrated that MTF1 is an oncogene and
plays a role in the metastasis of ovarian cancers by promoting EMT. In this study, we per-
formed a comprehensive analysis of the integrated roles of multiple cuproptosis regulator
genes, unlike previous studies. Our results indicated that most cuproptosis regulator genes
were the risk factors for the OS of patients with HCC, consistent with previous studies [46].
The LASSO regression analysis was used to create a novel prognosis model based on the
Cu-Riskscore, and a nomogram was constructed based on both the Cu-Riskscore and tumor
stage. The prognosis model constructed using the LASSO regression analysis was robust,
and this is a widely recognized approach. In addition, fewer genes (n = 6) were included
in our final prognosis model compared to previous studies (Supplementary Table S7). In
addition, the prognostic model exhibited good performance in predicting the 1-year overall
survival, as evidenced by an area under the curve (AUC) of 0.75. The prognosis model was
constructed using only a few genes, which makes it easier to use in clinical settings.

Following the analysis of cuproptosis regulator gene expression in patients with HCC,
we classified patients into three distinct molecular clusters (Cu-cluster A, Cu-cluster B, and
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Cu-cluster C) based on the integrated role and expression pattern of various cuproptosis
regulators. In addition, patients belonging to Cu-cluster B exhibited the most malignant
form of HCC and had a poor prognosis. Interestingly, three Cu-clusters enriched 22 signal-
ing pathways associated with tumorigenesis and cancer progression. Further, the genes in
Cu-cluster B significantly enriched pathways related to DNA damage repair. This indicates
higher genomic instability in patients in Cu-cluster B. Various studies have shown that
genomic instability plays an important role in the development and progression of cancers.
Further, the prognosis of patients with high genomic instability is also poor [47]. Thus,
genomic instability could be an underlying factor associated with the poor prognosis of pa-
tients in Cu-cluster B. To further validate our results, the mutation frequency of the 15 most
frequently mutated genes in HCC was analyzed in the patients in the three Cu-clusters.
Mutations in TP53 were detected in over 50% of patients in all the Cu-clusters. A signif-
icantly higher mutation in TP53 was observed in the patients in Cu-cluster B compared
to the patients in Cu-clusters A and C. TP53 is a cell cycle checkpoint gene that maintains
genomic stability by inducing cell cycle arrest or the apoptosis of abnormal cells or cells
harboring DNA damage that occurs during chromosome segregation [48–50]. Furthermore,
the HRD and LOH scores were high in patients in Cu-cluster B. Hence, the HRD and LOH
scores could be used as the scoring system to quantify the indices of genomic stability [51].
Additionally, the expression of all the HRD-related genes was high in the patients in Cu-
cluster B. Together, these results further validated that the high genomic instability was one
of the important features of the patients in Cu-cluster B. A recent in vitro study suggested
that the levels of oxidative stress and DNA damage were induced and the DNA damage
repair mechanism was impaired in the human neuroblastoma SH-SY5Y cell line after being
incubated in a copper-containing solution (350 µM CuSO4) for 24 h [52]. The research of
Hannah et al. revealed that the absence of trace elements, including copper, in the diet for
9 weeks led to a significant increase in inflammatory mediators in both the serum and liver,
along with hepatic genomic instability [53]. These findings suggest that copper homeostasis
plays a critical role in DNA damage and genome stability, highlighting the need for the
further exploration of this mechanism.

Aging causes decay of the nuclear genome [54]. Previous studies have demonstrated
a high mutation burden in older individuals, which decreases tissue function and increases
susceptibility to various age-related diseases [55]. Therefore, additional studies are required
to explore if the genomic instability in the patients in Cu-cluster B was caused due to the
presence of a high level of the senescence microenvironment. Senescent cells express and
secrete a complex mixture of extracellular proteins and soluble factors, which is called
SASP [56]. We evaluated the expression patterns of senescence-associated genes to study
the senescence microenvironment. As expected, a high expression of senescence-associated
genes was observed in the patients in Cu-cluster B. Previous studies have indicated that the
accumulation of copper in human fibroblasts promotes the development of senescence. In
cases of copper-induced premature senescence, ROS-induced p38MAPK activation leads to
an imbalance between DNA damage and repair. p38MAPK is a potent inducer of replicative
senescence in human proliferating cell types and is partly responsible for encoding genes
related to antioxidant defense, such as Hsp70 and HO-1 [57]. Resveratrol, an anti-HCC
drug, can attenuate CuSO4-induced cellular senescence by upregulating autophagy, main-
taining protein homeostasis, and enhancing the cellular stress resistance [58]. Therefore,
investigating the correlation between copper homeostasis and the senescence microenvi-
ronment in HCC can help identify potential therapeutic targets. CDKN2A is a cuproptosis
regulator gene and can establish replicative senescence by activating the CDKN2A(p16)/RB
signaling axis [59]. A previous study showed an increase in DLAT expression in B cells
in older patients with chronic lymphocytic leukemia [60]. Further, a study by Yingying
et al. suggested that an increased expression of GLS could enhance the production of the
nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby reducing
oxidative stress. Notably, oxidative stress is an important cause of genomic instability in
cells, which is characteristic of most cancer cells [61]. Together, these results indicated
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that both individual cuproptosis regulator genes and comprehensive characteristics of
the cuproptosis subtypes were closely associated with senescence and genomic stability.
Moreover, our prognosis model constructed using cuproptosis was found to be superior to
most genome instability and cellular senescence-based models in predicting the one-year
survival in HCC patients through a literature review. Therefore, we next investigated if
these characteristics of Cu-cluster B could aid in identifying new therapeutic strategies
for the treatment of patients with HCC. Therefore, the effects of anticancer drugs like a
PARP inhibitor (Rucaparib), Rebemadlin, and Serdemetan that act primarily on p53 were
investigated [62,63]. The patients in Cu-cluster B were less sensitive to anticancer drugs like
Rucaparib, Rebemadlin, and Serdemetan, consistent with the characteristics of Cu-cluster
B, i.e., a high HRD expression and TP53 mutations. Moreover, the patients in Cu-cluster
B were resistant to conventional chemotherapeutic agents like Sorafenib, Lapatinib, Er-
lotinib, Axitinib, and Gefitinib, which could be an underlying factor associated with a poor
prognosis of the patients in Cu-cluster B.

The patients with HCC in Cu-cluster B have poor prognoses and are chemoresistant;
hence, identifying biomarkers to diagnose these patients has clinical significance [64].
WGCNA and the randomForest algorithm were used to identify the CSGSs (CDCA8, MCM6,
and NCAPG2) from Cu-cluster B. These CSGSs, could be used for diagnosis, prognosis, and
to predict chemotherapeutic responses in patients with HCC. In addition, the expression
pattern of NCAPG2 in patients from the GSE62061 dataset (an independent validation
cohort) could predict Erlotinib sensitivity in patients with HCC. These results were further
validated by molecular docking. Erlotinib is a small-molecule EGFR-specific tyrosine kinase
inhibitor. The binding affinity analysis showed that Erlotinib had a favorable binding
affinity (docking score of −7.2 kcal/mol) for NCAPG2, comparable to that of Erlotinib and
EGFR. NCAPG2, as a subunit of the condensin II complex, is responsible for regulating
microtubule kinetochore attachment during mitosis and ensuring proper chromosome
segregation, indicating its critical role in cell division [65]. Jieun et al. used the CRISPR-
Cas9 sgRNA library to create knockout mutations in Erlotinib-resistant human tumor cells
(NCI-H820) to screen for genes associated with erlotinib sensitivity. Studies have shown
that the chemical inhibitors combined with Erlotinib used for treating in vitro and in vivo
models of patient-derived xenografts revealed that the treatment could induce cell death
by targeting the cell cycle pathway [66]. Therefore, the cell cycle pathway could be targeted
to overcome Erlotinib resistance in cancers. Further, targeting the cell cycle could be an
underlying mechanism by which NCAPG2 alters Erlotinib resistance in patients with HCC.
However, further studies are required to understand the role of NCAPG2 in modulating
Erlotinib resistance in patients with HCC. Together, these results could aid in designing
personalized therapeutic strategies for patients with HCC in clinical settings.

Novel strategies that could aid in developing personalized treatment regimens for
patients with HCC were illuminated by our study. Nonetheless, there were a few limitations
to our study. We obtained data from publicly available databases and performed a bioinfor-
matic analysis. Experimental and clinical validation are necessary to further support the
findings of our study. However, our study was limited by its retrospective design and lack
of prospective data. However, it is important to note that multiple independent cohorts
were used to perform the bioinformatic analysis, which adds credibility to our data. Hence,
additional studies and clinical trials are necessary to validate our results and will aid in
elucidating the underlying molecular mechanisms of cuproptosis in HCC.

5. Conclusions

In this study, we performed unsupervised clustering on cuproptosis regulator genes
to classify patients with HCC into three cuproptosis clusters (Cu-clusters A, B, and C) char-
acterized by different senescence microenvironments, genomic instability, and prognosis.
Moreover, we identified three biomarker genes (CDCA8, MCM6, and NCAPG2) in patients
with the highest genomic instability and poor prognosis grouped into a cuproptosis cluster
that could be used to design treatment strategies for patients with HCC. The patients in
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Cu-cluster B were considered to be relatively insensitive to chemotherapy. Additionally,
this study suggests that NCAPG2 may be a potential novel target for the anti-HCC effects
of Erlotinib. Our study lays a foundation for the role of cuproptosis in the development
and progression of cancer. Furthermore, our results could aid in developing personalized
strategies for the management and treatment of patients with HCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12185767/s1, Figure S1: Flow diagram of different phases
of the study; Figure S2: The nomogram predicts the probability of OS in patients with HCC. (A)
Nomogram was constructed based on the stage and Cu-Riskscore to estimate the 1-, 3-, and 5-year
OS of patients from the TCGA-LIHC cohort. The calibration curves show the consistency between
the predicted and observed 1-, 3-, and 5-year OS at different time points in the TCGA-LIHC cohort.
The estimated survivals are shown on the X-axis, and the actual outcomes are shown on the Y-axis.
The gray 45-degree dotted line represents the ideal calibration mode; Figure S3: (A) Differences
in expression of the cuproptosis regulator genes in patients in different cuproptosis clusters. The
asterisks represent the statistical p-values (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001, Kruskal–
Wallis test). (B) The proportions of different cuproptosis subtypes in patients with early and advanced
stage HCC in the TCGA-LIHC cohort. (C) The proportions of different cuproptosis subtypes in
different T stages in the TCGA-LIHC cohort. The p-values were calculated by the chi-square test.
Based on the median expression of GLS and CDKN2A, the patients were divided into GLS (low)
CDKN2A (low), GLS (low) CDKN2A (high), GLS (high) CDKN2A (low), and GLS (high) CDKN2A
(high) groups. (D) Kaplan–Meier survival curves of patients in a different group from the TCGA-
LIHC cohort. (E) The prognosis of patients in the GLS (high) CDKN2A (high) group was poor
(HR = 2.35; log-rank p < 0.0001). An unsupervised clustering analysis was performed to identify
different cuproptosis subtypes in patients from the ICGC-LIRI-JP (F) and GSE76427 (G) cohorts.
Kaplan–Meier survival curves of patients in different cuproptosis clusters from the ICGC-LIRI-JP (H)
and GSE76427 (I) cohorts. Figure S4: (A) The frequency of mutations in the top 15 genes in different
cuproptosis clusters. HRD scores (B) and LOH scores (C) of different cuproptosis clusters. (D) Boxplot
for the relative expression of HRD-related genes among patients in the three cuproptosis clusters, and
the p-values are above the boxplots. Figure S5: Metascape was used to create a network of the terms
enriched by hub genes in the turquoise module. Colored by cluster ID (A) and p-values (B). Figure S6:
The expression of the CDCA8, MCM6, and NCAPG2 genes in HCC and normal tissues retrieved from
the GEPIA database (red color represents tumor tissue, and black color represents normal tissue; a red
asterisk represents p ≤ 0.01). CDCA8, MCM6, and NCAPG2 expressions were compared in patients
with HCC at different tumor stages. Kaplan–Meier survival curves (OS) for the expression of CDCA8,
MCM6, and NCAPG2 (p-values were calculated using the log-rank test). Immunohistochemistry
shows the expression patterns of the CDCA8, MCM6, and NCAPG2 proteins retrieved from the
HPA database. Figure S7: Differences in the IC50 values of Sorafenib, Lapatinib, Erlotinib, Axitinib,
Gefitinib, Rucaparib (AG.014699), Rebemadlin (Nutlin.3a), and Serdemetan (JNJ.26854165) in patients
in the high and low CDCA8, MCM6, and NCAPG2 expression groups were calculated using the
“pRRophetic” R package. Figure S8: (A) ROC curve shows the relative expression of CDCA8, MCM6,
and NCAPG2 in predicting Erlotinib resistance in patients from GSE62061. (B) The proportions of
Erlotinib-sensitive and -resistant patients in the high and low NCAPG2 expression groups. Molecular
docking results and the best pose of Erlotinib that fits the NCAPG2 protein. The docking results were
visualized in both 3D (C) and 2D poses (D). Table S1: The senescent-associated secretory phenotype
or the senescence messaging secretome secreted by senescent cells. Table S2: Gene set membership of
22 biological processes obtained from previous studies and the KEGG database. Table S3: The HRD
and LOH scores of all patients in the TCGA-LIHC cohort were obtained from the study of Vésteinn
et al. (doi:10.1016/j.immuni.2018.03.023). Table S4: The list of genes clustered in different modules.
Table S5: The genes with |MM| > 0.8 and |GS| > 0.1 were selected as the hub genes in the turquoise
module. Table S6: The results of the functional enrichment analysis of the hub genes in the turquoise
module. Table S7: Prognostic models constructed based on cuproptosis, genomic instability, and
senescence in the previous literature. Reference [67] is cited in the supplementary materials.
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