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Abstract: Acute kidney injury (AKI) affects up to 50% of cardiac surgery patients. The definition of
AKI is based on changes in serum creatinine relative to a baseline measurement or a decrease in urine
output. These monitoring methods lead to a delayed diagnosis. Monitoring the partial pressure of
oxygen in urine (PuO2) may provide a method to assess the patient’s AKI risk status dynamically.
This study aimed to assess the predictive capability of two machine learning algorithms for AKI
in cardiac surgery patients. One algorithm incorporated a feature derived from PuO2 monitoring,
while the other algorithm solely relied on preoperative risk factors. The hypothesis was that the
model incorporating PuO2 information would exhibit a higher area under the receiver operator
characteristic curve (AUROC). An automated forward variable selection method was used to identify
the best preoperative features. The AUROC for individual features derived from the PuO2 monitor
was used to pick the single best PuO2-based feature. The AUROC for the preoperative plus PuO2

model vs. the preoperative-only model was 0.78 vs. 0.66 (p-value < 0.01). In summary, a model that
includes an intraoperative PuO2 feature better predicts AKI than one that only includes preoperative
patient data.

Keywords: urinary oxygenation; acute kidney injury; machine learning; cardiac surgery

1. Introduction

The early detection and diagnosis of acute kidney injury (AKI) remain an unsolved
problem in cardiac surgery. Up to 50% of cardiac surgery patients develop post-operative
AKI, which leads to increased mortality, intensive care unit length of stay, and costs [1,2].
The Kidney Disease Improving Global Outcomes (KDIGO) criteria helped standardize the
definition of AKI across clinical care and research but, like the previous definitions, rely
on changes in serum creatinine and urine output [3]. These markers are meant to reflect
kidney function and may not be indicators of early renal cell damage. For example, renal
function, measured by glomerular filtration rate (GFR), must drop by 50% before there
is a noticeable change in serum creatinine [4]. Also, serum creatinine does not rise until
24–72 h after injury [5,6]. The urine output criteria rely on detecting decreased urine output
over a minimum of 6 h. In addition, the optimal urine output and duration thresholds for
defining AKI are the subject of debate [7,8]. While a recent study showed that including
the urine output criteria in the definition leads to an earlier diagnosis, both the serum
creatinine and urine output tracking methods cause a significant delay in AKI diagnosis [9].
This is particularly problematic because as others have indicated, the development of AKI
following cardiac surgery is likely related to injury that occurs intraoperatively [10]. This
delayed diagnosis precludes injury prevention.
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Currently, there are no available clinically validated bedside monitors to assess AKI
risk. Clinical tools primarily rely on prediction models to detect patients at risk for AKI
before surgery. These risk scores are predominantly based on preoperative risk factors. For
example, the Cleveland Clinic Score, which is the most widely studied prediction model, is
based on risk factors, such as elevated preoperative creatinine, insulin-dependent diabetes
status, and surgery type, among others [11]. Several studies have demonstrated that the
Cleveland Clinic Score performs best for predicting post-operative AKI compared to other
existing prediction scores [12]. However, one of the limitations of the Cleveland Clinic
Score and other widely available risk prediction models is that they were primarily created
to detect cases of severe AKI, which require dialysis. In addition, many of the models were
based on small cohort sizes and have not been externally validated [13,14]. In addition,
these models are static and do not consider intraoperative hemodynamic changes and
events. Thus, there is a need for novel methods to dynamically assess the AKI risk status of
patients during cardiac surgery.

As an alternative to risk prediction models, research has emerged to support the use of
partial pressure of oxygen in urine (PuO2) for the early detection of AKI. Despite the com-
plex etiology of AKI, renal hypoxia is thought to be a common pathway to injury [15]. While
there are various pathophysiological processes that lead to injury, such as vasoconstriction
or vasodilation, hypovolemia or direct tubular toxicity related to nephrotoxic agents, renal
hypoxia is a driver of the disease [16]. It is not currently clinically feasible to continuously
measure renal tissue oxygenation. However, others hypothesized that PuO2 reflects renal
tissue oxygenation. Recent work has demonstrated that an optical fluorescence sensor can
be used to reliably measure PuO2 and that there is a statistically significant correlation
between renal tissue oxygenation and bladder PuO2 [16]. In addition, several studies have
shown that PuO2 in the bladder can be an early indicator of AKI risk in the setting of cardiac
surgery [17]. Similarly, we recently developed a noninvasive PuO2 monitor that connects
to the outlet of the urinary catheter and showed that patients who develop AKI have lower
noninvasive PuO2 after the termination of cardiopulmonary bypass support [18]. The next
step towards the clinical use of PuO2 monitoring is to develop a method or algorithm to
interpret PuO2 in an actionable way. One way to do this is to combine intraoperative PuO2
monitoring and preoperative patient information into a single algorithm to monitor the
AKI risk status of the patient dynamically. This study aimed to understand how well a ma-
chine learning algorithm that includes features derived from real-time noninvasive PuO2
monitoring and preoperative patient data could predict post-operative cardiac surgery
AKI compared to an algorithm based solely on preoperative risk factors. We hypothesized
that an algorithm that included intraoperative PuO2 information would have a higher
area under the receiver operator characteristic curve (AUROC) than a model trained with
preoperatively available patient data alone.

2. Materials and Methods

We completed a secondary analysis of previously collected clinical data to determine
if the algorithm that included information related to intraoperative PuO2 monitoring
could predict the subsequent development of AKI better than a model that only included
preoperative data. The data collection and processing methods have been previously
reported [19–21]. In summary, after IRB approval, an observational study of 100 cardiac
surgery patients who were at high risk for developing AKI based on the Cleveland Risk
Score was conducted at the University of Utah Health Sciences (Salt Lake City, UT, USA).
Following informed consent, one end of a sterile noninvasive PuO2 monitor was connected
to the outlet of the urinary catheter, while the other end was connected to the tubing of
the urinary collection bag. The device included a thermal-based flow sensor to measure
urine flow rate and a temperature probe to correct for the confounding effect of changes in
temperature on the raw optical signal used to measure PuO2. Each sensor was sampled at
1 Hz, and the device was removed 24 h after the end of cardiopulmonary bypass (CPB).
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The PuO2 monitor and data collection box are shown in Figure 1. Patient demographic
information was collected during enrollment and from patient records.
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data. The disposable monitor connects between the catheter and collection bag.

Several algorithms were used to process the data from the noninvasive monitor to
discard data collected during situations related to known unreliable measurements. For
example, these algorithms accounted for periods of retrograde urine flow, stagnant urine
due to no flow, and measurement error based on the error code output of the thermal-based
flow sensor. Additionally, since previous studies have shown that there is a greater amount
of oxygen exchange between the urine and the urinary tract tissue at low urine flow rates,
PuO2 measurements during periods of urine flow <0.5 mL/kg/h were discarded [22]. The
intraoperative data were also separated into different time periods related to surgical events.
The pre-CPB period was defined as the time between the start of the surgery and the start
of the first run of CPB. The CPB period was defined as the entire period between the first
run of CPB and the ending of the last run of CPB. The post-CPB period was defined as the
period between the end of the last run of CPB and the end of the surgery, marked by when
the patient was transferred to the ICU. If more than 70% of the data for a given patient
were missing during a time period, the data for that whole time period were not included
in the analysis. Patients who received a left ventricular assist device were excluded from
this analysis.

Two different types of potential features were identified for training the machine learn-
ing algorithms: preoperatively available patient demographic information and features that
could be derived from a real-time PuO2 monitor. Potential preoperative available patient
demographic features were identified based on previous studies that identified risk factors
for developing AKI and included age, sex, body mass index, type of procedure, baseline
creatinine, insulin-dependent diabetes status, and whether the patient’s left ventricular
ejection fraction was less than 35% [23]. We identified potentially useful features that could
be derived from intraoperative PuO2 measurements based on a priori knowledge. Based
on our prior work showing that there was a difference in mean PuO2 during the post-CPB
period for patients with and without AKI, mean PuO2 for each time period was determined
to be a potential feature. We also believed it would be valuable to describe the distribution
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of the PuO2 signal, so the 25th and 75th quartiles, and the median during each time period
were determined to be potential features. Others have hypothesized that the relationship
between PuO2 and subsequent development of AKI is based on cumulative exposure of
renal hypoxia, estimated by low PuO2 relative to some unidentified threshold [24]. So, the
time spent below various PuO2 thresholds was calculated. It is also reasonable to suggest
that the development of AKI may be related to the cumulative depth of the exposure, so
the area below the same thresholds was also calculated. In total, we identified 40 potential
features. If a subject was missing data for any of the identified features, data from that
subject were not included in the model and analysis.

First, to compare the identified preoperative patient characteristics and known intraop-
erative risk factors between those that did and did not develop AKI, we used a two-sample
chi-square test for categorical variables or an independent sample t-test for continuous
variables. Second, we selected features and trained and tested the various models. Due to
the limited size of our dataset, we decided to use an automated forward variable selection
method to determine the best preoperative features for the two models. We fit a logistic
regression model for each individual preoperative feature and determined the p-value
for each model. We chose the feature with the smallest p-value if that p-value was <0.05.
This feature was retained in the model, and the process was repeated for the remaining
features. This process was repeated until all the retained features had a p-value < 0.05. All
features retained in the automated variable selection model were then used to build the
preoperative-only machine learning model. Next, we determined the best PuO2-based
feature to include with the preoperative features. We chose to include a single PuO2-based
feature because all PuO2-based features were derived from the same signal, and we did
not want to introduce potential noise in the feature set. To determine the best individual
feature based on the PuO2 signal, we calculated the AUROC of each PuO2-based feature.
The individual predictor with the largest AUROC was combined with the preoperative
features to make up the PuO2 model.

After building our feature dataset, we selected the machine learning model and
defined the approach to train and test the different combinations of features. As the dataset
we were using to train and test the PuO2 and preop model was relatively small and noisy,
we chose to use a bootstrap aggregating model, commonly called bagging, because it is
an effective method for reducing the risk of overfitting [25]. Bagging fits several base
classifiers on random subsets of the data, then aggregates their predictions to make a final
prediction. As the support vector machine algorithm has been shown to work well on both
linear and nonlinear classification problems, it was chosen as the base classifier for the
bagging algorithm. We used the leave-one-out cross-validation method to properly train,
evaluate, and compare the preoperative-only and PuO2 models [26]. The i-th observation
was excluded from the dataset, resulting in a training set of N-1 observations, where N is the
total number of subjects in the analysis. The two different models were trained or fitted on
the training set and then used to predict the probability of the test subject developing AKI.
This process was repeated until each observation in the total dataset was excluded from
the training dataset and used as the test sample. This resulted in a predicted probability
that each subject developed AKI for each model. This process is shown in Figure 2. The
predicted probabilities were used to generate a receiver operator characteristic (ROC) curve
for the individual models. The AUROC was calculated for each model, and DeLong’s
test was used to compare the two results statistically. The predicted probabilities were
then used to make class predictions. If the predicted probability was greater than 0.5, the
class prediction was AKI. The class predictions from each model were used to calculate the
confusion matrix. Values from the confusion matrix were then used to calculate sensitivity
(true positive/(true positive + false negative) and specificity (true negative/(true negative
+ false positive). The paired sample McNemar test was used to compare the sensitivity and
specificity of the different models.
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3. Results

As previously reported, of the 86 patients that completed the study, 53 were diagnosed
with AKI based on KDIGO criteria [19]. Based on the criteria used to discard subjects in
this secondary analysis, 73 patients were included in the total dataset, of which 46 were
in the AKI group and 27 were in the group that did not develop AKI. Of these 46 patients
who did develop AKI, 7 patients had creatinine-based stage I AKI, 4 had creatinine-based
stage II AKI, 6 had creatinine-based stage III AKI, and 29 met the criteria for any stage of
AKI based on the KDIGO criteria. Table 1 shows the clinical characteristics for patients who
did and did not develop AKI. In the univariate analysis, there was a significant difference
in baseline creatinine, body mass index, and insulin-dependent diabetes between the two
groups. There was not a significant difference in the intraoperative risk factors relative to
post-operative AKI.

Table 1. Summary of the clinical characteristics for the patients who did and did not develop AKI.
For continuous variables, a t-test was used to compare the populations. For categorical variables, a
chi-square test was used.

Feature AKI (n = 46) No AKI (n = 27) p-Value

Age (years), mean ± SD 65 ± 11 62 ± 15 0.27

Body Mass Index, mean ± SD 29.38 ± 5.89 26.57 ± 5.32 0.05

Baseline creatinine, mean ± SD 1.12 ± 0.26 0.97 ± 0.25 0.014

Left Ventricular Ejection
Fraction <35%, n (%) 7 (15) 2 (8) 0.54

Insulin dependent diabetes, n (%) 14 (30) 1 (3) 0.015

Female, n (%) 14 (30) 8 (30) 0.99

Type of procedure—Isolated CABG 16 (35) 7 (26) 0.60

Type of procedure—Single Valve 9 (20) 6 (22) 0.99

Type of procedure—Single
Valve + CABG 7 (15) 3 (11) 0.88

Type of procedure—>1 valve 5 (11) 3 (11) 0.99

Type of procedure—Other 7(15) 7(26) 0.66

Intraoperative risk factors

CPB Time (min), mean ± SD 160.42 ± 55.28 167.74 ± 70.25 0.62

Transfusion rate, n (%) 26(56) 15(56) 0.99

Urine output (mLs), mean ± SD
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For the initial feature selection model, baseline creatinine was the most significant
predictor (p-value < 0.001). During the second round of the feature selection process, the
only significant feature, in addition to baseline creatinine (p-value = 0.02), was insulin-
dependent diabetes status (p-value = 0.04). While baseline creatinine and insulin-dependent
diabetes status remained significant when additional features were added, none of the other
features were significant in the third round of the feature selection process. This meant
baseline creatinine and insulin-dependent diabetes status were the preoperative features
used to train the preoperative machine learning model. For the PuO2-based features, the
time that PuO2 was below 35 mmHg during the post-CPB period had an AUROC of 0.61,
which was the highest value compared to the other PuO2-based features. This meant that
the PuO2 model included the best preoperative features (baseline creatinine and insulin-
dependent diabetes status), and the time PuO2 was less than 35 mmHg during the post-
CPB phase.

The ROC curves are shown in Figure 3. The AUROC for the model that included
the preop and PuO2-based features was 0.78 (95% CI: 0.62–0.83), whereas the AUROC for
the preoperative-only model was 0.66 (95% CI: 0.50–0.70). The AUROC for the combined
model was significantly higher than the preoperative-only AUROC (p-value < 0.01). There
was no statistically significant difference in the specificity of the two models (p-value = 0.48,
preoperative = 0.85, PuO2 = 0.78). In contrast, the PuO2 model was statistically more
sensitive than the preoperative model (p-value < 0.001, preoperative = 0.40, PuO2 = 0.72).
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4. Discussion

In this study, we found that a machine learning model that includes intraoperative
PuO2 data and preoperative patient information was a better predictor of AKI than a
model that was trained on just preoperatively available patient data alone, based on
AUROC values of 0.77 and 0.66, respectively. This difference was the result of the increased
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sensitivity of the PuO2 model compared to the model based on preoperative clinical
data alone.

Like the preoperative model in this study, many of the clinically available preoperative
risk scores, like the Cleveland Clinic Score, incorporate baseline creatinine and insulin-
dependent diabetes status in the final model [14]. The difference is that the other risk
prediction models typically include additional features. However, many of these other
risk prediction models were derived from feature sets with >30,000 subjects. Additionally,
the most common scores were designed only to predict AKI requiring dialysis. Dialysis
is a rare event, affecting up to 2% of AKI patients, and usually occurs several days after
the operation, which limits the effectiveness of these models [13]. In contrast, this study
included only 73 subjects and predicted the development of any stage or type of AKI
based on the KDIGO definition. Despite these differences, the AUROC for the preoperative
model in this study was similar to the AUROC of 0.66 (95% CI: 0.65–0.68) reported for
the Cleveland Clinic Score in a more recent study that looked at a separate validation
cohort [27].

New risk prediction scores have been developed to predict AKI outside of cases
requiring dialysis based on the KDIGO definition. For example, Birnie et al. found that
their model had an AUROC of 0.74 and better predictive performance than several common
risk scores, including the Cleveland risk score, when using the KDIGO AKI definition [13].
While the score is available as an online calculator, similar to other risk prediction models,
it still does not take into account intraoperative variables. This means this and other risk
prediction scores are not useful for dynamic monitoring of the patient. Since these scores do
not provide dynamic monitoring of the status of the patient, the care team cannot use them
as tools to guide intervention or resuscitation. In addition, these models identify patients
at high risk but are based almost exclusively on non-modifiable risk factors, limiting
their usefulness in patient management. In contrast, recent studies have shown that the
administration of a diuretic such as furosemide or increasing mean arterial pressure by
administering vasopressin increases PuO2, suggesting that intraoperative urine oxygen
may be a modifiable risk factor [28–31]. This means that, in the future, the clinician or
care team may be able to make decisions based on a PuO2 monitor that incorporates a risk
prediction algorithm. More robust and large-scale studies are needed, however, to validate
that these interventions improve PuO2 and that increasing PuO2 reduces the incidence
of AKI.

This study is not the first study to demonstrate the value of including intraoperative
data in risk prediction models for post-operative AKI. Parolari et al. demonstrated that
including intraoperative and post-operative data significantly improves the AUROC com-
pared to a model that only uses preoperative data [32]. Tseng et al. demonstrated that a
machine learning model trained on 94 features that include preoperative and post-operative
measurements to predict post-operative cardiac surgery AKI can achieve an AUROC of
between 0.78 and 0.85 depending on the model type [33]. In fact, of the 20 most important
features identified in their study, more than half are intraoperative variables. However,
many of the intraoperative variables used to train the model are not available until after
the surgery is complete, such as the total intraoperative urine output or total intraoperative
volume of IV fluids infused. It is also worth noting that many of these variables are stored
on paper notes or in the electronic health record. Due to the lack of interoperability between
different electronic health records and medical devices, these algorithms may not be useful
during surgery. In addition, the intraoperative time-series parameters that were used to
train the Tseng et al. model were based on blood pressure and heart rate, which are systemic
parameters and are not specific to the kidney. Furthermore, a recent meta-analysis showed
that targeting a higher mean arterial pressure during cardiac surgery did not have an effect
on the rate of AKI. While the exact reason is unclear, it may be because there are other renal
hemodynamic factors in addition to mean arterial pressure, such as blood oxygen content
and local tissue micro perfusion, that influence medulla tissue oxygenation.
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Others have explored the use of urinary and serum biomarkers to dynamically assess
a patient’s risk for AKI. Studies have found that certain biomarkers of kidney injury, like
interleukin 18 (IL-18), kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated
lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP) as a singular biomarker,
and L-FABP in combination with tissue inhibitor of metalloproteinases-2 (TIMP2), increase
sooner than serum creatinine following renal injury [21,34–38]. These tests are still lim-
ited by long processing times. The only FDA-approved point-of-care test, NephroCheck,
requires a minimum of 20 min to obtain a result. Other biomarker tests that have been
extensively studied have to be sent to the central laboratory for processing, which often
requires expensive equipment and can take hours or sometimes days to obtain a result. Ulti-
mately, the clinical adoption of these biomarker tests has been slow, despite evidence-based
recommendations, partially because the cost–benefit ratio of these tests is unclear [39–42].

Others have also demonstrated the predictive value of PuO2 intraoperatively. How-
ever, it is also worth noting that there may be multiple methods for interpreting PuO2 data
that may be effective. For example, Zhu et al. found the more time bladder PuO2 is below
15 mmHg during cardiac surgery, the more likely a person is to develop AKI [43]. In a
previous study, we found that a mean PuO2 of less than 25 mmHg during the post-CPB
period was associated with the KDIGO definition of AKI and other various definitions
of renal dysfunction [19]. Noe et al. showed that a lower nadir value following CPB
was associated with a greater risk for developing AKI [18]. To date, we are not aware of
any large-scale studies validating the best PuO2 threshold and interpretation method for
predicting AKI.

An advantage of using a machine learning approach is that the algorithms are typically
good at learning complex, nonlinear relationships. This means the exact threshold for
feature choice may not be as important. In the future, a PuO2 machine learning model may
not require the selection of a threshold and may be able to interpret the PuO2 waveform
directly. Another important advantage of using machine learning is that the output can
be a continuous variable representing an individual’s risk level for developing AKI. The
output may not be a binary yes or no prediction but, instead, may indicate the confidence
level of the model’s prediction or the overall risk level of the subject in their current state.

One of the limitations of this study is the small size of the dataset used to train and
test the two different machine learning models. Other studies looking at machine learning
algorithms and prediction of AKI rely on thousands or tens of thousands of subjects. This
is because AKI is likely multifactorial. This means there are many additional features that
could increase a person’s risk of developing AKI in addition to the features identified in
this study. However, to incorporate all potential features, a large number of subjects would
be necessary to properly describe the high-dimensional feature space. This means that
due to the small dataset, the size of the models used in this study was limited, both in
terms of complexity and the number of features. Thus, we had to adapt a feature selection
process instead of including all the identified features. In addition to using a feature
selection process, we used leave-one-out cross-validation. This means that the results may
not be generalizable for other populations or cohorts. In addition, this was a proof-of-
concept study, and more work is necessary to design, test, and validate a robust decision-
support tool.

It is also important to note that, in this study, AKI was defined according to the KDIGO
criteria. While previous definitions of AKI included criteria based on an estimated GFR,
these were removed in more recent guidelines due to the risk of misclassification due to
estimated GFR [44]. While some may still advocate for using estimated GFR as a tool
for detecting AKI, we used the KDIGO definition as it is supported by the latest clinical
guidelines and is standard across the most recent research studies.

In summary, we have shown that a model that includes an intraoperative PuO2 feature
is a better predictor than a model that only includes preoperatively available patient data.
These findings imply that intraoperative PuO2 monitoring may provide a method for
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intraoperatively assessing a patient’s risk for developing AKI after cardiac surgery and be
used as a tool to guide potential interventions.
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