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Abstract: The amount of coronary calcium strongly correlates with the degree of atherosclerosis
and, therefore, with the rate of future cardiac events. Calcified coronary lesions still represent a
challenge for interventional cardiologists, bringing not only a higher risk of immediate complications
during percutaneous coronary interventions (PCI), but also a higher risk of late stent failure due to
under-expansion and/or malapposition, and therefore, have a relevant prognostic impact. Accurate
identification of the calcified plaques together with the analysis of their distribution pattern within
the vessel wall by intracoronary imaging is important to improve the successful treatment of these
lesions. The aim of this review is to guide readers through the assessment of the calcified plaque
distribution using intracoronary imaging in order to select the best devices and strategies for plaque
debulking and lesion preparation.
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1. Introduction

Coronary artery disease still represents the leading cause of mortality in developed
countries [1,2]. Therefore, significant attention has been paid to the identification of new
risk factors [3–5], improvement in pharmacological preventive strategies [6–8], and percuta-
neous treatment techniques [9–13]. However, the outcome remains unsatisfactory in special
subsets of patients [14–16]. In particular, those with moderately and severely calcified le-
sions have been excluded from enrollment in most stent trials and still represent a challenge
for interventional cardiologists, for many reasons. From a procedural point of view, it is well
known that coronary calcium is an independent predictor of unsuccessful drug-eluting stent
(DES) deployment and that its presence may damage the polymer/drug coating [17,18].
In terms of clinical outcomes, it has been widely demonstrated that the greater the arc,
length, or thickness of calcium, the greater likelihood of stent under-expansion, which is
associated with an increase in ischemic events including re-stenosis and stent thrombosis
at 1 year [19,20]. Very recently, interesting long-term data showed that, at 10 years after
PCI with new-generation DES, there was an increase in adverse events by the degree of
coronary calcification and that the presence of heavily calcified lesions was an independent
predictor of mortality, with a similar prognosis following PCI or CABG [21,22]. Advanced
age, renal disease, and diabetes have all been associated with coronary artery calcification
(CAC), with severe CAC affecting between 6 and 20% of patients treated with PCI [16].
This issue is expected to become more relevant in the next few years because of population
aging and increased diabetes and chronic renal disease rates. Accurate identification of the
calcified plaques together with the analysis of their distribution pattern within the vessel
wall by intracoronary imaging is important to optimize the treatment of these lesions and
might help in achieving better clinical outcomes [23]. Recognition of such calcified anatomy
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allows the appropriate use of ablative techniques for initial lesion modification and vessel
preparation prior to DES implantation. Several tools and techniques have been proposed to
overcome calcified lesions-related issues and some of them have shown significant efficacy
and safety data. Buddy wires, guide extension catheters, and balloon anchoring are some
of the possible options to cross calcified lesions. When successful treatment cannot be
obtained using these options, a dedicated device (balloon-based or ablation-based) should
be used since it is well recognized that treating stent under-expansion in a heavily calcified
lesion is more difficult than preventing under-expansion.

2. Coronary Calcification in Human Atherosclerosis

Calcium in the coronary arteries has been used as a surrogate marker of coronary
atherosclerosis since the 1940s [24]. The atherosclerotic process starts with the focal reten-
tion of apo B–containing lipoproteins within the subendothelial extracellular matrix [25,26].
This causes inflammation, resulting in the release of peptides, which attract monocytes that
enter the tissue, become tissue macrophages, and phagocytize the lipoprotein cholesterol
complex. In the process of catabolism, the lipoprotein cholesterol complex is aggregated
and oxidized. Oxidized lipoprotein cholesterol toxicity for the macrophage can cause the
death of the lipid-laden macrophage (foam cell) [27]. The inflammatory milieu stimulates
angiogenesis, producing vessels with the typical fragility of unstable plaques. Ruptured
intraplaque vessels result in intraplaque hemorrhages, increasing free cholesterol, and
raising the likelihood of acute plaque rupture [28–30]. Interestingly, it has been proven
that intimal and medial calcifications are different. Intimal calcification resembles endo-
chondral bone formation in long bones and the progression of the lesion is likely driven by
chondrocyte-like cells and associated with the expression of inflammatory factors, such
as cytokines, whereas medial calcification has a different mechanism driven by the action
of osteoblast-like cells [31]. Whether patients develop medial or intimal calcification is
determined by local factors. Calcium distribution within the vessel wall is relevant in order
to guide interventional cardiologists to select the best strategies for plaque modification
and debulking.

3. Imaging Techniques for Calcified Plaques Identification
3.1. Coronary CT

Coronary CT angiography (CCTA) is the most important non-invasive imaging tech-
nique used to detect calcium. Calcium is detected as an area of hyper-attenuation of at least
1 mm2 with >130 Hounsfield units or ≥3 adjacent pixels using the Agatston method [32].
A coronary calcium score is calculated using a weighted value assigned to the highest
density of calcification in each coronary segment (excluding calcium in the valves or aorta)
that is then multiplied by the area and finally summed for all arteries to give a total coro-
nary artery calcium score, which has been demonstrated to be a good prognostic tool for
clinical events in the mid- to long-term in asymptomatic individuals [33,34]. On the basis
of such evidence, CCTA is suggested for the identification of coronary atherosclerosis in
symptomatic patients in the 2019 guidelines of the European Society of Cardiology for
chronic coronary syndromes with a Class I recommendation, level of evidence B [35]. Of
note, CCTA can detect spotty calcification, which is one of the four signs of vulnerable
plaques (i.e., low CT attenuation, remarkable positive remodeling, spotty calcification, and
the napkin-ring sign).

3.2. Coronary Angiography

The amount of coronary calcium is often not well identified by coronary angiogra-
phy and its depth within the plaque is not assessed. Severe calcification is defined as
radiopacity observed without cardiac motion, as a double track visible on both sides of the
arterial lumen (Figure 1, panel a). In a study by Mintz and colleagues, the sensitivity of
angiography in detecting the presence of target lesion calcium was 48% when compared to
IVUS, and it was the lowest in those lesions with one-quadrant calcium and the highest
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(85%) in lesions with four-quadrant calcium; the overall specificity of the angiographic
detection of target lesion calcium was 89% [36]. The lower capacity showed by coronary
angiography in identifying calcified plaques was recently confirmed in a study by Wang
et al., where calcium was detected by angiography in only 40.2% of lesions [37]. In that
study, IVUS detected any amount of calcium in 82.7% of lesions and OCT in 76.8% of
lesions. Interestingly, any disagreement between coronary angiography and IVUS/OCT
was due to thin calcium deposits that were demonstrated not to inhibit stent expansion.
For this reason, despite the intrinsic lower diagnostic performance showed by angiography,
angiographically visible calcium (thick calcium) seemed to be a good marker to predict
stent under-expansion.
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Figure 1. Panel A: Angiographic view of a calcified stenosis located in the mid-Right Coronary Artery
(RCA) (a,b); in the still frame without contrast (a) severe calcification is identifiable as radiopacity
visible on both sides of the arterial lumen, as a double track (highlighted by yellow contours).
Panel B: Optical Coherence Tomography (OCT) evaluation of the RCA after treatment with 3.5 mm
OPN balloon inflated at 30 atm. Different cross-sections show clear cracks into the calcific concentric
plaque; small cuts not penetrating through the entire plaque are identifiable (c) as well as bigger cracks
cutting the entire calcific plaque (d,e). Panel C: OCT evaluation of the RCA after stent deployment
showing good struts apposition with cracks still evident behind the stent struts (f,g).
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3.3. Intravascular Ultrasound (IVUS)

Intravascular ultrasound (IVUS) is the first catheter-based technology used for in-
travascular imaging, introduced by Yock et al. in the 1980s [38]. This technology offers
a relatively low resolution when compared to other imaging tools (i.e., OCT) but higher
penetration depth. Its axial resolution is 100–150 µm and lateral resolution is 150–300 µm
for 40 MHz, whereas, for 60 MHz, it ranges between 40–60 µm and 60–140 µm for axial
and lateral resolutions, respectively [39]. Such resolution characteristics are not optimal
when it is the case to assess superficial plaques or suboptimal PCI results. At IVUS analysis,
calcium is hyperechoic, brighter than the reference adventitia, with shadowing (Figure 2,
panel a); for this reason, the thickness of calcium cannot be detected. Such a character-
istic pattern might be partly shared by fibrous plaques as well, but calcium produces
distinctive reverberations at reproducible distances, especially after treatment with ablative
techniques. Semi-quantitative analysis is possible by assessing calcium arc and calcium
length [38,39]. From a qualitative point of view, calcium can be described as superficial
(acoustic shadowing located within the most superficial 50% of the plaque and media
thickness) or deep (acoustic shadowing within the deepest 50% of the plaque and media
thickness) [19]. Of interest, an IVUS-based calcium score has been used to identify calcified
stenoses at risk of stent under-expansion and requiring adjunctive calcium modification
before stent implantation. Plaque characteristics included in the score are: a superficial
calcium angle > 270◦ longer than 5 mm, 360◦ of superficial calcium, a calcified nodule, and
a vessel diameter < 3.5 mm [40]. Given the limitations of the qualitative visual interpre-
tation of grey-scale IVUS images, several post-processing methods have been developed
to optimize coronary plaque tissue characterization, such as VH-IVUS (virtual histology),
iMAP-IVUS (iMap-Intravascular Ultrasound Radiofrequency Signal Analysis), or IB-IVUS
(integrated backscatter) [41,42]. The identification of calcified nodules represents an impor-
tant step during the morphologic evaluation of the plaque, since their treatment is difficult
and related to procedural complications. IVUS characteristics of a calcified nodule are a
convex shape on the luminal surface, a convex shape on the luminal side of calcium, and an
irregular luminal surface [19]. The identification of intra-plaque microcalcifications is rarely
possible using IVUS and this represents a major limitation, since it has been suggested
that microcalcifications (>5 mm) in fibrous caps of fibroatheromas can increase local tissue
stress and promote cavitation-induced plaque rupture [19].
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3.4. Optical Coherence Tomography (OCT)

OCT uses near-infrared light directed at the vessel wall through a rotating single optical
fiber coupled with an imaging lens within a short-monorail imaging sheath. By measuring
the amplitude and time delay of the backscattered light, OCT generates high-resolution,
cross-sectional, and three-dimensional volumetric images of the vessel microstructure [43].

The shorter wavelength of the infrared light in OCT (1.3 µm) compared with ultra-
sound in IVUS (~40 µm at 40 MHz) allows greater axial resolution (10–20 µm versus
50–150 µm) but lower penetration depth (1–2 mm versus 5–6 mm), which limits OCT
imaging, particularly in the presence of highly attenuating structures such as red thrombus
or lipid/necrotic core.

As mentioned, in calcified lesions, IVUS delineates the calcification arc but not its
thickness because of the reflection of ultrasound waves off calcium; in contrast, OCT allows
the determination of both the calcification arc and thickness in most cases, since it identifies
calcified plaques as signal-poor regions with sharply delineated borders (Figure 2, panel
b). As for IVUS, an OCT-based scoring system has been validated in calcified lesions
to help determine which calcific morphologies lead to stent under-expansion: calcium
arc > 180◦ (2 points), calcium length > 5 mm (1 point), and calcium thickness > 0.5 mm
(1 point) were associated with poor stent expansion [44]. Therefore, an OCT-based calcium
score of ≥3 may indicate the need for calcium modification to induce calcium fracture,
which is associated with enhanced stent expansion [45]. In the study by Wang et al., the
sensitivity and specificity of angiography to detect any OCT calcium were 50.9% and
95.1%, and the sensitivity and specificity of angiography to detect any IVUS calcium were
48.4% and 98.7%, respectively [46]. It has been widely demonstrated that intravascular
imaging-guided PCIs in calcified lesions achieve better procedural and clinical outcomes
when compared to angiography-guided procedures [23,46]. An interesting step forward
in the field of coronary calcification investigation and treatment is represented by the
recent iteration of the OCT technology (Ultreon™ 1.0 Software; Abbott, Chicago, IL, USA)
powered by artificial intelligence and enables the automatic quantification of calcification
and vessel sizing.

4. Imaging-Guided Plaque Modification

The importance of the calcified plaque pattern assessment in intracoronary imaging
analysis lies in the possibility of selecting different treatment strategies. As a matter of
fact, such selection has to take the capacity of the different devices to cross the lesion
into account. Based on the above considerations, De Maria et al. proposed a compre-
hensive algorithm indicating balloon-based techniques (non-compliant, scoring/cutting,
high-pressure, lithotripsy) in case of crossable lesions and ablative techniques (rotational
atherectomy, orbital atherectomy, excimer laser) for non-crossable lesions [47]. According
to the calcium location, it can be determined that when calcium is superficial, successful
treatment depends on the thickness, length, and arc of calcium: if the calcium thickness is
greater than 0.5 mm, the arc is >180◦, and the length is greater than 5 mm, balloon-based
strategies are not usually effective and ablative techniques are recommended; the same
approach should be considered when facing calcified nodules (Figure 3). On the other
hand, when calcium is located deep in the arterial wall and covered by superficial fibrosis
adjacent to the lumen, it can reasonably be approached with conventional non-compliant
high-pressure balloons, cutting/scoring balloons, and/or lithotripsy (Figure 4) [45–47].
Whether one calcified plaque characteristic is more impactful on stent under-expansion
among others is unknown to date. Based on the existing scores, all the plaque characteris-
tics included in the IVUS-based score seem to have the same relevance (one point each),
whereas, in the OCT-based score by Fujino et al. [46], the calcium arc > 180◦ has been found
to weigh more (two points). Of note, the presence of a thinner calcific plaque (<0.67 mm)
and a >227 degrees of concentric calcific distribution have been found to be associated with
higher chances of cracking the calcium and of optimal stent expansion [48]. Furthermore,
some technical tricks relative to the use of imaging tools can be extrapolated to acquire
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useful information: as an example, the position of the imaging catheter in relation to the
plaque might be used to anticipate the possible impact of the use of the Rotablator burr in
that area. If the imaging catheter is adherent to the side of the vessel wall, away from the
calcific component, then a larger burr should be selected (Figure 5) [49].
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Figure 5. Optical Coherence Tomography (OCT) cross-section showing a thick calcific plaque (lower
quadrants) treated with rotational atherectomy.

5. Balloon-Based Techniques
5.1. Non-Compliant Balloons/OPN

The main characteristic of non-compliant balloons (NC) resides in the possibility
to be inflated at high pressures with no significant increase in diameter, allowing the
application of higher forces in a focal segment of a coronary vessel with less rates of coronary
dissections or perforations due to the “dog-bone” effect [50]. The OPN NC balloon (SIS
Medical, Frauenfeld, Switzerland) represents a “super NC-balloon” with minimal increases
in diameter when very high pressures are applied and such a feature is subtended by a
twin-layer technology. This balloon has a rated burst pressure of 35 atmospheres, but the
balloon was tested up to 45 atmospheres (Figure 1, panel b). The main disadvantage of
this device is that, due to its high profile (0.028 inches), it has the poor capability to cross
the stenotic lesions when compared to other dedicated devices [39]. Its performance has
been recently tested in several studies [51–53]. Secco et al. [51] included a consecutive
series of 91 lesions where NC balloons at high pressures failed to achieve an adequate
post-dilatation luminal gain and were, therefore, treated with an OPN NC balloon up to
40 atm. Angiographic success was obtained in 84 lesions (92.3%). All of the remaining
lesions received rotational atherectomy. MLD and acute gain were significantly greater
and %DS was significantly lower post OPN NC balloon compared with conventional NC
balloon inflation (p < 0.001). No coronary perforations occurred. No acute or 30-day follow-
up MACE was reported. The randomized ISAR-CALC trial showed similar good results
in terms of lesion preparation when compared to scoring balloons, and a better, although
not statistically significant, angiographic result [52]. A recent compelling retrospective
registry focused on patients with calcified lesions and treated with OCT-guided OPN-based
PCI showed a stent expansion ≥ 80% in 80% of cases with a mean final expansion post
intervention of 85.7% ± 8.9; of interest, no perforations and no-reflow occurred [53].
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5.2. Scoring and Cutting Balloons

Scoring balloons are semi-compliant balloons with scoring elements located on the
surface, which allow focal concentration of the force during inflation and increase bal-
loon stability during inflations (Figure 6, panel a). The latter characteristic is especially
useful when treating typical fibrous plaques of re-stenotic stents caused by neo-intimal
hyperplasia and is also shared by cutting balloons [54,55]. The peculiar structural feature
characterizing cutting balloons is represented by three or four metal micro-blades longi-
tudinally placed on the surface of the balloon and cutting the media with radial incisions
when the balloon is inflated; this allows the reduction in the elastic recoil and counteracts
neointima proliferation (Figures 4 and 6, panel b). Caution should be paid when deciding
to re-cross a cutting balloon through the struts of a previously implanted metallic stent
because of the risk of entanglement. When compared to traditional plain-only balloon
angioplasty (POBA) in the past, cutting balloons have shown no difference in terms of
six-month binary restenosis but a higher rate of perforation. However, recent data relative
to newer iterations of such devices have shown the same acute cross-sectional area gain
obtained when compared to scoring balloons but better performance in lesion crossing [56].
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5.3. Intravasular Litotripsy (IVL)

Intravascular lithotripsy represents a recently introduced strategy (CE mark in May
2017) for the treatment of calcified coronary lesions based on the principles of lithotripsy
that has been used to break up stones in the kidneys for over 30 years (Figure 6, panel c).
The Shockwave Medical (Santa Clara, California) IVL system consists of a 0.014-inch
guidewire-compatible, fluid-filled balloon angioplasty catheter with two lithotripsy emit-
ters incorporated into the shaft (the distal emitter is slightly more central to enhance flexi-
bility, whereas the proximal emitter is located near the proximal end of the balloon) [57,58].
The last iteration of the catheter can provide up to 120 total IVL pulses and is intended for
single use. The emitters convert electrical energy into transient acoustic pressure pulses
that impact calcium with expanding and collapsing vapor bubbles, creating a short burst of
acoustic pressure waves. These pressure waves travel through the vessel tissue with an
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effective pressure of 50 atmospheres and create both deep and superficial calcium fractures.
The effect on deep calcium is a major benefit of lithoplasty compared with other ablation
techniques. IVL represents a user-friendly technique with a short learning curve and these
are some of the reasons that explain why it is becoming a standard approach when facing
calcified coronary lesions. One more advantage over ablative techniques is that it is ideal for
bifurcation lesions, including left main coronary disease, as the operator can wire and pro-
tect both major branches during lesion preparation with no significant downstream debris
released [58,59]. IVL has been initially evaluated in small single-arm, non-randomized stud-
ies, which have demonstrated high rates of device success with excellent early angiographic
as well as late clinical outcomes [60,61]. The DISRUPT CAD III trial was a prospective,
single-arm multicenter study designed for regulatory approval of coronary IVL, where
IVL was demonstrated to be safe and effective with a low rate of major complications. In
particular, in that study, MACE and target lesion failure (TLF) over 30 days occurred in 7.8%
and 7.6% of patients and was primarily driven by target vessel MI. There were two deaths
(0.5%) within 30 days. Angiographic complications were one severe dissection (Type D–F)
and one perforation (0.3%). At OCT examination, multiplane and longitudinal calcium
fractures after IVL in 67.4% of lesions were demonstrated, with excellent stent expansion in
those with and without calcium fractures identified by OCT [62].

6. Calcium-Ablation Techniques
6.1. Rotational Atherectomy

Intracoronary imaging studies have clearly shown that rotational atherectomy ablate
calcium causes fissuring or cracks within the ablated calcium and, as mentioned, its use
is suggested when superficial luminal calcium is found at imaging analysis and/or when
non-crossable stenoses are to be treated [63–65]. The described differential cutting operated
by rotational atherectomy is supposed to allow the mechanical ablation of hard fibrocalcific
plaques while sparing adjacent elastic tissue that deflects away from the ablating burr
(Figure 5). The Rotablator System (Boston Scientific) is made up of a nickel-plated elliptic
burr coated with diamond microscopic crystals, a single advancer that can transmit rota-
tional speed to the burr, and is connected with a gas-driven turbine and a control console
and foot pedal or an activator in the connecting handle (Figure 6, panel e) [39,66]. The
most recent indications relative to the use of a Rotablator recommend a smaller burr size
and standardized protocols (i.e., rotation speeds between 135,000 and 180,000 rpm) in
order to reduce procedural complications [67]. Dedicated 330-mm long wires are available
but their performance in heavily calcified vessels is not always optimal so they are often
inserted through an over-the-wire balloon or microcatheter after a work-horse standard
coronary wire has been used. Of note, adjunctive wires are not allowed during rotablation
to avoid wire cutting or perforation. From a practical point of view, short burr runs are
usually preferred and fluoroscopic, acoustic, and tactile signals should be monitored to
avoid significant deceleration in rotational speed (>5000 rpm), which is associated with
complications [66,67]. The latter is also achieved thanks to the “pecking motion” technique,
a forward-backward movement of the burr, ideated to reduce the effective ablation time.
Although rotational atherectomy is still considered one of the best tools for debulking
in calcified lesions, it has been found that in European countries the rate of rotational
atherectomy as a function of the total PCI number is still low (0.8–3.1%) [67]. Such evidence
is partly explained by the concern regarding the complexity of the Rotablator procedures
and potential procedure-related complications occurring in the absence of standardized
protocols. Conflicting evidence has been shown in the past, linked to the use of rotational
atherectomy before stenting. The Rotational Atherectomy Prior to Taxus Stent Treatment
for Complex Native Coronary Artery Disease (ROTAXUS) trial found a 9-month higher
late lumen loss in the rotablation group compared to the group of stented patients without
the use of rotablation; in-stent binary restenosis, target lesion revascularization, definite
stent thrombosis, and major adverse cardiac events were similar in both groups [68]. Inter-
esting findings were recently made by pooling patient-level data from the PREPARE-CALC
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(Comparison of Strategies to Prepare Severely Calcified Coronary Lesions) and ISAR-CALC
(Comparison of Strategies to Prepare Severely Calcified Coronary Lesions) randomized
trials. In this study, Rheude et al. sought to compare rotational atherectomy versus balloon-
based techniques before drug-eluting stent implantation in severely calcified coronary
lesions. Two-hundred patients with available OCT data were included and lesion prepara-
tion was obtained with rotablation; a modified balloon and a super high-pressure balloon
were compared [69]. Of note, strategy success was more frequent with rotablation versus
modified balloons and super high-pressure balloons, but clinical outcomes did not differ
among groups. Rotational atherectomy has also recently been proven to be safe and effec-
tive for the treatment of calcific left main artery stem lesions at one-year follow-up, yielding
comparable outcomes to rotablation-based PCIs performed on non-left main lesions [70].

6.2. Orbital Atherectomy

Orbital Atherectomy uses a different mechanism to reduce the calcified plaque burden
while minimizing the damage to the non-calcified tissue. It is based on the Diamondback
360◦ Coronary Orbital Atherectomy System (OAS) (Cardiovascular Systems Inc., St. Paul,
MN, USA), a percutaneous system that takes advantage of centrifugal force to modify
calcified lesions. It has an eccentrically mounted diamond-coated crown that orbits over
an atherectomy guide wire at high speeds (Figure 6, panel d). The position of the crown
within the vessel is controlled via a control handle. The crown’s orbital diameter radially
expands via centrifugal force. The OAS promises several advantages over the Rotabla-
tor: first, the average particle size created by OAS is much smaller than that produced
by rotational atherectomy and can be removed through the reticuloendothelial system.
Second, by increasing its orbit as rotational speed increases, Orbital Atherectomy allows
for the ablation of calcium using the same device (1.25-mm crown) in larger vessels (up
to 3.5 mm in diameter). Third, a bidirectional atherectomy can be performed, not only in
anterograde as in rotational atherectomy, with a consequent decrease in crown entrapment.
Fourth, the continuous flow of blood and saline solution or other lubricant solutions dur-
ing ablation reduces thermal injury, potentially decreasing no-reflow and periprocedural
complications [39,49,71]. The safety and efficacy of this system have been widely tested
in the ORBIT trials. The 3-year results of the ORBIT II trial, a single-arm trial including
443 patients with de novo severely calcified coronary lesions treated with OAS, have shown
a rate of MACE as low as 23.5%, including cardiac death, MI, and TVR. The 3-year target
lesion revascularization rate was 7.8% [71].

6.3. Excimer Laser

IVUS and OCT studies have shown that Excimer Laser coronary angioplasty (ELCA)
is not able to decrease lesion-associated calcium because the ablative effects on calcium
are minimal and success relies on ablation of the softer tissues within the calcific lesion.
This causes dissections and fragmentation of calcific deposits, presumably as part of the
photoacoustic effect [19]. Since the mid-1990s, lasers have been used in coronary and
peripheral procedures, mainly at a low to medium energy level, regardless of the lesion to
be treated. This caused initial disappointing results, with low procedural success rates, es-
pecially in the case of complex calcified lesions. The introduction of strategies using higher
energies with dedicated techniques (contrast medium, type of probe, anterograde and/or
retrograde passages, number of laser passages) significantly changed the effectiveness
of this tool [72–74]. The system consists of an excimer laser generator, the CVX-300 unit
(Philips), and a series of pulsed xenon-chlorine laser catheters capable of delivering excimer
energy via optical fibers (Figure 6, panel f). Tissue ablation is mediated by three distinct
mechanisms: photochemical, photothermal, and photomechanical. The products of pho-
toablation are <10 µm in diameter and are easily filtered by the reticuloendothelial system
with trivial consequences for the microvascular bed [75]. The efficacy of this technique in
calcified lesions has been improved by the use of contrast injection at the highest fluence
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and repetition rate (i.e., 80 mJ/mm2 and 80 Hz for the 0.9 mm catheter), the so-called
“explosion technique”, and represents a good bail-out strategy for unexpanded stents [76].

7. Conclusions

With the population aging, the presence of coronary calcified lesions is meant to in-
crease. Several effective tools and techniques have been developed to address this issue.
The use of intracoronary imaging represents an important procedural step to accurately
analyze plaque composition and distribution. This allows the selection of the most appro-
priate strategy and device in order to treat such lesions and achieve better procedural and
clinical outcomes.
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