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Abstract: Much attention has been paid lately to harnessing the diagnostic and therapeutic potential
of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs) for the prevention
and treatment of cardiovascular diseases. The genetic environment that contributes to atherosclerosis
pathophysiology is immensely complex. Any potential therapeutic application of circRNAs must
be assessed for risks, benefits, and off-target effects in both the short and long term. A search of the
online PubMed database for publications related to circRNA and atherosclerosis from 2016 to 2022
was conducted. These studies were reviewed for their design, including methods for developing
atherosclerosis and the effects of the corresponding atherosclerotic environment on circRNA expres-
sion. Investigated mechanisms were recorded, including associated miRNA, genes, and ultimate
effects on cell mechanics, and inflammatory markers. The most investigated circRNAs were then
further analyzed for redundant, disparate, and/or contradictory findings. Many disparate, opposing,
and contradictory effects were observed across experiments. These include levels of the expression
of a particular circRNA in atherosclerotic environments, attempted ascertainment of the in toto
effects of circRNA or miRNA silencing on atherosclerosis progression, and off-target, cell-specific,
and disease-specific effects. The high potential for detrimental and unpredictable off-target effects
downstream of circRNA manipulation will likely render the practice of therapeutic targeting of
circRNA or miRNA molecules not only complicated but perilous.

Keywords: circular RNA; micro RNA; atherosclerosis; cardiovascular disease; potential therapeutic
treatments

1. Introduction

Much attention has been paid lately to harnessing the diagnostic and therapeutic
potential of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs)
for the prevention and treatment of cardiovascular diseases. The advent of next-generation
sequencing and the development of bioinformatics databases have facilitated the rapid
expansion of circRNA research [1]. One recent review by Wang et al. [2] suggests that,
although further clinical trials and basic scientific research are needed, targeting cardiovas-
cular disease pathways via circRNA-mediated mechanisms may prove to be an efficacious
strategy for preventing and diagnosing cardiovascular diseases [2]. A large body of on-
going research involves the roles of circRNA molecules in atherosclerosis, the underlying
condition contributing to most cardiovascular diseases and the leading cause of death in
the world.

The desire to attenuate the progression of atherosclerosis at the genetic level is ap-
pealing. Gene regulation likely plays a large role in the pathogenesis of atherosclerosis [3].
By understanding and manipulating the genetic pathways involved in atherosclerosis, we
may be able to develop novel therapeutic targets, potentially including drugs for primary
prevention. This would be a momentous development; given the recent demotion of
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chronic low-dose aspirin use, there are limited treatment options beyond those of lifestyle
and risk factor modification for the primary prevention of cardiovascular disease. Still, 48%
of adults older than 20 years of age have cardiovascular disease and would benefit from
additional therapeutic approaches [4].

However, the genetic environment that contributes to atherosclerosis pathophysiology
is immensely complex. A review by Siebert et al. [5], which summarized the role of non-
coding RNAs, including miRNAs, in ischemic myocardial reperfusion injury, warned
of a vast interplay between all non-coding RNAs, including circRNAs, that can have far-
reaching effects throughout the entire body. Therefore, any potential therapeutic application
of circRNAs must be assessed for risks, benefits, and off-target effects in both the short and
long term [5]. Through a comprehensive review and analysis of the literature, this paper
aims to evaluate the potential of circRNAs as therapeutic targets in atherosclerosis.

2. Methods

A search of the online PubMed database for publications from 2016 to 2022 was
conducted using the following keywords: circular RNA, atherosclerosis, coronary artery
disease, oxidized low-density lipoprotein, vascular smooth muscle cells, and endothe-
lial cells. A total of 140 original research articles were included, and their findings are
summarized in Table S1 [6–145].

These studies were reviewed for their design, including methods for developing
atherosclerosis and the effects of the corresponding atherosclerotic environment on cir-
cRNA expression. Investigated mechanisms were recorded, including associated miRNA,
genes, and ultimate effects on cell mechanics, inflammatory markers, etc. Study findings
were assessed for whether they were likely protective or promoted atherosclerosis devel-
opment. This determination was made based on the association of known mechanisms
associated with atherosclerosis pathogenesis. Accordingly, enhanced proliferation, mi-
gration, apoptosis, inflammation, oxidative stress, and pathogenic particle uptake were
considered harmful, while the opposite was considered protective. Studies with both
presumed protective and harmful effects were deemed to have equivocal findings. The
most investigated circRNAs were then further analyzed for redundant, disparate, and/or
contradictory findings.

3. Results

This review identified 140 studies conducted between 2016 and 2022 (Table S1). The
majority employed in vitro models of human vascular smooth muscle cells (VSMCs) or
endothelial cells (ECs). Atherosclerosis was simulated by stimulating cells with known
pathogenic triggers, with oxidized low-density lipoprotein (ox-LDL) being the most com-
mon. Other triggers include platelet-derived growth factor-BB (PDGF-BB), high glucose,
or high-fat diets in in vivo models. The effects of these pathogenic states on circRNA,
miRNA, and their associated gene expression were then analyzed, as were their effects on
cell proliferation, migration, apoptosis, inflammation, and oxidative stress. The interaction
of these genetic molecules and their effects of expression on cell behavior and inflammation
were elucidated via various assays, especially immunohistochemical staining techniques,
after silencing the molecules of the presumed pathway. Only 19 (13.6%) studies performed
an ancillary in vivo mouse/rat model. More commonly, the particular circRNA or miRNA
level under investigation was measured in the serum of human subjects or mice with
atherosclerosis to corroborate the experimental findings in vitro.

Of the 140 studies reviewed, 95 unique circRNA molecules were identified. The
majority (76.8%) were up-regulated in in vitro atherosclerotic environments and/or the
serum of patients with atherosclerosis. Of these, 79% correlated with mechanisms known
to have pro-atherosclerotic effects in vivo, while 12.3% were associated with protective
mechanisms. Of the 25.3% of cirRNAs found to be downregulated, overexpression of
these molecules was more commonly associated with mitigation (69.6%) than propagation
(4.3%) of atherosclerosis-associated mechanisms. One circRNA molecule, circHIPK3, was
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shown to be both up-regulated and downregulated across different studies [37,61,82,143].
Of note, at least 9.6% of circRNAs that were demonstrated to have increased expression
had equivocal outcomes, i.e., they were unable to discern if the overall effects observed
were pathogenic or protective. This percentage was even higher (26.1%) when analyzing
only the molecules that were downregulated by atherosclerotic stimuli in vitro (Figure 1).
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Figure 1. The association between the overall effects of circRNA expression on the process of
atherosclerosis. Up-regulation of circRNAs in atherosclerosis was found to be most associated with
harmful (78%) effects, while downregulation was most associated with protective mechanisms (70%).
Equivocal effects were demonstrated in 10% and 26% of studies in which circRNAs were observed to
be up-regulated and downregulated, respectively.

The overwhelming majority of studies showed that circRNA molecules exerted their
effects via sponging a cognate miRNA (Table S1). In turn, this led to increased expression
of a particular gene and subsequent effects on cell mechanics and inflammatory path-
ways. Only 10 of the 140 studies demonstrated that circRNAs either executed their effects
through a mechanism independent of miRNA sponging or failed to identify an associated
miRNA [6,9,22,25,29,32,51,52,66,106]. Additionally, of the 133 miRNA molecules identi-
fied, 102 were unique, with the corollary being that 23.3% of miRNA molecules were
found to interact downstream of multiple circRNAs. To highlight the redundancies and
issues with replicability of these studies, the experimental findings of the most investigated
molecules are discussed below, with attention paid to opposing or equivocal findings and
mechanistic overlap.

3.1. CircANRIL

One of the first circRNAs discovered to play a role in atherosclerosis was circANRIL
(Antisense non-coding RNA in the INK4 locus). It is located on chromosome 9p21, variants
of which are known genetic risk factors for developing cardiovascular disease [146]. In 2010,
Burd et al. [147] demonstrated that homozygous individuals for the atherosclerotic risk al-
lele showed decreased expression of circANRIL and the coding INK4/ARF transcripts [147].
CircANRIL was later found to impair ribosome biogenesis, leading to activation of p53,
which then resulted in decreased proliferation and increased apoptosis by directly binding
to PES1 (pescadillo ribosomal biogenesis factor 1), an essential 60S-preribosomal assembly
factor in VSMCs, ECs, and adventitial fibroblasts [6]. This represents one of the rare in-
stances discovered in which circRNAs modulate atherosclerotic events via transcriptional
regulation rather than indirectly through miRNA sponging. However, whether inhibi-
tion of cellular proliferation or apoptosis ultimately has positive or negative effects on
atherosclerosis development depends on various factors that are difficult to determine with
certainty [6].

Other studies attempted to corroborate the effects of circANRIL expression in an
in vivo mouse model of atherosclerosis. Song et al. [9] showed that circANRIL overexpres-
sion was associated with the formation of atherosclerotic plaques and thombi in rats that
were fed a high-fat diet and injected with a large dose of vitamin D3 to promote arterial
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calcification [9]. The study further supported the findings of increased rates of apopto-
sis demonstrated by Holdt et al. [6], but also showed higher levels of total cholesterol,
triglycerides, LDL, and several pro-atherosclerotic and inflammatory markers, including
interleukin (IL)-1, IL-6, matrix metallopeptidase-9 (MMP-9), c-reactive protein (CRP), BCL2
associated X (Bax), and caspase-3 [9]. Another investigation demonstrated that inhibition of
circANRIL expression in a similar in vivo rat model reduced markers of vascular endothe-
lial injury, oxidative stress, and inflammation [148]. These early studies suggested that
in vivo models analyzing plaque development and inflammatory markers may produce
reliable results to establish a causal link between circRNA expression and atherosclerosis
development.

3.2. Circ_USP36/Circ_0003204

This review identified 11 different studies evaluating the role of circ_USP36 (ubiquitin
specific peptidase 36)/circ_0003204 in the pathogenesis of atherosclerosis, establishing it
as the most investigated circRNA molecule. All experiments were conducted in in vitro
models of human VSMCs and ECs [29,42,55,72,74,75,78,81,92,98,139]. Liu et al. [29] showed
that hsa_circ_0003204 was aberrantly overexpressed in ox-LDL-induced human umbilical
vein ECs (HUVECs), while knockdown of this molecule promoted proliferation, migration,
and invasion but reduced apoptosis [29]. Reduced expression of circ_0003204 also signifi-
cantly correlated with lower E-cadherin but increased activity of N-cadherin and vimentin
in oxLDL-induced HUVECs, findings that are associated with reduced cell mobility and
plaque stability, respectively [149,150]. Thus, the knockdown of circ_0003204 was associ-
ated with both increased (harmful) and decreased (protective) cellular proliferation in this
study. No associated miRNA was identified in this particular study.

Several other in vitro experiments demonstrated suppressed cell viability and promotion
of apoptosis, inflammation, oxidative stress, and cell migration and invasion associated with
increased expression of circ_USP36 and subsequent miRNA sponging in response to ox-LDL-
stimulated ECs. Specifically, these effects were attributed to circ_USP36/circ_0003204 inhibition
of miR-20a-5p, miR-98-5p, and miR-188-3p leading to increased ROCK2, vascular cell adhesion
protein-1 (VCAM-1), and TRP6 gene expression, respectively [72,74,75,81,92]. On the other hand,
Huang et al. [55] observed that, through increased expression of WNT4 from sponging of miR-
637, circ_USP36 overexpression was associated with suppressed proliferation and migration of
human aortic ECs treated with ox-LDL in vitro [55]. While largely agreeing with the effects that
circ_USP36/circ_0003204 promotes inflammation and oxidative stress, a recent study also found
decreased tube formation in HUVECs stimulated with ox-LDL through sponging of miR-491-5p
and increased expression of intercellular adhesion molecule-1 (ICAM-1) [139]. Taken together,
these studies present contradictory results regarding the effects of circ_USP36/circ_0003204
on VSMC and EC proliferation, migration, and invasion, suggesting that their regulation is
complex and clinical significance challenging to capture.

Another study showed that the expression of circ_USP36 was also increased in ox-LDL-
treated human umbilical vein VSMCs via sponging of miR-182-5p [42]. This led to increased
activity of the KLF5 gene, which induced VSMC proliferation and metastasis. Circ_USP36
knockdown inhibited this proliferation and metastasis by up-regulating miR-182-5p [42].
However, lower levels of circMTO1 in the serum of humans with atherosclerosis coincided
with augmentation of miR-182-5p, increased proliferation, and reduced apoptosis in an
in vitro analysis of ox-LDL-stimulated VSMCs. Overexpression of circMTO1 led to less
inhibition of miR-182-5p and subsequently greater activation of the RASA1 gene, reduced
proliferation, and increased apoptosis of VSMCs [57]. Similarly, while lower levels of
circ_0065149 were observed in a model of ox-LDL human umbilical vein ECs in vitro, over-
expression was associated with miR-330-5p sponging and associated effects of increased
cell viability, proliferation, and migration, but reduced apoptosis and inflammation [62].
These outcomes are opposed to those of increased inflammation with miR-330-5p sponging
observed by Su et al. [78]. These studies demonstrate that different circRNA molecules can
exhibit both protective and detrimental effects on the development of atherosclerosis via
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sponging of the same miRNA. This suggests that targeting a specific circRNA for therapeu-
tic purposes could possibly result in unintended pathogenic consequences in opposition to
the objective of such manipulation (Figure 2).
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Figure 2. The role of circ_0003204/USP36 in the pathogenesis of atherosclerosis. Sponging of miRNAs
by up-regulated circ_0003204/USP36 has been shown to lead to (1) promotion of growth, proliferation,
migration, apoptosis, inflammation, and oxidative stress of ECs [72,74,75], but also (2) attenuation of prolif-
eration and migration of ECs, known to be protective from further intimal hyperplasia [55]. Furthermore,
some miRNAs are inhibited by multiple circRNAs, the effects of which have (3) and (4) contradictory
outcomes on cell growth, proliferation, migration, and inflammation [29,42,78,81,92,98,139]. These oppos-
ing effects make it difficult to predict the overall effects of targeting a specific circRNA or miRNA for
therapeutic purposes.

3.3. CircCHFR

Six in vitro experiments examined circCHFR [21,43,85,112,117,128]. All studies showed
consistent results of upregulation of circCHFR in atherosclerotic environments simulated
by treating cells with ox-LDL or PDGF-BB. Subsequent miRNA sponging and overexpres-
sion of various genes were further associated with pro-atherosclerotic mechanisms. In
one model, sponging of miR-370 led to increased FOXO1/Cyclin D1 expression, facilitat-
ing VSMC proliferation and migration [21]. Another in vitro study linked these findings
with increased markers of inflammation via miR-214-3p inhibition and increased Wnt4
expression [43]. Increased circCHFR activity was also associated with the augmentation
of apoptosis and proinflammatory cytokine secretion. Reciprocally, silencing of circCHFR
increased cell survival and reduced apoptosis in ECs [112]. When analyzed at the level of
circRNA expression alone, these studies appear to show that up-regulation of circCHFR in
models of atherosclerosis consistently and reliably leads to pathogenic progression.

However, miR-370 has been found to be regulated by other circRNA molecules with
opposing downstream consequences. For example, sponging of miR-370 by circ-BANP
has been associated with reduced proliferation and migration of HUVECs, the opposite
of that found through the interaction of cricCHFR and miR-370 [21,45]. Overexpression
of circ_0124644 leading to inhibition of miR-370 similarly had equivocal outcomes on
atherosclerosis progression by inhibiting cell viability, proliferation, and angiogenesis but
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promoting apoptosis and inflammation [121]. Silencing of miR-370 has also been associated
with sinus node function recovery in patients with heart failure [151]. These studies suggest
contradictory effects via similar mechanisms of miR-370 inhibition (Figure 3).
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Figure 3. The role of circCHFR in the pathogenesis of atherosclerosis. Sponging of several miRNAs
by circCHFR has been shown to lead to (1) increased cellular proliferation, migration, invasion,
inflammation, and reduced cell cycle survival—all mechanisms known to contribute to atherosclerosis
development [43,85,128]. However, circCHFR has also been demonstrated to (2) reduce the expression
of miR-370 [21], the inhibition of which has also been shown to have opposing effects compared to
circCHFR via sponging by (3) circ-BANP and (4) circ_0124644 [45,121]. (5) Disinhibition of mir-370
also likely adversely affects sinus node function in patients with heart failure [151].

Thus, therapeutic interventions aimed at reducing circCHFR expression may lead to
conflicting results via downstream gene regulation and disparate effects on VSMC and
EC proliferation and migration. Even if these effects ultimately reduce atherosclerosis
progression, disinhibition of miR-370 may promote life-threatening arrhythmias in patients
with heart failure, suggesting that cardiovascular pathologies other than atherosclerosis may
also be negatively affected [151]. Furthermore, since these studies were not corroborated in
in vivo models, it is hard to determine the ultimate effects of the mechanisms elucidated
on the process of atherosclerosis. While most studies also observed that circCHFR was
up-regulated in the serum of patients with atherosclerosis, this up-regulation may lead to
the promotion of some genes that foster protective effects against atherosclerosis.

3.4. CircHIPK3

Four in vitro models studied the effects of circHIPK3 in atherosclerosis pathogen-
esis [37,61,82,143]. Two of these investigations showed higher levels of circHIPK3 in
pro-atherosclerotic in vitro environments, while two demonstrated attenuated activity
(Table S1). Wang et al. [82] showed that increased levels of circHIPK3 in mice aortic EC-
secreted exosomes in response to high glucose levels correlated with more significant
proliferation and inhibition of apoptosis of VSMCs and VCAM-1 expression and uptake
of glucose-rich exosomes by VSMCs. This occurred via sponging of miR-106a-5p and
amplified expression of FOXO1 and VCAM-1 [82]. Similar effects were seen in human
aortic and umbilical artery VSMCs through a mechanism involving inhibition of miR-637,
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leading to increased expression of cyclin-dependent kinase 6 (CDK6) [61]. In opposition to
these findings, sponging of miR-637 by circ_0002194 correlated with reduced angiogenesis
and increased apoptosis rates of ox-LDL-treated vascular ECs [122].

Zhang W-B et al. [143] found lower levels of circHIPK3 in the serum and tissues
of patients with atherosclerosis. This was associated with osteogenic and chondrogenic
differentiation and increased cell mineralization and calcium content in VSMCs in vitro.
In fact, overexpression of circHIPK3 led to sponging of miR-106a-5p and subsequent
activation of the MFN2 gene, which inhibited osteogenic and chondrogenic differentiation,
ultimately leading to less calcium accumulation in VSMCs [143]. In this case, miR-106a-5p
sponging had beneficial effects, which contradicts the findings that miR-106a-5p inhibition
facilitated pathogenic proliferation and migration of VSMCs [82]. Another study showed
that downregulation of circHIPK3 led to disinhibition of miiR-190b, decreased activity of
the ATG7 signal pathway, and subsequently lower rates of autophagy and higher rates of
lipid accumulation in both mice in vivo and ox-LDL-treated human umbilical vein ECs
in vitro [37]. On the other hand, overexpression of circHIPK3 resulted in sponging of
miR-190b and increased activity of the ATG7 pathway, which correlated with reduced lipid
accumulation and promoted autophagy (Figure 4).
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Figure 4. Studies investigating the effects of in vitro atherosclerosis environments on circHIPK3 demon-
strate both (1) and (4) harmful effects of cellular proliferation, migration, and apoptosis [61,82], and (2) and
(3) protective effects of inhibited osteogenic differentiation, mineralization, and calcium deposition, reduced
lipid accumulation, and increased rates of autophagy [37,143]. Both (1) harmful and (2) protective effects
were seen from sponging of miR-106a-5p [82]. Opposing effects on angiogenesis were also demonstrated
via sponging of miR-637 by (4) circHIPK3 and [61] (5) circ_0002194 [122], the latter of which suggests
equivocal effects on the pathogenesis of atherosclerosis due to the observed impaired angiogenesis but
enhanced oxidative stress.

Analysis of the results of the circHIPK3 investigations illustrates three major points of
contention: 1. In similar proxies for atherosclerotic environments, crcHIPK3 expression was
found to be both increased and decreased. 2. Analysis downstream of circHIPK3 expression,
i.e., of miR-637, showed opposing effects when it was inhibited by other circRNA molecules,
i.e., circ_0002194. 3. The ultimate effects of overexpression of circHIPK3 were found to be
both pathogenic (increased proliferation, apoptosis, and glucose uptake) and protective
(reduced angiogenesis, apoptosis, osteogenic differentiation, and lipid accumulation) in
regard to atherosclerosis development and progression. It is possible disparate effects
were seen due to different tissue types and methods of atherosclerosis stimulation in vitro.
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However, similar results would have been expected regardless of the method used to
simulate atherosclerosis. Furthermore, the possibility that intervening in one tissue type to
halt atherosclerosis progression could promote atherosclerosis in a different tissue type is
alarming. Alternatively, these findings could point to issues with the general replicability of
these studies in vitro. Regardless, they underscore the complexity of the genetic milieu of
atherosclerosis and the likely unintended negative consequences of circRNA manipulation.

4. Discussion

Several issues have been raised with using circRNAs as potential therapeutic targets
to modify disease processes. Some systemic problems include the toxicity of nanoparticles,
mis-spliced byproducts, and synthetic circRNA immunogenicity [152]. Highlighted by this
review—with respect to in vitro models evaluating atherosclerosis—are also questions of
study design, interpretation of overall results, contradictory effects caused by off-target
RNA silencing, and cell-specific and disease-specific effects. No two studies that used a
supplemental in vivo model studied the same circRNA. Thus, we cannot comment on the
redundancy or reproducibility of the effects of a particular circRNA within in vivo models.

4.1. Study Design and Issues with Interpretation

As previously discussed, the majority of the circRNA molecules that were studied
were upregulated in the serum of subjects with atherosclerosis and in in vitro models of
atherosclerosis induced via established pathogenic triggers. This is likely because circRNA
molecules with increased levels are easier to identify than ones with decreased expression,
which represents a kind of ascertainment bias in identifying potential circRNA targets
for investigation. The majority of experiments, which found increased expression of cir-
cRNA molecules in states of atherosclerosis, also found an association with mechanisms
known to promote atherosclerosis in vivo—most commonly proliferation and apopto-
sis of ECs or VSCMS—while silencing the circRNA under investigation and promoting
its cognate miRNA resulted in opposite effects. However, whether angiogenesis and
apoptosis in atherosclerosis are beneficial or harmful depends on their effects on intimal
hyperplasia, plaque stability, plaque content, phenotypic switching, and the stage of
atherosclerosis [153,154]. Thus, it is difficult to determine the clinical significance of
atherosclerotic mechanisms in vitro.

Even when conceding the benefit of the doubt that a particular mechanism known to
promote atherosclerosis in vivo, e.g., proliferation and migration of EC and VSMCs, has
similar effects in vitro, a significant percentage of studies yielded equivocal results. Often,
seemingly opposing effects were observed in response to upregulation or downregulation
of a particular circRNA in vitro. For example, Chen et al. [45] demonstrated that while circ-
BANP was associated with apoptosis and inflammation and promoted cell viability, it also
correlated with increased migration, invasion, and tube formation of ECs [45]. Antagonistic
effects on proliferation, migration, and promotion of calcification of VSMCs by circHIPK3
sponging of miR-106a-5p were also observed (Figure 4). Whether these mechanisms, which
have seemingly oppositive effects on atherosclerosis development, lead to the progression
or attenuation of atherosclerosis in toto, it is difficult to ascertain via in vitro analyses alone.
EC dysfunction present in the early stages of atherosclerosis is associated with chronic
inflammatory changes in the arteries [155]. Alternatively, the results could have been
inaccurate, pointing to potential issues with the general replicability of the results of these
study designs.

Ancillary in vivo studies often investigate different pathogenic processes or stages
of atherosclerosis and therefore do not effectively corroborate the in vitro findings. For
example, one study that evaluated the effects of circGSE1 expression on EC senescence
also looked at the effects of angiogenesis on limb ischemia in mice via femoral artery liga-
tion [125]. Few studies have analyzed the in vivo formation of atherosclerosis. Song et al. [9]
showed that circANRIL overexpression was associated with the formation of atherosclerotic
plaques and thrombi in rats that were fed a high-fat diet and were injected with a large
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dose of vitamin D3 (to promote arterial calcification) [9]. However, as extensively demon-
strated in this review, circRNA molecule expression can correlate with either promotion
or attenuation of atherosclerosis and therefore does not establish a causative relationship.
Min et al. [123] showed increased expression of ciPVT1 in the senescent umbilical vein and
coronary artery ECs, while silencing ciPVT1 led to delayed senescence, promoted prolifera-
tion, and increased the angiogenic activity of ECs. A correlative in vivo mouse study using
a plug assay found that plugs mixed with silenced ciPVT1-transfected HUVECs showed
less new vessel formation macroscopically [123]. This study shows the potential of the
findings of in vivo studies to corroborate those of in vitro analyses of circRNA interactions
and their effects on atherosclerosis [123]. However, such a model was rarely used in these
investigations.

4.2. Off-Target RNA Silencing

This review identified a significant overlap of circRNA and miRNA interactions,
resulting in disparate and opposing effects on mechanisms associated with the develop-
ment of atherosclerosis. As seen in Figures 2–4, the most investigated circRNA molecules,
circ_USP36/circ_0003204, circCHFR, and circHIPK3, were found to have disparate, oppos-
ing, and often contradictory results across studies. While the majority of miRNAs inhibited
by circ_USP36/circ_0003204 led to the regulation of genes that promoted pathogenic mech-
anisms such as increased proliferation, migration of cells, and inflammation, the sponging
of others was found to be correlated with the opposite effects (Figure 2). Similar findings of
harmful, protective, and equivocal effects on atherosclerosis development were seen when
analyzing the mechanisms of circCHFR (Figure 3) and circHIPK3 (Figure 4) across studies.

Sponging the same miRNA by different circRNAs also had contradictory effects on cell
proliferation, apoptosis, and inflammation. For example, miR-182-5p was demonstrated
to be affected downstream of four different circRNA molecules: circ_USP36, circMTO1,
hsa_circ_0004831, and Circ_0050486 [42,57,77,142]. While sponging of miR-182-5p by
circ_USP36 led to increased activity of the KLF5 gene, which induced VSMC proliferation
and metastasis, inhibition of miR-182-5p via overexpression of circMTO1 and subsequent
RASA1 gene activation had the opposite effects of decreased VSMC proliferation and
decreased apoptosis (Table S1). As another example, silencing of overexpressed circ-
CHFR molecules led to de-inhibition of miR-370, allowing it to prevent expression of
FOXO1/cyclin D1 genes, resulting in decreased proliferation and migration of VSMCs [21].
Circ-BANP silencing, which similarly resulted in increased levels of miR-370, however,
was ultimately associated with the opposite finding: increased EC migration, invasion,
and tube formation [45]. Similar results were seen when looking at the different effects of
circHIPK3 and circ_0002194 on the sponging of mir-637 (Figure 4). All these cases underline
the ubiquitous collateral off-target downstream and lateral effects of targeting a particular
circRNA or miRNA for therapeutic purposes.

4.3. Differential Effects across Cell Types and Diseases

There were also significant cell-specific effects observed on the process of atheroscle-
rosis development. Ox-LDL-treated HUVECs were associated with reduced expression
of circHIPK3 in vitro, while overexpression correlated with reduced lipid accumulation
and the promotion of autophagy [37]. In contrast, increased proliferation and reduced
apoptosis of VSMCs, most likely a pathogenic mechanism, were observed in conjunction
with increased circHIPK3 expression of aortic and umbilical artery VSMCs in vitro [61]. In
response to a high-glucose environment, mouse aortic EC-secreted exosomes also promoted
proliferation and inhibited apoptosis of VSMCs while promoting VCAM-1 expression and
uptake of exosomes by VSMCs [82]. In human VSMCs, circHIPK3 was downregulated
in tissues and blood samples of atherosclerosis patients and VSMCs with osteogenic and
cartilage differentiation. Concordantly, overexpression of circHIPK3 was associated with
the athero-protective effects of inhibited osteogenic and chondrogenic differentiation and
reduced cell mineralization and calcium content [143].
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Thus, increased expression of circHIPK3 was associated with both protective and
detrimental mechanisms in the context of atherosclerosis development. The effects likely
depend on particular cell types tested, e.g., VSMCs, ECs, and/or atherosclerosis-inducing
agents, and overall milieus. Opposing effects in different cells further complicate the
selection of cricRNA molecules such as circHIPK3. In this particular case, these studies
suggest that silencing of circHPIK3 would lead to the negative effects of increased lipid
accumulation in ECs and calcification of VSMCs but the positive effects of reduced prolif-
eration and increased apoptosis in VSMCs, as well as decreased VCAM-1 expression and
VSMC adhesion, indicating contrasting effects across different cell types.

Furthermore, it is likely that targeting a specific disease process, such as atherosclero-
sis in this case, may have unintended effects on other cardiovascular pathologies. While
sponging of miR-370 by circCHFR led to increased FOXO1/Cyclin D activity which en-
hanced VSMC proliferation and migration, inhibition of miR-370 was also associated with
beneficial effects on sinus node function in an in vitro mouse model of heart failure [21,151].
Thus, therapy aimed at silencing circCHFR to mitigate atherosclerosis development would
likely lead to increased miR-370 expression, which may have pathogenic effects on sinus
rhythm function in patients with heart failure. In addition, there are numerous extra-cardiac
disease processes that may be affected by such genetic manipulation, the effects of which
are hard to account for. For example, miR-370 has also been shown to play a regulatory role
in various cancers, including cervical, ovarian, lung, gastric, and hepatocellular, among
many others [156–160].

In summary, silencing of a particular circRNA leading to disinhibition of its related
miRNA could result in the intended effect of halting atherosclerosis. However, several
other pathways would need to be accounted for to mitigate the unintended consequences of
amplifying atherosclerosis or other disease progressions. These include disparate, opposing,
and contradictory downstream and lateral effects of silencing a particular circRNA in
different tissue types and varying disease processes. Any risk-benefit analysis aimed at
evaluating the adoption of such a therapeutic approach would ultimately be limited by the
sheer scope of genetic interactions and their effects, as well as the discovery and knowledge
of those mechanisms and effects.

5. Conclusions

This review represents the largest and most systematic review of studies evaluating
the role of circRNA in the pathogenesis of atherosclerosis. With a focus on the most
studied molecules, many disparate, opposing, and contradictory effects were observed
across experiments. These include levels of the expression of a particular circRNA in
atherosclerotic environments, attempted ascertainment of the in toto effects of circRNA or
miRNA silencing on atherosclerosis progression, and off-target, cell-specific, and disease-
specific effects. Accordingly, many of these studies conclude that a specific circular RNA
regulates atherosclerosis. This review shows that this regulation is a complex orchestration
more akin to directing traffic with multiple moving vehicles and intersections than a linear
assembly line. Given the high potential for detrimental and unpredictable off-target effects
downstream of circRNA manipulation, the practice of therapeutic targeting of circRNA
or miRNA molecules appears too complex at the current level of knowledge. Future
studies need to pay attention to the mechanisms being examined and manipulated in
the context of stages of atherosclerosis, cell type, and downstream and lateral effects of
circRNA manipulation. In this regard, we need more correlative in vivo studies designed
to investigate the role of circRNAs in atherosclerosis development and progression.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm12134446/s1, Table S1: A summary of the mechanisms of the 140 studies
investigating the role of circular RNA in the pathogenesis of atherosclerosis from the years 2016 to 2022, as
identified in PubMed.
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