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Abstract: The clinical manifestations of asthma in children are highly variable, are associated with
different molecular and cellular mechanisms, and are characterized by common symptoms that
may diversify in frequency and intensity throughout life. It is a disease that generally begins in
the first five years of life, and it is essential to promptly identify patients at high risk of developing
asthma by using different prediction models. The aim of this review regarding the early prediction of
asthma is to summarize predictive factors for the course of asthma, including lung function, allergic
comorbidity, and relevant data from the patient’s medical history, among other factors. This review
also highlights the epigenetic factors that are involved, such as DNA methylation and asthma risk,
microRNA expression, and histone modification. The different tools that have been developed in
recent years for use in asthma prediction, including machine learning approaches, are presented and
compared. In this review, emphasis is placed on molecular mechanisms and biomarkers that can be
used as predictors of asthma in children.
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1. Introduction

The global prevalence of asthma has been increasing in recent years. Although it has
stagnated, several publications in the last five years have suggested an overall prevalence
of pediatric patients with asthma symptoms of approximately 10%, and a prevalence of
6–7% in adults. There are marked regional variations, with increases in many low- to
middle-income countries. The risk factors associated with asthma prevalence include
exposure to respiratory viruses, environmental pollutants, stress, obesity, genetics, gender,
indoor allergens such as dust mites, and exposure to tobacco, among others [1].

It is a disease with significant variability, especially as the illness develops. Asthma
spans a wide spectrum, with some patients experiencing remission of symptoms, whereas
symptoms persist in others throughout their lives. More than 70% of patients with asthma
present clinical manifestations during the first six years of life. It is worth mentioning that
children who present with asthma at the age of 7 years have a 67–75% chance of becoming
asymptomatic in adulthood [2].

Due to the contrasting nature of the disease, diagnosing asthma in children under the
age of five is challenging, owing to the non-specificity of the clinical symptoms, as well
as the lack of a comprehensive definition and a gold-standard diagnostic or prognostic
marker [3]. Preschool-onset wheeze is highly prevalent, with different phenotypes and
variable prognoses. An estimated 25–40% of all children wheeze in their fcirst seven years
of life and may present six longitudinal patterns of wheezing in the first year of life, as
described in association with asthma later in life [2,4].
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The early identification of wheezing in children younger than five years old can
provide valuable information to parents and medical professionals and aid in the early
stratification and close monitoring of patients at risk of asthma [4]. Preschool is a crucial
period for the development of the immune system and lung growth. The interrelation be-
tween genes and the environment has called attention to the vulnerability of the respiratory
systems of infants to environmental exposure to various triggering factors [5].

The complexity of a diagnosis of asthma at preschool age leads to uncertainty in
clinical decision making, potentially favoring the under- or overdiagnosis of asthma [6,7].

Prediction models for childhood asthma are helpful for identifying likely future asthma
patients from high-risk groups; children in preschool who develop symptoms could benefit
from early diagnosis and intervention [6].

In this review, we describe predictive factors, epigenetic phenomena in asthma, the
use of biomarkers, prediction models, and machine learning.

2. Predictive Factors for Asthma

Different parameters have been used in asthma prediction models, the most important
of which are age, gender, wheeze frequency, the presence of eczema, rhinitis, non-cold-
related wheeze, peripheral blood eosinophilia, skin testing, specific IgE, biomarkers, gene
expression, exercise-related cough/wheeze, and aeroallergen-related cough/wheeze [8].

2.1. Age

The development and trajectory of asthma are considered dynamic processes that
comprise multiple phenotypes and affect patients of all ages. The appearance of signs
and symptoms depends on the coursing age, with varying clinical expressions, leading to
different diagnoses and necessitating different assessments and treatment strategies [9].

It has been stated that the age at which the first clinical manifestation of the disease
appears is an important marker for the phenotypic characterization of asthma. In a cohort
comprising five European databases, adult patients were diagnosed with asthma between
2008 and 2013 and categorized according to the age of asthma onset: childhood-onset
age (<18 years old), adult-onset age (18–40 years old), or late-onset age (>40 years old).
Compared to childhood-onset subjects, those with adult-onset asthma were reported to be
at higher risk of overweight or obesity and at lower risk of atopic diseases, and patients
with late-onset asthma were reported to have uncontrolled asthma more frequently [10].

According to a study of a population that was part of FinEsS (Finland–Estonia–
Sweden), the median age for the diagnosis of allergic asthma was 19 years, and that
for non-allergic asthma was 35 years. The incidence of allergic asthma was high in the
0–9 age group (1.8/1000/year) and lower in the 50–59 age group (0.6/1000/year). On
the other hand, the incidence of non-allergic asthma was lower and remained so during
childhood and young adulthood (0.7/1000/year), with a marked increase in the 50–59 age
group (2.4/1000/year). This study reasserts the concept that the mechanisms involved in
childhood-onset or early-adulthood asthma are distinct and function as separate entities
from late-onset asthma [11].

2.2. Gender

Atopy and the male gender are described as risk factors for wheezing and asthma
in childhood; after the preschool stage, this incidence decreases [12]. A review aimed
at identifying possible gender differences in children and adolescents with asthma as
determinants of the incidence and prevalence of asthma reported that boys have a higher
prevalence of childhood wheeze and asthma than girls. In several studies, up to two out of
three patients with childhood asthma or wheezing were male, and one out of three were
female, with ORs of 1.4–1.6. In adolescents, the trend is different, with a higher prevalence
in females than males among patients who start to show signs of asthma or wheezing in
adolescence [13].
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Dysanaptic lung development, a physiological discrepancy between lung parenchy-
mal growth and airway caliber, is more prominent in boys than in girls [14,15]. In obese
children and women with asthma, airway dysanapsis has been associated with increased
symptomatology and decreased response to inhaled steroids [15]. As a dimensional differ-
ence in the respiratory system that is usually associated with gender, dysanapsis has clinical
implications and may influence the pathogenesis of asthma and exercise tolerance [16].

Oscillations in sex hormones play an important role in women, increasing in severity
and prevalence after reaching puberty. Estrogens and progesterone affect the immune re-
sponse and pathogenesis of asthma, airway hyperresponsiveness, and type 2 inflammation
involving eosinophils, ILC2, IL-13, and IL-5. They also act on the release of IgE in allergic
inflammation and non-type 2 inflammation [17].

A novel asthma phenotype was proposed for females who menstruated before the
age of 11 and grew up with obesity between the ages of 6 and 11 [18]. As described by the
Tucson Children Respiratory Study (TCRS), these girls were more likely to develop new
asthma symptoms at the age of 11–13 years old [19].

2.3. Hygiene Hypothesis

Since its initial description, the hygiene hypothesis has aroused interest in the scientific
community and has been the subject of multiple investigations. According to observations
from the original study in the United Kingdom, it is likely that a decrease in the number
of family members, together with an increase in hygienic habits, reduced the chances of
co-infection in young families, favoring an increase in the clinical expression of allergic
disease [20]. Significant advances in epigenetics, a paradigm shift with new classes of
effector and regulatory immune cells such as ILC2, and studies on biomarkers and dif-
ferent phenotypes allow us to understand the complexity of the immune response in the
development of allergies and asthma [21].

Different studies have documented the association between early exposure to high
bacterial loads (or the lipopolysaccharides they contain)—as occurs for those staying in
daycare centers, those with a dog at home, and those living on farms—and a decrease in the
development of allergic diseases and asthma. Various factors can modify this “farm effect”
response, such as host genotype, age, presence of allergic sensitivity, and interactions [21,22].

The “old friends” hypothesis argues that microorganisms and macroorganisms such
as parasitic helminths co-evolved with the human immune system, making this hypothesis
similar to the “hygiene hypothesis”. The diversity in the composition of the gut microbiota,
which contains approximately 22.2 million genes, is essential for homeostasis. Events that
favor intestinal dysbiosis, such as the early use of antibiotics, infections, and changes in diet,
cause alterations in the resident bacteria of the human intestines, modifying the normal
microbiota through buffer mechanisms that promote allergic diseases. The “microflora”
hypothesis is considered as another extension of the “hygiene hypothesis” [23]. The di-
versity and duration of microbial exposure in childhood are important for the induction
of immunological tolerance; epidemiological studies have reported a correlation between
early microbial exposure to allergens and decreased presentation of asthma and allergic
rhinitis at a later age [24].

Changes in lifestyle in recent decades—mainly in industrialized countries—that favor
modifications in the environment, microbiome, and regulation of the immune response
have been described in the context of the so-called biodiversity hypothesis. Alterations in
the immune response caused by microbial imbalance lead to a high risk of inflammatory
diseases, including allergic diseases, such as asthma and allergic rhinitis [25]. In summary,
the hygiene hypothesis continues to be valid and adaptable to innovations in scientific
knowledge [21].

2.4. Allergic Comorbidity

The allergic phenotype associated with asthma exhibits a diverse range of characteris-
tics that are influenced by a complex interplay of environmental, genetic, and psychosocial
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factors. The atopic march model describes the sequential manifestation of childhood aller-
gic diseases, starting with atopic dermatitis (AD) and potentially progressing to asthma and
allergic rhinitis, with the possibility of food allergies preceding respiratory allergies [26].
However, a study of two cohorts (UK cohort, n = 9801) showed a lower prevalence of
this classical atopic march, e.g., eczema, wheeze, and rhinitis, as only a small fraction of
symptomatic children seemed to follow this trajectory [27].

The Melbourne atopy cohort study (MACS) shed light on the increased risk of asthma
at the age of 12 years for children sensitized to house dust mites, especially among those
with early wheezing or eczema. Moreover, the study revealed a threefold-elevated risk of
developing asthma and allergic rhinitis in later childhood and adolescence for children
with persistent early-onset atopic dermatitis [28].

Further investigations, such as the Avon Longitudinal Study of Parents and Children
(ALSPAC) and the Prevention and Incidence of Asthma and Mite Allergy (PIAMA) study,
emphasized the association between persistent or later-resolving atopic dermatitis and an
increased likelihood of coexisting asthma, high IgE levels, and familial history of atopy [29].

Familial atopy is consistently recognized as a significant predictor of asthma from
childhood to adulthood, with the children of allergic parents manifesting rates of asthma
that are two to three times higher. Between the ages of 4 and 20 years, among patients
diagnosed with asthma, three-quarters were sensitized to at least one of five common
aeroallergens [30].

The coexistence of allergic diseases, which is known as allergic multimorbidity, is
prevalent, with asthma, allergic rhinitis, and eczema frequently overlapping. Multiple ob-
servational studies confirm this pattern, linking family history of allergy, childhood allergic
symptoms, and cesarean section births as risk factors for allergic multimorbidity [31,32].
These allergic diseases share many genetic risk variants that dysregulate the expression of
genes related to the immune response [33].

Allergic rhinitis, a common comorbidity in asthma, not only is a risk factor for asthma
development, but also contributes to suboptimal asthma control [34]. In summary, these
findings emphasize the intricate relationships among different allergic diseases and the
need to consider genetic and environmental factors to comprehend their development and
impact [31,32,34].

3. Epigenetics in Asthma

It is now widely acknowledged that diseases have a component of genetic susceptibil-
ity, and environmental factors may modify individuals’ susceptibility [35]. Thus, prolonged
exposure to various environmental, dietary, and lifestyle factors contributes to the develop-
ment or prevention of diseases in subjects with certain genetic characteristics, i.e., those that
are “susceptible”. Epigenetics describes the complex influence of the environment on gene
expression without changes in DNA sequences [36]. Multiple studies have shown how
epigenetic pathways impact various disease features, from asthma in children to asthma in
adults [37].

3.1. Epigenetic Mechanisms

DNA methylation, microRNA expression, and histone modifications (post-translational)
are the most prevalent epigenetic pathways that have been studied, and they play a
regulatory function in asthma gene expression and immunological response [38].

3.2. DNA Methylation

Among the various epigenetic mechanisms that have been described, the best char-
acterized is CpG DNA methylation, which refers to the inclusion of a methyl group
and cytosine in a CpG dinucleotide, resulting in the conversion of cytosine into 50-
methylcytosine [39]. DNA methyltransferases (DNMT1, DNMT2, and DNMT3) catalyze
the methylation [40], and the methylation pathway generally primes the inhibition of
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transcription, while, in contrast, hypomethylation leads to an upregulation of gene expres-
sion [41,42].

3.3. DNA Methylation and Asthma Risk

Studies have revealed that links between epigenetic patterns and pro-inflammatory
pathways could possibly be used to identify early asthma predisposition. Nadeau K. et al.
found a link between regulatory T cells (Tregs) and greater methylation of the FOXP3
gene in asthmatic children exposed to more ambient pollution [43], and a separate study
found a link between the methylation of acyl-CoA synthetase long-chain family member
3 (ACSL3) in children with prenatal exposure to polycyclic aromatic hydrocarbons and
asthma symptoms [44].

In a study on newborns, SMAD3 methylation in asthmatic mothers was linked to
a higher risk of the newborns developing asthma in childhood [45]. A separate study
demonstrated changes in the blood methylomes of children of asthmatic mothers; this
could act as a risk factor for asthma development [46].

Cigarette smoke exposure modulates DNA methylation, as shown by the differing
levels of methylation in fetal lung tissue and the placenta when the mother smokes or
is exposed to smoke [47]; however, the exact mechanism by which these differentially
methylated sites are linked to asthma is unclear.

3.4. MicroRNA Expression

MicroRNAs (miRNAs) are non-coding RNAs that typically consist of 18–25 nucleotides
and influence up to 60% of mRNA translation through mRNA destabilization [48]. Due
to the fact that miRNAs are implicated in post-transcriptional changes, their functions
often depend on the association of miRNAs with their target genes, the site at which the
miRNA is expressed inside the cell, the cell bloodline, the number of miRNAs, and the
complementarity of the miRNA and the gene [49]; as regulators of the immune response,
they play an essential role in the pathological evolution and development of asthma [50].

Wang et al. showed that miRNA-451a downregulation increases the expression of
ETS1 in CD4+ T cells and increases the production of Th2 cytokines (IL-5 and IL-13), which
may contribute to the differentiation of Th2 cells in children with asthma [51]. Likewise,
dysregulation of the miRNA-451a–CDH11 axis is involved in pathological changes in
bronchial tissue [52].

Another review demonstrated that abnormal expression of miRNAs (miR-146a and
miR-106b) was related to the production of Th2 cytokines (IL-5 and IL-13), which are
both involved in the pathogenesis of asthma in children [53]. In addition, miR-15a was
linked to smoke exposure during lung development, and it regulated the expression of
asthma-related genes, thus providing evidence of the probable fetal origin of asthma [54,55].

It is known that exposure to air contaminants has been associated with respiratory
immune responses, which cause alterations in miRNA expression. In addition, chronic
exposure to ozone leads to airway inflammation, which represents a potential risk factor
for asthma development [56]. Fry et al. found that the inhalation of O3 was linked to the
overexpression of several microRNAs in the bronchial airways, with a possible link to the
inflammatory pathway in asthma [57].

Of these, miR-21 is the most-well evaluated miRNA in asthma, and it is known that
it can lead to Th1/Th2 imbalances through the downregulation of interleukin-12 (IL-12)
and the overexpression of IL-4 [58]. Additionally, Th2 inflammation has been linked to the
let-7 family of miRNAs [59], and the response of eosinophilia in asthma has been linked
with two additional miRNAs (miR-155 and miR-221) [60,61]. Therefore, it is evident that
miRNAs play an important role in the pathogenesis and development of asthma.

3.5. Post-Translational Histone Modifications

Core histones wrap DNA to create a structured chromatin structure. Post-translational
histone modifications such as acetylation, methylation, phosphorylation, ubiquitination,
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SUMOylation, and ADP-ribosylation constitute another epigenetic mechanism that is
crucial in different illnesses, including childhood asthma [57].

Histone acetyltransferase (HAT) leads to histone acetylation, causing the chromatin
structure to become loose and open to transcription factors, thus inducing the expression
of genes; conversely, the activity of the enzyme histone deacetylase (HDAC) leads to gene
silencing through histone deacetylation [58].

As an example, the acetylation, dimethylation, and trimethylation of histone H3
lysine 9 in the iNOS promoter can be implicated in its response, as shown in primary
human vascular endothelial cells [42,62]. A separate study suggested that environmental
particles that increase cellular acetylation may sustain or strengthen recall reactions to Th2
phenotypes that are implicated in several diseases, such as asthma and allergies [63].

In addition, in children with allergic asthma, the ratio of histone deacetylase and
histone acetyltransferase (HDAC/HAT ratio) was found to be altered, and a higher severity
of bronchial hyperresponsiveness was correlated with cellular acetylation activity [64].
Likewise, histone acetylation has been linked to the differentiation and function of Th
cells. Enhanced histone acetylation in genes that encode Th2 cytokines in response to Th2
differentiation was observed, which led to increased Th2 cytokine production [65]. On
the other hand, disease-specific enhancers that were selectively methylated in primary T
cells isolated from peripheral blood—causing changes in healthy patients and asthmatics
during Th2 differentiation—were prone to the development of dimethylation at histone H3
lysine 4 [66].

4. Biomarkers
4.1. Lung Function

According to a number of cohort studies, asthma is linked to abnormal lung function
before the first wheezing episode and in the first several weeks of life [67]. Additionally,
asthma remission and persistence can be predicted based on lung function [68]. However,
although the standardized measurement of lung function is a common component of
evaluations of school-aged children with asthma, it is rarely used in preschoolers due to its
complexity.

The first study to address the link between lung function and risk of wheezing was
the Tucson Children’s Respiratory Study (TCRS). Using the TCRS, Martinez et al. showed
that diminished lung function as a result of a reduction in the caliber of the airway and
changes in lung tissue possibly increased the risk of infant wheezing [67,69].

The Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) showed
that decreased lung function at neonatal age (FEF50) is a risk factor for asthma at 7 years
of age [70]. In addition, the Childhood Asthma Management Program (CAMP) study
showed that, during childhood, a 10% higher FEV1/FVC ratio was associated with asthma
remission during early adulthood (OR 4.62); on the other hand, only 1.4% of children with
FEV1/FVC ratios less than 70% would experience asthma remission, making this ratio
highly predictive of asthma persistence [71].

The Perth cohort also showed a link between diminished lung function and a conse-
quent diagnosis of asthma; the researchers discovered that infants with restricted airways
had a higher risk of developing asthma by the age of two [72]. On the other hand, the
lung function z-score was considerably worse in children with persistent asthma in com-
parison with non-asthmatic children at age 11 [73]. Australian and Norwegian cohorts
demonstrated diminished lung function at as young as 1 month in children who developed
persistent wheezing later in childhood [74]. Recently, a small Chilean cohort study showed
that, at preschool age, alterations in some impulse oscillometric parameters (AX, R5–R20
difference, and R5) could predict abnormal spirometry and BDR at school age [75].
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4.2. Bronchoscopy

Although the evaluation of bronchoalveolar lavage (BAL) fluid and/or bronchial
biopsies has been used as the gold standard for evaluating airway inflammation, these
biopsies are impractical due to their invasiveness.

Adult asthma is characterized by eosinophilic inflammation and thickening of the
reticular basement membrane (RBM) [76,77]. Endobronchial biopsy studies showed that, at
2–3 years old, children with severe recurrent wheezing already had these characteristics [78],
but they seemed to be absent in wheezing infants at the age of 12 months [79], suggesting
that pathological changes in the airway could start earlier than 3 years of age.

A systematic review of 39 studies (involving 2390 children under 18 years old) demon-
strated that, at a mean age of 12 months, eosinophilic/neutrophilic airway inflammation
and remodeling were absent in wheezers; however, remodeling (RBM thickness and in-
creased area of smooth muscle in the airway) and airway eosinophilia were documented in
older preschoolers (mean: 2.5 years). Children of school age experienced this with greater
severity. Preschool wheezers with and without atopic dermatitis had similar RBM thick-
nesses. Seven studies found a correlation between airway remodeling and lung function,
another three found a correlation with FeNO, and one found a correlation with HRCT
scans. In addition, in patients without remodeling, eosinophilic inflammation was not
observed [80].

In a recent study, using fiber optic bronchoscopy, Fayon et al. evaluated markers of
bronchial remodeling (epithelial integrity, thickness of the reticular basement membrane
(RBM), mucus glands, fibrosis, bronchial smooth muscle area (BSM), density of blood
vessels, and RBM–BSM distance) in severe preschool wheezers to predict the exacerbation
of wheezing after a year of biopsy. They found a two-class model using latent class analysis;
the class with increased smooth muscle, blood vessel density, and RBM thickness and
decreased mucus glands, fibrosis, and RBM–BSM distance was linked to significantly
more uncontrolled asthma symptoms and a shorter time until the first exacerbation within
the following 12 months. Therefore, the evaluation of bronchial remodeling through
bronchoscopy may be used to identify severe preschool wheezers at risk of subsequent
exacerbations [81].

It is known that reticular basement membrane thickening can be present in allergic
bronchial asthma and in other bronchial illnesses, such as primary ciliary dyskinesia and
cystic fibrosis. In a study of multiple regression models, Koucký et al. showed that changes
in reticular basement membrane morphology resulted in diminished lung function by
evaluating the z-scores of FEV1 and the FEV1/FVC ratio [82].

Therefore, the evaluation of bronchial remodeling through bronchoscopy could be
used to predict the subsequent development of lung function in terms of subsequent
exacerbations of wheezing in children; however, the invasive nature of such studies is
a limitation for their application, as opposed to noninvasive biomarkers that can reflect
remodeling.

4.3. Fraction of Exhaled Nitric Oxide (FENO)

Nitric oxide is produced in the airway by epithelial cells as a result of the upregulation
of nitric oxide synthase induced by IL-13 during allergic inflammation [83,84]. FeNO is a
noninvasive marker, which is reproducible, easily measurable, and one of the most studied
biomarkers of eosinophilic airway inflammation [85,86].

Several studies have demonstrated that preschoolers with wheezing and probable
asthma have greater levels of FeNO than those with no symptoms or possibly temporary
wheezing symptoms [87,88]. In a longitudinal study, Elliot et al. showed that FeNO
concentrations of ≥30 ppb at preschool age were associated with poor lung function and
could predict the continuation of wheezing symptoms at three years (specificity of 94% and
sensitivity of 77%) [89]. In another study among children between 3 months and 4 years old,
it was shown that, in children with asthma at school age, the levels of FeNO were elevated
in comparison with those in children without asthma; for every increase of 5 ppb in FeNO,
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the odds ratio (95% CI) for asthma increased by 2.44. To evaluate the predictive value of
FeNO, the API was modified by adding FeNO levels instead of the blood eosinophil count;
when this modification was used, the children who were at risk had a 58.0% probability
of asthma development, whereas the negative predictive value was 78.2%, which was
comparable to the classical API [90].

Two studies using online FeNO showed a significantly higher level in infants and
preschoolers with the positive classical API. In Spanish infants (mean age: 12 months),
those with a positive API had higher levels than those with a negative API (median (IQR)
of 12.3 (14.8) ppb vs. 4.1 (7.9) ppb, respectively; p = 0.016) [91]. In Argentinian children
(5–36 months old), the numbers were a median (range) of 13.5 ppb (0.7–31) vs. 5.6 ppb
(0.1–20.8), respectively (p < 0.01) [92].

In the PIAMA study, the authors showed that, at the age of 4, FeNO and IgE could
possibly predict asthma development at 8 years, regardless of medical history [93]. In a
different study with the same PIAMA cohort, FeNO was increased in children who experi-
enced persistent wheezing in comparison with those with transient wheezing phenotypes,
but the elevation was only present in children with atopic sensitization [94].

Therefore, FeNO is an important biomarker in the early prediction of asthma with
eosinophilic inflammation; however, it might not be sufficient for investigating the wide
spectrum of preschool wheezers.

4.4. Allergy Assessment (Total and Specific Immunoglobulin E)

IgE is an antibody synthesized by plasma cells in response to an antigenic stimulus; it
induces type 1 hypersensitivity reactions and plays a critical role in the pathogenesis of
allergic asthma. In mast cells and basophils, it binds to IgE receptors to produce cytokines
that mediate T2 responses, which are characteristic of allergic asthma [95]. Based on this, the
role of IgE and the early sensitization of its relationship with asthma have been extensively
studied.

A recent longitudinal review demonstrated that IgE levels of≥0.24 kU/L in cord blood
taken at birth were significantly associated with a 2.6-fold increase in the risk of asthma,
elevated FeNO levels, and allergic sensitization. Nevertheless, the IgE levels in cord blood
were not significantly correlated with measures of pulmonary function, suggesting that IgE
from cord blood could be used to identify neonates who might develop allergic asthma later
on [96]. Another study that used two independent birth cohorts—those of the Melbourne
Atopic Cohort Study (MACS) (n = 620) and the population-based LISAplus from Germany
(n = 3094)—evaluated the relationship between allergic airway illness and sensitivity to
food, aeroallergens, or both. As a result, in both groups, food sensitization (with or without
aeroallergen sensitization) was associated with a strong prediction of asthma during the
first two years of life [97]. In a multivariate analysis, Boersma et al. proved that sensitization
to inhalant allergens had a predictive value of 86% for asthma [98]. Similarly, using the
Childhood Origins of ASThma (COAST) study from the USA, Anderson et al. demonstrated
that peripheral blood eosinophilia and early-life aeroallergen sensitization were both strong
predictors of asthma inception [99].

Additionally, early exposure to environmental antigens in the first few years of life
has been described as an important factor in sensitization. Some studies have described
early exposure to pets as a protective factor against the development of asthma and allergic
diseases, but other studies have linked it to a worsening of symptoms. In the Danish
National Birth Cohort, exposure to dogs was associated with a marginally lower risk of
atopic dermatitis and asthma, leading to the conclusion that the relationship between early
exposure to animals and allergic diseases can be modified by the presence of factors such as
a history of asthma or allergy, time, and source of exposure [100]. In the Avon Longitudinal
Study of Parents and Children (ALSPAC) (n = 4706), at the age of 7 years, a 6% reduction in
wheezing in children with early exposure to cats was observed (OR = 0.94 (0.89–0.99)) [101].

In order to investigate the composition of the microbiome of fungi and bacteria in
house dust, which could contribute to the presence of wheezing in childhood and allergenic
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sensitization, the LISAplus birth cohort study was carried out. In this prospective study,
high exposure to a variety of fungi and bacteria in house dust was found to be inversely
related to allergenic sensitization in patients at 6 years of age, as well as in those who
continued wheezing at the age of 10 years [102].

It has been documented that microbial exposure in utero and in early childhood is
essential for regulating the immune system’s response to environmental elements such as
allergens and viruses.

As part of the PASTURE birth cohort study, sequenced samples of house dust were
collected from patients’ rooms at 2 months of age. When they were subsequently evaluated
at 10.5 years of age, an abundance of twelve genera of bacteria associated with a lower risk
of asthma (p < 0.10) was found in the samples obtained. Confirming the data that were
obtained, patients with greater protection against asthma at 10.5 years of age had greater
phylogenetic diversity in the microbiota and bacteria according to the samples obtained
from their homes [103].

Atopy is clearly a risk factor for the development of asthma, but an IgE or allergic
sensitization test alone is insufficient to determine the risk of asthma.

4.5. Blood Eosinophils

Eosinophils are granulated cells that have the capacity to secrete a variety of inflam-
matory mediators and are implicated in the pathogenesis of many inflammatory disorders,
including asthma [104,105]. Due to the low cost and wide availability of tests, blood
eosinophils are considered a suitable biomarker [106], primarily because they predict
asthma remission more accurately than specific IgE or skin-prick tests, and their absence
was shown to be able to correctly predict more than 91% of remissions [107].

Despite studies linking blood eosinophilia with asthma [108], this method lacks
sensitivity, making eosinophils a poor choice as a biomarker for the early prediction of
asthma [109], but many studies have demonstrated their utility in phenotyping asthma,
in the prognosis of exacerbations, and in the response to treatment with steroids and
anti-eosinophilic monoclonal antibodies [110,111].

Another marker of eosinophil activity is eosinophil cationic protein (ECP), a protein
with ribonuclease activity that can be measured in the serum and sputum. In patients with
asthma, the levels of ECP are correlated with airway inflammation [106]. However, these
levels may be higher in other atopic and nonatopic disorders, such as allergic rhinitis and
viral respiratory infections, which are not particular to asthma [106,112].

4.6. Serum Periostin

Periostin is an extracellular matrix protein secreted by airway epithelial cells in
response to IL-13, the Th2 inflammatory cytokines IL-4 and IL-13, and TGFβ. It may
cause subepithelial fibrosis in asthma and has been associated with T2-high eosinophilic
asthma [113]. Recent studies demonstrated that patients with eosinophilic asthma had
higher serum periostin levels in the serum than those with non-eosinophilic asthma [114,115].
By analyzing data from the Swedish Global Allergy and Asthma European Network study,
James et al. found that lower pulmonary function was associated with high levels of serum
periostin in asthmatic patients [116]. It is known that, in children, the levels of periostin
are two- to threefold higher than those in adults because periostin plays key roles in bone
growth. However, according to a prospective cohort study, at the age of two years, periostin
levels of≥150 ng/mL could predict asthma at the age of six years [99]. A pilot study carried
out among Chilean preschoolers showed that serum periostin levels were not significantly
different between wheezing preschoolers with positive and negative classical API [117].

From these results, we can conclude that serum periostin is increased in patients with
asthma. It is higher in atopic patients than in nonatopic patients and can be considered
a diagnostic biomarker of bronchial asthma, but the exact role of periostin as an asthma
predictor remains controversial.
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4.7. Sputum Eosinophils

Eosinophils have been linked to allergic illness for as long as asthma has been scientifi-
cally researched, and their role in asthmatic inflammation is well known as a mediator of
airway remodeling in asthma development [118,119].

Sputum eosinophilia has been extensively studied in the phenotyping of asthma and
as a prognostic marker in asthmatic patients who have never used steroids; corticosteroid
treatment usually results in a significant decrease in eosinophil levels in the sputum.

Although there have been some studies that have related blood eosinophils to wheez-
ing in children, there is a lack of evidence that they are a suitable biomarker for the early
development of asthma. In addition, although it has been shown to be safe, the collection of
induced sputum in children is not easy, and the evaluation of the samples requires specific
training [120].

4.8. Sputum Neutrophils

Another noninvasive method for assessing airway inflammation is sputum induction.
It has been proven to be safe, but it is challenging to collect data from children using this
method because it requires specific training and equipment, as well as patient coaching
and cooperation [106,118,119].

One potential biomarker for predicting non-T2 asthma is the presence of neutrophils
in the sputum, and many studies have linked the presence of high levels of neutrophils in
the sputum with the severity of asthma, a relative lack of response to corticosteroid therapy,
chronic exacerbations, and severe chronic airflow obstruction; however, this marker is not
useful as a biomarker for the prediction of asthma.

4.9. Nitrites in Sputum

In comparison with FeNO, measuring nitrites in sputum (measured by using the Griess
assay) is a cheap and simple method of measuring nitric oxide metabolites. Recabarren et al.
showed, for the first time, that nitrites in sputum were significantly higher in patients with
persistent asthma than in healthy schoolchildren (16.30 ± 8.6 vs. 10.25 ± 4.68 nmol/mL,
respectively; p = 0.001). Moreover, the nitrite level in the sputum of children with severe per-
sistent asthma was higher than that in those with moderate and mild asthma (32.83 ± 9.48
vs. 18.10 ± 1.96 vs. 11.84 ± 4.73 nmol/mL, respectively; p < 0.01 for the linear trend) [120].
The same research team found that, after three months of inhaled corticosteroid therapy,
the nitrite levels detected in induced sputum decreased and were correlated with an im-
provement in the symptoms of clinical asthma. Between enrollment in and completion of
the study, the sputum nitrite levels significantly changed (34.4 nmol/mL (IQR: 18.2–58.4)
and 11.2 nmol/mL (6–20.1), respectively; p < 0.0001). Additionally, a significant correlation
between the drop in sputum nitrite levels and improvements in clinical parameters (acute
exacerbations (r = 0.361, p = 0.005), salbutamol use (r = 0.322, p = 0.013), emergency visits
(r = 0.275, p = 0.033), and school absence (r = 0.41, p = 0.001)) from the time of enrollment to
the end of the study was reported. However, there were no correlations between sputum
nitrite levels and the results of a bronchial exercise test, peripheral blood eosinophils, or
serum IgE levels. Therefore, measuring nitrite in induced sputum (a simple, inexpensive,
noninvasive approach) may be a useful substitute for tracking the effectiveness of asthma
medication in schools [121]. However, larger studies involving multiple populations must
be conducted first.

4.10. Volatile Organic Compounds (VOCs) in Exhaled Breath Analysis

The analysis of exhaled breath condensate (EBC), which was introduced more than
20 years ago, is a noninvasive technique for obtaining samples of the airway. It examines
volatile and nonvolatile compounds [122]. Volatile organic compounds are carbon-based
chemicals that are easily converted into vapors or gases; they are present during physiolog-
ical or pathophysiological processes and include nitric oxide products, hydrogen peroxide,
leukotrienes, and cytokines [123].
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Using chromatography, Caldera et al. characterized volatile organic compounds in
patients with asthmatic and control children, obtaining compounds linked to oxidative
stress, such as alkanes and aldehydes, in asthmatic children. These positive results showed
that VOC profiles could successfully distinguish children with asthma from healthy chil-
dren [124]. In the ADEM (Asthma Detection and Monitoring) study, 258 children were
evaluated, and it was found that VOCs could be easily and safely obtained in exhaled breath
analyses in preschool children; they demonstrated that VOC profiles could distinguish
between healthy controls and preschool wheezers [125]. Another study demonstrated
that exhaled breath analysis using a limited number of compounds (17 VOCs) was able
to distinguish between preschool asthma and transient wheezers with an accuracy of 80%
(sensitivity of 73% and specificity of 87%) after external validation [126].

These early results are encouraging and highlight the potential of using exhaled VOCs
for the early diagnosis of asthma, but more studies are needed to evaluate their accuracy.

5. Prediction Models for Childhood Asthma

Over the last two decades, several asthma prediction tools have been developed to
assess the risk of developing the disease in the future. These instruments have some
elements in common, such as the frequency of wheezing episodes, eczema, parental history
of asthma or allergy, and evidence of atopy (according to a skin prick test or specific IgE).
Despite these similarities, the scores have shown variable performance in predicting asthma
development [127].

We summarized eight of the most widely used tools for predicting asthma: the Asthma
Predictive Index (API) from the Isle of Wight, PIAMA (Prevention and Incidence of Asthma
and Mite Allergy), modified API (mAPI), ucAPI (University of Cincinnati API), the Asthma
Prediction Tool (APT) from Leicester, Asthma Detection and Monitoring (ademAPI), and
the Pediatric Asthma Risk Score (PARS) [8]. A summary of the characteristics of the
predictive models is provided in Table 1.

It is important to remember that a diagnostic test’s clinical effectiveness is determined
based on how it allows physicians to calculate the probability of a disease for specific
patients by directly relating pre-test and post-test probabilities [128,129]. Hence, the calcu-
lation of the likelihood ratio (LR) is an effective tool that reflects the degree to which the
pre-test probability increases or decreases [2]. In order to reflect the diagnostic precision
of any prognostic model, the European Academy of Allergy and Clinical Immunology
(EAACI) advises utilizing an LR interpretation of IgE sensitization tests. A similar strategy
may also be utilized for predictive tools for asthma [130].

The first asthma prediction model was the original asthma predictive index (API),
which originated from the TCRS in 2000, and two sets of prediction guidelines were
established: a loose API and a strict API [131]. This is the best-regarded model and is
used as a benchmark when comparing new models. According to reports, children with
a positive severity index were seven times more likely to have active asthma when they
reached school age (sensitivity, 28%; specificity, 96%; LR+, 7.6). The API has been suggested
in childhood asthma guidelines [132–134], and it is one of the few tools that have been
validated in new populations and in different cohorts [135].

In a birth cohort (n = 339) study that was recently carried out in Chile, the API
was determined at 30 months of age, and its association with primary care physicians’
independent diagnoses of asthma was examined. After a multivariate analysis, the API+
was associated with an almost sixfold increase in the odds of an asthma diagnosis (adjusted
OR = 5.7, 95% CI (2.6–12.3(). The API sensitivity was 48% and the specificity was 92%, with
61% PPV, 88% NPV, 6.4 LR+, 0.56 LR−, and 0.84 diagnostic accuracy. The adjusted odds for
asthma were 11.4. This study suggested for the first time that the API could be used as a
diagnostic tool and not only as a prognostic tool in toddlers and preschoolers [136].

Recurrent airway infections in children were some of the factors that the Isle of
Wight [137] and PIAMA [138] studies included among their criteria, but these criteria can
be confusing when it comes to wheezing. The PIAMA index is more difficult to calculate
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because several criteria are weighted differently, including socioeconomic data and parental
education, and this information may be different according to the population in which this
is applied [8,138].

Instead of using objective criteria for the clinical identification of allergic rhinitis, the
original API was modified. The modified API [139] was evaluated in the high-risk COAST
(Childhood Origins of ASThma) study, and a positive mAPI was shown to have a high
predictive value after a positive test (LR+ 4.9 to 55) for asthma development at the ages of 6,
8, and 11 years. Similarly, the ucAPI [140] was developed in a high-risk atopic birth cohort,
and it was used with other objective criteria (change in FEV1 of≥12% post-bronchodilation
or a methacholine challenge test with PC20 ≤ 4 mg/mL).

The APT [141] model, which was based on the Leicestershire cohort, used 10 predic-
tive variables in preschool children who attended medical consultations with respiratory
symptoms of ≥1 wheezing or chronic cough (cough without a cold or night coughing) in
the last 12 months. This tool classified children into three groups according to their scores:
scores ≤ 5 (low risk), scores in the range of 6–9 (medium risk), and scores ≥ 10 (high risk).
These groups were shown to have 16%, 48%, and 79% risks of developing asthma later,
respectively.

The ademAPI model added several parameters to the original API and replaced
eosinophilia with specific IgE [8,142]. This model increased the positive LR from 7.4 (origi-
nal API) to 8.8 (ademAPI), but due to the highly expensive and sophisticated predictors
involved, it is very unlikely that this tool can be used in a generalized context [2].

The most recent model created was the Pediatric Asthma Risk Score (PARS), which
used data from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS,
n = 762) and was replicated in the Isle of Wight birth cohort. This model uses six parame-
ters, which include parental asthma, eczema, early wheezing, healthy wheezing, ancestry
(black/African), and allergies, and it classifies children into low-risk (score: 0–4), medium-
risk (score: 5–8), and high-risk (score: 9–14) groups [143]. However, the positive LR is low
(3.25).

The prediction models for childhood asthma differ significantly in terms of the study
design, study size, target population, predictor variables, school-age asthma diagnosis
criteria, and statistical methods. The majority of prediction models that have been created
have shown modest generalizability and moderate predictive performance when externally
validated. Currently, only the original API, PIAMA, APT, and PARS indexes have been
validated.
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Table 1. Summary of asthma prediction models [8].

Original API
(Stringent Index)

[131]

Isle of Wight
[137]

PIAMA
[138]

mAPI
[139]

ucAPI
[140]

APT
[141]

ademAPI
[142]

PARS
(In IOW)

[143]

Year of publication 2000 2003 2009 2013 2014 2014 2015 2018
Country US UK Netherlands US US UK Netherlands US

Number of children surveyed 1246 1034 2171 289 589 1998 202 589
Source population General High-risk High-risk High-risk High-risk High-risk General High-risk

Age (y) of asthma prediction 6, 8, 11, 13 10 7–8 6, 8, 11 7 6–8 6 7

Methods of building Clinical index Cumulate risk
score

Logistic
regression Clinical index Clinical index LASSO

regression
Logistic

regression
Logistic

regression
Number of predictors used 5 4 8 5 5 10 8 6

Sensitivity (%) 28 (at 6 years) 53 60 19 (at 8 years) 44 72 88 67
Specificity (%) 96 (at 6 years) 85 76 100 (at 8 years) 94 71 90 79

PPV (%) 48 (at 6 years) 68 23 87 (at 8 years) 60 49 90 36
NPV (%) 92 (at 6 years) 74 94 9 (at 8 years) 89 86 89 93

LR+ 7.6 3.41 2.5 55 7.5 2.5 8.8 3.25
LR− 0.75 0.56 0.53 0.83 0.6 0.4 0.13 0.41

PREDICTORS
Age 3 3

Gender 3 3

Wheezing frequency 3 3 3 3 3 3

Parental history of asthma or allergy 3 3 3 3 3 3 3

Eczema 3 3 3 3 3 3 3

Rhinitis 3 3 3 3

Wheezing without colds 3 3 3 3 3 3 3

Blood eosinophilia 3 3

Skin-prick test 3 3 3 3

Specific IgE 3

Chest infections 3 3

Parental medication inhalation 3

Parental education 3

Post-term delivery 3

Activity disturbance 3

Shortness of breath 3

Exercise-related wheeze/cough 3

Aeroallergen-related wheeze/cough 3
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Table 1. Cont.

Original API
(Stringent Index)

[131]

Isle of Wight
[137]

PIAMA
[138]

mAPI
[139]

ucAPI
[140]

APT
[141]

ademAPI
[142]

PARS
(In IOW)

[143]

EBC biomarkers 3

VOCs 3

Gene expression 3

Ancestry 3

API—asthma prediction index; APT—asthma prediction tool; PIAMA—Prevention and Incidence of Asthma and Mite Allergy; mAPI—modified API; ucAPI—University of
Cincinnati API; ademAPI—Asthma Detection and Monitoring API; PARS—Pediatric Asthma Risk Score; IOW—Isle of Wight Cohort; PPV—positive predictive value; NPV—negative
predictive value; LR+—positive likelihood ratio; LR−—negative likelihood ratio; EBC—exhaled breath condensate; Ig—immunoglobulin; VOCs—exhaled volatile organic compounds.
Checkmark—3.
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6. Machine Learning

Machine learning (ML) is a branch of data science and artificial intelligence in which
large amounts of data are processed to learn mathematical interactions [144,145]. Machine
learning has been successfully applied in the medical field, mainly in the diagnosis and
prediction of diseases [146,147]. In comparison with other traditional methods, ML has the
ability to analyze massive amounts of data and create predictions with higher accuracy;
it collects, evaluates, and processes data to discover trends and patterns and, potentially,
determine new risk factors [148,149].

There are different types of algorithms used in the prediction of asthma in children,
with the most relevant being the support vector machine (SVM), multilayer perceptron
neural network, logistic regression, k-nearest neighbor, decision tree (DT), multilayer
perceptron, random forest (RF), artificial neural network (ANN), and gradient-boosting
machine [149,150]. These algorithms can be classified into two different classes: supervised
and unsupervised learning [145,151].

Particularly in the last ten years, there has been an increase in the application of ML
methods for asthma evaluation [152]; in addition, artificial intelligence may have advan-
tages over traditional tools in terms of processing vast amounts of data and considering
interactions among data, thus allowing for greater accuracy [153,154]. However, few stud-
ies have used ML to predict childhood asthma, with a greater number of studies focusing
on adult asthma [155].

Using the PROBAST (Prediction model Risk of Bias Assessment Tool) checklist, Patel,
D. et al. evaluated ten studies related to machine learning and asthma prediction. The
values of the predicted performance metrics from ML models were greater than those ob-
tained with traditional models in terms of sensitivity and specificity [150], but a substantial
risk of bias was also demonstrated because of the heterogeneity of the data.

Another study directly compared the performance of conditional inference using tree-
based machine learning with a current regression-based asthma prediction model, PARS,
while using the same predictors. Using decision-tree-based conditional inference, ML had
a higher predictive accuracy (AUC: 0.85; 95% CI: 0.81, 0.88; sensitivity = 47%; specificity
= 93%) than that of the pediatric asthma risk score. However, the study has not been
externally validated [156]. Likewise, Ekpo et al. assessed a total of 32 machine learning
algorithms for asthma prediction in children; the analysis showed that ML performed
better than the conventional asthma prediction tools, but due to the heterogeneity of the
results and the different methodologies used, more research is needed [149].

Although artificial intelligence has been shown to be a viable option in childhood
asthma prediction and has demonstrated better predictive performance in pediatric asthma
prediction than existing conventional asthma prediction models, more research and external
validation studies are still needed.

7. Directions for Future Research

The use of personalized medicine is expanding quickly, and it provides new methods
for predictive modeling that can make a patient-centered approach easier. Genetic and
epigenetic studies have provided a better understanding of the underlying pathological
processes, and DNA methylation and microRNA expression are promising as potential
biomarkers for predicting the trajectory of asthma; likewise, combinations of biomarkers
may result in highly accurate asthma prediction. The use of models has facilitated the early
diagnosis of asthma; however, clinical implementation is necessary to achieve a better result.
On the other hand, asthma prediction models that have been developed using machine
learning have made great progress in recent years, but external validation is needed.

8. Conclusions

Prediction models for childhood asthma have been proven to be functional in recog-
nizing future asthmatics in high-risk groups of patients through their use in the preschool
period, which is a crucial period for immune development and lung growth.
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The parameters used in the different asthma prediction models have been generally
validated in the populations that have been studied, favoring early diagnosis, intervention,
and preventive measures.

Current knowledge of epigenetics, the use of biomarkers, and different types of
algorithms in the prediction of asthma in children provide an opportunity to improve the
accuracy of these diagnostic tools.
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FEV1 Forced expiratory volume in one second.
FVC Forced vital capacity.
EFL Expiratory flow limitation.
ILC2 Innate lymphoid cells type 2.
AD Atopic dermatitis.
TCRS Tucson Children Respiratory Study.
FeNO Fraction of exhaled nitric oxide.
VOC Volatile organic compounds.
API Asthma Predictive Index.
ML Machine learning.
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