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Abstract: Since its first introduction, levodopa has become the cornerstone for the treatment of
Parkinson’s disease and remains the leading therapeutic choice for motor control therapy so far.
Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskine-
sias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical
phenomenology and the temporal relationship during a levodopa regimen, less is clear about the
pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory
activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism,
in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia on-
set. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on
pathophysiology, clinical manifestations, therapy management strategies and future directions.

Keywords: Parkinson’s disease; motor complications; levodopa-induced dyskinesias; LIDs;
pathophysiology; clinical manifestations; therapy management

1. Introduction

After the description of the pathological correlate of parkinsonian syndrome, character-
ized by the degeneration of the dopaminergic neurons of the substantia nigra pars compacta
(SNc) [1], the main goal of Parkinson’s disease (PD) treatment is to restore dopaminergic
transmission [2,3]. Although several options to improve synaptic dopaminergic trans-
mission are available, such as dopamine receptor agonists, COMT inhibitors and MAO-B
inhibitors, levodopa still remains the most effective pharmacological treatment for PD [3].

Abnormal involuntary movements, or dyskinesias, along with motor fluctuations,
are motor complications of chronic levodopa treatment and neurodegeneration, causing
impairment in the quality of life [4]. Even in the first descriptions of levodopa effects in PD
patients, in 1967-69, Cotzias and Papavasiliou [5] described the presence of involuntary
movements after levodopa administration, during the peak of therapeutic effect [2] in
particular in patients with the longest disease duration. The pathophysiology of dyski-
nesias is still far from being clearly elucidated. The key risk factors for developing such
abnormal involuntary movements are levodopa dose and disease duration/severity [6,7].
The non-physiologic intermittent pulsatile stimulation of dopamine (DA) receptors and
the subsequent changes in proteins and genes produce alterations in the neuronal firing
patterns [8–10], which are well-known dyskinesia-contributing factors.

The application of invasive neurophysiological techniques opened the way to closely
recording neuronal firing activity [11]. Specific oscillatory activities of both cortical areas
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and basal ganglia neurons superimposed to dyskinesia appearance have been described,
reinforcing the hypothesis of a pivotal role of such oscillations in the genesis of levodopa-
induced dyskinesias (LIDs) [12–19]. Recognizing troublesome dyskinesias is crucial for
the movement disorder specialist, since their presence is considered a marker of advanced
Parkinson’s disease and an indicator of the eligibility for device-aided therapy [20].

In the present review, we aimed to summarize the current state of the art in the field
of LIDs. A global overview on LIDs is provided, with a focus on the most recent evidence
about clinical aspects, pathophysiology and neurophysiology. Conventional strategies
for the therapeutic management of LIDs along with new possible therapeutic approaches
are reported.

2. Levodopa-Induced Dyskinesias
2.1. Clinical Risk Factors

The main risk factors for developing LIDs are younger age, female sex (biased by a
lower weight), longer disease duration, longer PD duration before the initiation of levodopa,
more advanced disease and the dose and duration of levodopa treatment. Studies in the lit-
erature agree that levodopa therapy carries a higher risk than DA [6,7]. An RCT, ELLDOPA
study, demonstrated how patients receiving a higher levodopa dosage (>300 mg) showed a
significantly higher risk of developing LIDs [21]. Abnormal involuntary movements do not
occur exclusively with levodopa therapy: dopamine agonists [22–27], COMT inhibitors [28]
and MAO inhibitors [29] could be correlated with such abnormal movements.

2.2. Genetic Risk Factors

Because LID susceptibility varies greatly from patient to patient, it is possible that genetic
factors contribute to the development of LID. Genes involved in dopamine metabolism [30],
transport [31] and signaling [32], as well as genes involved in glutamate transmission [33]
and synaptic plasticity [34], have been linked to an increased risk of developing LID [35,36].

The following table (Table 1) lists some of the important genes connected to the genetic
risk of LID.

Table 1. Genetic risk factor for LIDs.

Gene Function Gene Variant Ref.

COMT Involved in the metabolism of
dopamine Val158Met [30]

DRD2 Encodes the D2 subtype of the
dopamine receptor ANKK1 TTCTA haplotype [32]

BDNF Involved in neuronal survival and
synaptic plasticity Val66Met [34]

SLC6A3 Dopamine transporter gene (DAT) 40-bp VNTR [31]

GRIN2A
Encodes a subunit of the NMDA
receptor, involved in glutamate

transmission
rs7192557 and rs8057394 [33]

Legend: BDNF, brain-derived neurotrophic factor gene; COMT, catechol-O-methyltransferase; DRD2, dopamine
receptor D2 gene; GRIN2A, N-methyl- d -aspartate receptor subunit 2A; SLC6A3, dopamine transporter gene.

A recent systematic review and meta-analysis of genetic factors related to LIDs ana-
lyzed 33 studies including a total of 27,092 subjects of different ethnicities. They analyzed
37 genes (22 possibly associated with dyskinesia) and 158 variants (94 possibly related to
dyskinesia). The studies reviewed demonstrated inconsistent results, and the meta-analysis
failed to demonstrate any association between genetic factors and LID susceptibility [37].

It is crucial to remember that the genetic component of LID is complex and involves the
interaction of several genes in addition to the significant influence of non-genetic factors.
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2.3. Epidemiology

From the first introduction of levodopa, in the late 1960s, abnormal involuntary move-
ments have been reported in about half of patients after 6 months of treatment [38]. Clinical
studies [7,39,40], literature meta-analysis [41] and trials [21–24,28,42–45] that investigated
the phenomenon of levodopa-induced dyskinesias, focusing on the temporal delay between
levodopa-based therapy initiation, the starting time of abnormal involuntary movements
and the rate of the occurrence of dyskinesias, are expressed as a scatter plot in Figure 1 and
listed in Table 2.
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Figure 1. Relationship between the incidence of levodopa-induced dyskinesias and levodopa expo-
sure time. Data in the graph derive from the mean levodopa exposure time from each study reported
in Table 2 expressed in years, the blue line represents the trend line for the reported data.

Table 2. Relationship between the incidence of levodopa-induced dyskinesias and levodopa expo-
sure time.

Type of Study N◦ Patients Levodopa
Exposure

% Dyskinetic
Patients Ref.

Meta-analysis

335 (pre-levodopa era) 3–6 w 23.3

[41]

606 (pre-levodopa era) 2–4 m 34.5

606 (pre-levodopa era) 5–6 m 53.4

2645 (pre-levodopa era) 7–12 m 54.8

982 (pre-levodopa era) 1–2 y 71.9

297(pre-levodopa era) 2.5–3.5 y 56.7

432 7–12 m 7

575 1–2 y 28.7

747 2.5–3.5 y 26.9

1599 4–6 y 36.2

514 9–15+ y 87.8

Prospective, double-blind,
randomized clinical trial

88 5 y 45
[24]

27 10 y 77.8

Clinico-pathological 42
6.4 y 31

[39]
14.3 y 61.9
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Table 2. Cont.

Type of Study N◦ Patients Levodopa
Exposure

% Dyskinetic
Patients Ref.

Community-based 87

<5 y 11

[7]6–9 y 32

>10 y 89

Community-based 126
5 y 30

[40]
10 y 59

DATATOP 352 20.5 m 30 [42]

FIRST
187 on IR 5 y 20.6

[43]
193 on CR 5 y 21.8

056-study 45 5 y 45 [23]

CALM-PD study 131 3 y 54 [44]

PELMOPET study 90 3 y 26 [22]

ELLDOPA study

92 (150 mg/die) 8 m 3

[21]88 (300 mg/die) 8 m 2

91 (600 mg/die) 8 m 16

STRIDE-PD study

372 (Ldopa)

2 y

32

[28]373
(Ldopa + entecapone) 38

SIDNEY study 52 15 y
94%

(12% severe
dyskinesias)

[45]

Legend: w, weeks; m, months; y, years.

In the study of Ahlskog and Muenter [41], the authors analyzed the cumulative
frequency of levodopa-induced dyskinesias through a meta-analysis of the literature during
discrete intervals of treatment from 1966 to September 2000, including time-series pre- and
post-levodopa availability. The authors concluded that patients with a diagnosis of PD
prior to levodopa introduction had a higher frequency of levodopa-induced dyskinesias
in the early phase of treatment, with 53.4% of them experiencing involuntary movements
just 5–6 months after starting levodopa. This contrasts with modern-era series, in which
the occurrence of abnormal involuntary movements was negligible for the first 1–2 years
on levodopa. At 4–6 years of follow-up, patients that started antiparkinsonian therapy
based on a levodopa regimen still had lower median dyskinesia frequencies (36–39%).
Conversely, dyskinesias were present in 90% of PD patients in the only three modern-era
series that reported the cumulative dyskinesia frequency over a 9-year period of therapy
with levodopa. Of note, in a 5-year, double-blind study, PD patients randomized ab
initio to levodopa showed a three-fold probability of exhibiting dyskinesias than subjects
initially randomized to Ropirinole, and the median time to dyskinesia appearance was
significantly longer for the group that firstly assumed the dopamine agonist. After a
5-year follow-up, 45% of patients randomized to initial therapy with levodopa developed
involuntary movements, while, after 10 years on levodopa, dyskinesias occurred in 77.8%.
Additionally, the median time to dyskinesia onset was 7 years in subjects originally treated
with levodopa [24]. It is worth noting that Rajput and Fenton [39] designed the only
reported study so far that highlighted the pattern of the motor complications of long-
term levodopa treatment in pathologically confirmed PD. The study concluded that after
14.3 years of levodopa exposure, dyskinesias occurred in 61.9% of patients and represented
the earliest and most common adverse effects of levodopa. In the ELLDOPA study [21],
early PD patients were randomized to receive different daily carbidopa–levodopa regimens
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up to 150 mg and 600 mg or assigned to the placebo group for a period of 40 weeks,
followed by a withdrawal of 2 weeks. The higher the levodopa dose was administered, the
higher the incidence of dyskinesias: abnormal involuntary movements occurred in 16% of
patients after taking 600 mg/die of levodopa for 8 months compared to 3% of subjects that
were on 150 mg/die. Finally, it is worth citing the Sydney Multicenter Study [45] because it
was the only study to deeply define the clinical characteristics of dyskinesias, providing
information about their severity. In this study, 149 previously untreated PD patients were
randomized to initial blinded treatment with bromocriptine or levodopa. Of the 52 patients
surviving at least 15 years, 94% experienced dyskinesias. Moreover, 6 of the 52 subjects
(12%) had severe involuntary movements with a Unified Parkinson’s Disease Rating Scale
(UPDRS) item 33 of 3. Levodopa-induced dyskinesias started after a mean duration of
treatment of 4.2 years for the levodopa group.

2.4. Clinical Manifestations

LIDs are arrhythmic, not stereotyped, casual, discontinuous, involuntary movements
that can involve any body district and in particular limbs, the head and the trunk. From
a phenomenological point of view, LIDs can appear in different ways as choreic, ballistic,
athetoid or dystonic movements. They are present at rest and can be increased by voluntary
movements, cognitive activities and emotional stressors.

ON-period dyskinesias are more common than OFF-period dyskinesias, are choreiform
or choreoathetoid in nature and can sometimes even be ballistic [46].

Levodopa-induced dyskinesias can be further classified into peak-dose dyskinesias,
occurring during the ON phase in coincidence with the peak plasma level of levodopa and
affecting mainly the axial musculature and proximal upper limbs. Square-wave dyskinesias
are a particularly severe form of ON dyskinesias: this kind of LID occupies the entire ON phase,
and the patient does not experience the ON motor state without dyskinetic movements [47].

Another type of dyskinesia, diphasic dyskinesia [48], emerges at lower levodopa plasma
levels during the transitions from ON to OFF phases and from OFF to ON phases, involving
lower limbs asymmetrically. Diphasic dyskinesias characteristically affect lower limbs with
repetitive rapidly alternating dystonic flexion/extension foot movements or leg kicking in a
stereotyped pattern, often associated with high-stepping and bizarre gaits [49]. Additionally,
it was found that patients who have never had diphasic dyskinesia run the chance of
developing it after starting an intestinal infusion of levodopa/carbidopa monotherapy [50].

The last mentioned type occurs only during the OFF phase in the phenomenological
form of dystonia [46,51–54] (Figure 2).
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2.5. Objective LID Monitoring

Clinical evaluation remains the gold standard for motor symptom identification and
diagnosis in routine clinical practice. However, new technologies, like wearable mo-
tion sensor devices, are opening new ways not only for continuous at-home symptom
monitoring [55,56] but also for the objective and quantitative description of PD motor
symptoms [57–59], like tremors [60–63], bradykinesia [64–66], rigidity [66–69], gait, balance
and postural issues [70–75], alongside motor complications like motor fluctuations and
dyskinesias [76–78]. Additionally, among non-wearable sensors, video-based systems
represent a reliable solution to assess the features of LIDs [79]. In addition, data science
with the development of artificial intelligence and machine learning algorithms will further
improve the diagnostic process [80–82], motor symptom identification [83–85] and the
management and optimization of the therapy to avoid motor complications [86] (Figure 3).
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2.6. Pathophysiology
Levodopa Pharmacokinetics and Pharmacodynamics

Oral levodopa has a bioavailability of 30% because it is highly metabolized into DA by
peripheral Aromatic L-amino acid decarboxylase (AADC) expressed in the gut. Concomi-
tant administration of AADC peripheral inhibitors (AADCI) increases the bioavailability
of levodopa up to three times, reducing the required therapeutic dose [87]. Levodopa
competes with the transport system of neutral amino acids both in the intestinal mucosa
and the blood–brain barrier [87]. Meals with a high protein intake increase the plasmatic
concentrations of neutral amino acids, reducing the absorption of levodopa and its ther-
apeutic effect [88]; therefore, the levodopa administration regimen should be adapted to
the mealtime in order to enhance its therapeutic effect [89]. In addition, mathematical
models showed that not all amino acids compete with levodopa absorption and that a
serine-rich diet could even improve the bioavailability by 22% compared with the ante
cibum administration [90]. The evolution of pharmacokinetic and pharmacodynamic pa-
rameters with disease progression has been widely investigated in the literature [87,91–97].
Variation in pharmacokinetic values in advanced PD stages is controversial: some studies
evidenced no change in levodopa kinetics for advancing disease [87,95,96,98,99], while
others demonstrated that levodopa pharmacokinetic parameters may be useful to deter-
mine disease severity and the duration of Parkinson’s disease [94,100]. For example, in the
work of Adamiak and Kaldonska [94], higher Cmax and AUC values were observed in
patients with more advanced Hoehn and Yahr stages. In the same study, the authors further
demonstrated a correlation between the age of patients and Tmax, while disease duration
was directly related to AUC. Moreover, Nyholm [101] hypothesized that a reduced activity
of the levodopa metabolizing enzymes may increase the AUC in patients on longstanding
levodopa therapy. This is particularly true for the elderly, probably related to a reduced
clearance. Conversely, as demonstrated by Contin and Riva [97], the latency of response
and the duration of response to a standard levodopa test dose are significantly shortened
with disease progression, while the magnitude of the effect is unchanged [98] or even
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enhanced [87,95,102,103]. Contin et al. [93,104] highlighted the progressive reduction in lev-
odopa half-life with worsening of the disease over the years and with a negative correlation
with the severity of symptoms. The authors proposed the computed half-life of levodopa
as an indicator of nigrostriatal dopaminergic functionality and integrity [93,104]. In the
work of Triggs and Charles [100], a higher degree of drug receptor occupancy and receptor
desensitization indicated an advanced disease stage, while Adamiak and Kaldonska [94]
demonstrated a correlation between disease duration and EC50. It has been further postu-
lated that higher EC50 values are underpinned by most advanced disease stages, associated
with dyskinesias and motor fluctuations [100,105]. Finally, as highlighted by Adamiak
and Kaldonska [94], EC50 itself suggests drug sensitivity, while its changes can express
dopamine availability.

2.7. Neurophysiology

Neurophysiology techniques are useful to understand the pathophysiology that under-
lies LIDs. Non-invasive techniques, like electroencephalogram [106–108], let one explore
the cortical oscillations related to Parkinson’s disease, while invasive techniques, like local
field potential (LFP) recordings through deep brain stimulation (DBS) electrodes, provide a
more informative insight into basal ganglia’s pathological oscillations [11].

Indeed, LIDs have been associated with changes in the electrophysiological activity of
the motor cortex and basal ganglia circuitry. Both in vivo single-cell recordings and LFPs
highlighted the main characteristics of the neuronal firing pattern during LIDs. Single-cell
recording using microelectrodes provides information about the frequency and pattern
of the discharge of single neurons [109]. The classical model of the basal ganglia function
considers LIDs as a result of the over-decreased neuronal firing rates of the globus pallidus
internus (GPi), leading to the increased activity of thalamocortical motor circuits [110,111].
These observations have been confirmed in human studies in intra-operatively induced
dyskinesias by the administration of apomorphine during pallidotomy in PD patients. A
reduction in GPi firing rate was recorded with respect to the OFF state [112–114], while no
difference was observed between the ON and dyskinetic states [112,113]. The difference in
neuronal firing activity concerns not only the frequency but also the pattern of discharge.
In ON-state dyskinesias, an increment of burst-like and irregular discharges was observed
compared to the OFF state [112–114]. Regarding subthalamic nucleus (STN) recording, the
mean firing rate of the neurons was not reduced during the ON state without dyskinesias
compared to the OFF state. Conversely, it was significantly reduced during LIDs with an
increment of spikes in a burst that was absent in the ON state without dyskinesias [113]. The
role of the globus pallidus externus (GPe) in LIDs is still unclear. Lozano et al. [115] showed
an increment in the firing rate of 50–90%, but further confirmations are needed [115]. The
in vivo recording of neuronal oscillatory activity in the GPi, STN and substantia nigra pars
reticulata (SNr) is obtained through implanted DBS electrodes. In the STN, peak-dose
dyskinesias were associated with an increment in the power of the theta-alpha (4–10 Hz)
band with a mean frequency of 8.38 Hz [16,116]. This finding is quite specific and has
been confirmed by the increment of the power in the theta-alpha band only when patients
exhibited dyskinesia and not during the ON period without dyskinesia. Moreover, in
patients with unilateral dyskinesias, this kind of oscillatory activity has been recorded only
in the contralateral STN [16]. Patients with diphasic dyskinesias present the same type
of oscillatory activity [17]. Peak-dose dyskinesia was associated with theta-alpha activity
recorded through electrodes in the dorsal portion of the STN, also known as the motor
region [117]. Concerning the GPi, a negative correlation was observed between LFP power
in the 8–40 Hz band and the beta bands and LIDs in two patients [118]. LFP oscillations
within and coherence between the GPi and STN at low frequencies (<10 Hz) are observed
only contralateral to the side of dyskinesia [116]. On the contrary, beta oscillatory activity
correlated with the parkinsonian state, rigidity and bradykinesia [119,120]. Recordings of
the SNr showed a pathological plasticity and a loss of ability to depotentiate at the output
nuclei in patients with dyskinesias [121]. The relationship between hypersynchronization in
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the gamma frequency band and levodopa-induced dyskinesias has been recently unveiled
in the literature [12–19], and the attention on this topic has increased significantly due to its
possible clinical and therapeutic implications. For example, Swann and de Hemptinne [12]
explored the neuronal activity patterns of dyskinesia by applying a totally implanted
multisite brain-recording device in two PD patients treated with DBS, followed over one
year. Motor cortex electrocorticography (ECoG) and STN LFP recordings showed that the
dyskinetic state was associated with the emergence of a narrowband gamma oscillation
both in the motor cortex and STN, pointing out a strong phase coherence. Furthermore,
in the study of Halje and Tamte [13], cortical and striatal signals were recorded in a
hemiparkinsonian 6-OHDA-induced rat model [122]. Abnormal involuntary movements
were neurophysiologically underpinned by a resonant LFP oscillation at 80 Hz in the motor
cortex and the striatum of the lesioned hemisphere 10–20 min after receiving intraperitoneal
levodopa formulations. Interestingly, this narrowband oscillation was not detectable in
the non-dyskinetic animals either ON or OFF levodopa or in the intact hemisphere of
any animal [13]. In the same toxin-induced mouse model, Güttler and Altschüler [14]
investigated the association of M1 ECoG and motor performance in rats during 21 days of
daily treatment with levodopa/benserazide. After levodopa administration, subsequent
involuntary movements were accompanied by an increase in cortical narrowband high-
gamma oscillations above M1 with an average frequency of 97 Hz. The authors further
showed that the gamma power spectrum significantly correlated with the clinical score for
abnormal involuntary movements [14]. Narrowband gamma oscillations are not peculiar
to levodopa-induced dyskinesias in PD, since such oscillatory activity has been proven
also in patients affected by dystonia and myoclonus epilepsy at rest [14,123,124]. A brief
overview on the neurophysiological markers of LIDs is schematically depicted in Figure 4.
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2.8. Neurotransmitter Systems

Insights for the understanding of LID pathophysiology should arise from recent
evidence on neurotransmitter modulatory systems that may influence the dopaminergic
transmission under peculiar circumstances. Non-dopaminergic pathways can regulate
the dopaminergic transmission of the basal ganglia with direct and indirect mechanisms
or can be additionally implied in the metabolism of dopamine after the degeneration of
dopaminergic neurons. This topic is particularly demanding to explore, since serotonergic,
glutamatergic, noradrenergic, cholinergic, opioid, endocannabinoid and adenosinergic
systems have a variable, controversial and only partially explained relationship with LIDs.
Recent trends agree on the possible role played by such pathways in LID occurrence and
maintenance [47], but a complete understanding of the topic is far from being reached,
and further investigations are still needed. The following paragraphs summarize a brief
overview on how and when these neurotransmitter pathways interplay in LID pathogenesis.
Table 3 depicts an overview on neurotransmitter systems.

Table 3. Summary table of the main characteristics of neurotransmitter systems involved in LIDs.

Neurotransmitter Receptor Therapeutic Target Effect on LIDs

Se
ro

to
ne

rg
ic

sy
st

em

Serotonin

5-HT1A
5-HT1B

5-HT1A and 5-HT1B
Receptor Agonists

- Density of serotonergic
terminals in the striatum
directly correlates with the
severity of LIDs
- Serotonergic neurons
convert exogenous
levodopa into dopamine
and release it without
autoregulatory feedback

5-HT2A
5-HT2C

5-HT2A Receptors
Antagonists

5-HT3 - Not established
- SERT inhibition

G
lu

ta
m

at
er

gi
c

sy
st

em

Glutamate

mGluR MGluR antagonist - Altered trafficking
- Hyperactive

NMDA

NMDA receptor
antagonist

(GluN2A/B
subunit)

- Altered trafficking
- Alteration of subunit
composition
- Supersensitivity in the
putamen following
long-term levodopa

AMPA AMPA receptor
antagonist

- Altered trafficking
- Increased index of
rectification (IR) of AMPA
current in striatal medium
spiny neurons
- Increased activity of Ca2+

-permeable AMPAR due to
hyperphosphorylation
of GluR1 subunit

N
or

ad
re

ne
rg

ic
sy

st
em

Noradrenaline
α-1/2 α receptor

antagonist

- NA loss causes
parkinsonism and
spontaneous dyskinesias in
DBH knock-out mice
- NA infusion in the
striatum promotes LID in
hemiparkinsonian rats
- NAT activity should
re-uptake DA and
reduce LIDs
- Controversial evidence

β-1/2 β receptor
antagonist
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Table 3. Cont.

Neurotransmitter Receptor Therapeutic Target Effect on LIDs

C
ho

lin
er

gi
c

sy
st

em
Acetylcholine

nAChR (α4β2*
and α6β2*
subtypes)

β2* nAChR agonist
β2 subtype reduces LIDs,
but nAChR vary over the

course of PD

mAChR
(m1 to m5)

Variable results with
muscarinic
antagonists

Not established

O
pi

oi
d

sy
st

em

Enkephalin δ
δ—receptor selective

antagonist
- Elevated levels of
dynorphin B,
α-neoendorphin and
Dynorphin A in the
dorsolateral striatum
and SN
- µ and δ receptors
promote LIDs
- κ receptor reduces LIDs

β-endorphin
Endomorphin µ

µ—receptor
selective antagonist

Dynorphin A
Dynorphin B

α-neoendorphin
β-neoendorphin

κ
κ—receptor

selective agonist

En
do

ca
nn

ab
in

oi
d

sy
st

em

Anandamide
2-AG

CB1/2 CB-receptor agonist

- The stimulation of the CB1
receptors reduces LIDs by:
• Desensitization of
DA receptors
• Normalizing aberrant
glutamate release
- Net anti-dyskinetic effect
- CB1 receptors can also
promote LIDs by dopamine
synthesis in serotonergic
raphe-striatal fibers

TRP Not established Not established

PPAR Not established Not established

A
de

no
si

ne
rg

ic
sy

st
em

Adenosine

A2A - A2A receptor
antagonist

- Not clearly established,
but the activation of this
receptor in the striatum
regulates amplification of
dopamine and glutamate
release
- A direct anti-dyskinetic
effect seems unlikely

A2B Not established Not established (poorly
expressed in CNS)

A3 Not established Not established (poorly
expressed in CNS)

2.8.1. Serotonergic System

The serotonergic system originates from the raphe nuclei and, through its cortico-
subcortical projections, modulates cognition, vegetative functions and movement [125,126].
As described by Lavoie and Parent [127] and Fox and Chuang [128], the influence on motor
control should be attributed to the dense serotonergic innervation of the striatum, SNr and
GP. Indeed, serotonergic neurons show biochemical similarities with the dopaminergic
ones: they share the vesicular monoamine transporter 2 (VMAT2) and AADC enzyme,
which catalyzes the decarboxylation of aromatic amino acids. Through this enzymatic
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machinery, these neurons can convert also exogenous levodopa into dopamine and subse-
quently release it in an activity-dependent fashion [129–131]. Such possibility to generate
dopamine with non-dopaminergic terminals is thought to be the cornerstone of serotonergic
influence on LIDs. Additionally, movement regulation and LID induction seem exploited
by the serotonergic system through the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C and the 5-HT3
receptors. Further evidence proved that removing the forebrain serotonergic innervation
by the selective toxin 5,7-dihydroxy-tryptamine (5,7-DHT) almost completely suppressed
abnormal involuntary movements [132–134]. Finally, it has been extensively demonstrated
that increasing the serotonergic tone, by the administration of either selective serotonin
reuptake blockers (SSRIs) or the serotonergic precursor 5-hydroxytryptophan, significantly
reduced LIDs in hemiparkinsonian rats, without compromising the levodopa therapeutic
efficacy [135–137]. Keeping in mind that serotonergic and dopaminergic neurons are bio-
chemically related, the contribution of the serotonergic side is beneficial when sufficient
dopaminergic terminals are spared, since dopaminergic terminals provide a buffering
system for the levodopa-derived dopamine. Conversely, as the disease progresses, the con-
tribution of serotonergic neurons becomes detrimental because serotonergic neurons lack
an autoregulatory feedback mechanism for dopamine release. As a consequence, levodopa-
derived dopamine is released in an uncontrolled way following levodopa administration.

2.8.2. Glutamatergic System

Glutamate is the major excitatory neurotransmitter in the nervous system, and its
transmission depends on three receptor subtypes globally expressed in cortico-subcortical
structures: metabotropic receptors coupled to second messenger systems through G-
proteins (mGluR), Ionotropic Glutamate N -Methyl-D-Aspartate (NMDA) and Ionotropic
Alpha-Amino-3-hydroxy-5-methyl-4-Isoxazolepropionic Acid (AMPA) receptors. As PD
progresses, dopaminergic sprouting and reduced DA uptake preserve intrastriatal DA
levels [138] with a consequent detrimental glutamatergic control [139–142]. Dopaminergic
decrease and uncontrolled replacement with levodopa alter the glutamatergic transmission
within the basal ganglia. Accordingly, corticostriatal glutamatergic activity has been demon-
strated to be dramatically increased in PD mouse models [143–145]. However, interactions
between dopaminergic and glutamatergic systems are complex, since glutamate receptors
have a pivotal role in synaptic plasticity, and both postsynaptic changes and the trafficking
of the glutamate metabotropic and ionotropic receptors in the synaptic cleft should influ-
ence the pathogenesis of LIDs [146]. The three glutamate receptor subtypes are modulated
differently throughout the course of PD, and their possible role in LIDs is difficult to estab-
lish. For example, group I mGluRs antagonists reduced DA-dependent striatal synaptic
plasticity, in terms of both long-term depression (LTD) and long-term potentiation (LTP),
raising the possibility of detrimental effects on striatal-dependent motor and cognitive
activity [147–149]. PD progression additionally influences corticostriatal NMDA-mediated
glutamatergic signals, because corticostriatal plasticity depends on either the nigral dener-
vation or differential composition of striatal NMDA receptor subunits [150–152]. Differently
from mGluR and NMDA receptors, less is clear about the dysregulation of AMPA receptors
in PD, and its possible causative role in LIDs is still debatable [142,153–156]. To conclude,
the glutamatergic system is complex and has a plethora of functions that are compromised
in a variable fashion in advanced disease stages and appear to be far from completely
understood. The literature is controversial on the topic, but it is well established that
the chronic levodopa treatment compromises the dopaminergic control on glutamatergic
transmission in the long term.

2.8.3. Noradrenergic System

The noradrenergic innervation of the central nervous system (CNS) depends on
two main ascending systems. A major source of noradrenaline (NA) is the locus coeruleus
(LC), located along the fourth ventricle in the pons, which provides projections to the
SNc [157] and striatum [158]. A secondary source of NA is represented by the medullary
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noradrenergic system, composed of scattered groupings of noradrenergic neurons in the
ventrolateral reticular formation and the nucleus of the solitary tract, with primary veg-
etative functions [159–161]. Despite the results of Alachkar and Brotchie [162] and Ribas
and Miralles [163], how the noradrenergic system varies throughout the course of PD is a
question still open. The NA-synthesizing enzyme DA-β-hydroxylase (DBH) is crucial for
NA synthesis and has been exploited for laboratory models: DBH knock-out mice do not
produce NA and exhibit both parkinsonism and spontaneous dyskinesias, even if striatal
DA is preserved [164]. However, NA loss in PD mouse models has been poorly evaluated in
the literature, since in the conventional PD 6-OHDA-induced rat model, the NA transporter
(NAT) is blocked prior to 6-OHDA infusion to prevent noradrenergic cell loss. For this rea-
son, only a few studies investigated the effect of additional noradrenergic lesions on LIDs,
providing controversial effects on LID severity and duration [165]. For example, direct
LC infusions of ibotenic acid reduced LIDs in 6-OHDA-lesioned rats that had previously
been rendered dyskinetic [166]. Interestingly, Buck and Ferger [167] demonstrated that
exogenous NA, infused in the striatum of hemiparkinsonian rats, elicited LIDs, while Arai
and Tomiyama [168] investigated the activity of NAT for DA re-uptake and hypothesized
a possible inhibitory role in LIDs. From a receptorial point of view, it is noteworthy that
agonists and antagonists of α and β receptors gained attention in recent years due to the
possibility to modulate dopaminergic transmission, with variable results. For example,
Sommermeyer and Frielingsdorf [169] reduced LIDs with an α-1 receptor antagonist in
rodents. Additionally, α-2 receptor antagonists prevented severe/disabling LIDs [170–173].
Finally, Carpentier and Bonnet [174] demonstrated a reduction in LIDs in humans with
propanolol, a β-1/2 receptor antagonist, while β-2 receptor selective antagonists have never
been tried for LID management.

2.8.4. Cholinergic System

Nicotine interacts with the nAChRs, ligand-gated ion channels, whose endogenous
neurotransmitter is acetylcholine. The most represented nAChR subtypes in regions such
as the cortex, hippocampus, thalamus and cerebellum are the α4β2* and α7* nAChRs,
while the primary ones in the basal ganglia are the α4β2* and α6β2* subtypes with α7*
nAChRs less densely expressed [175–177]. An overwhelming body of evidence concluded
that nicotine has an established anti-dyskinetic effect, probably mediated by nAChR de-
sensitization/downregulation, with a secondary reduction in striatal dopamine release.
In fact, nicotine administration has been proven to alleviate both peak and total LIDs by
approximately 60% in MPTP-lesioned nonhuman primates (NHPs) for 30 weeks [178–180],
and its readministration, after a 10-week washout period, led to an immediate decline in
LIDs. Additionally, mice lacking both α4β2* and α6β2* nAChRs had reduced baseline
LIDs, suggesting a role as an LID primary regulator for the β2 subtype [181–183]. However,
it is likely that multiple nAChR populations influence LIDs, including the α4β2* α6β2*
and α7 subtypes. Since multiple compensatory changes occur throughout the course of PD,
various nAChR subtypes may be differentially related to LIDs during disease progression.
The cholinergic system also includes muscarinic receptors mAChRs, numbered from M1
to M5 and coupled to G-proteins [184,185]. These receptors are highly expressed in the
striatum [184,185] and do not have an established role in abnormal involuntary movements:
atropine had no effect on LIDs [186], while the muscarinic antagonist dicyclomine reduced
LIDs in 6-OHDA-lesioned mice.

2.8.5. Opioid System

Endogenous opioid peptides, except endomorphins, share the amino acid enkephalin
sequence at the N-terminus, with differing extensions at the C-terminus [187]. Opioid
receptors are widely distributed across cortical and subcortical structures of the CNS, such
as the basal ganglia, nucleus accumbens and ventral tegmental area. Opioid receptor
distribution and activity undergo variable modifications throughout the course of PD [187].
µ-receptor levels are reduced in the striatum and GPi, κ-receptor levels are reduced in the
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GPe and GPi, while δ-receptor levels are unchanged in the striatum of dyskinetic NHPs.
Moreover, signaling is overactive for µ, δ and κ-receptors, respectively, in the striatum,
GPi and caudate nucleus and motor cortex of MPTP-lesioned NHPs. Two seminal studies
investigated opioid levels in dyskinetic models and found elevated levels of dynorphin B
and α-neoendorphin in the dorsolateral striatum [188] and SN [189] of severely dyskinetic
rats compared with mildly dyskinetic or non-dyskinetic rats, while dynorphin A has been
found elevated in dyskinetic nonhuman primates by Bourdenx and Nilsson [190]. Non-
selective opioid receptor antagonists generated ambivalent results for LID control [191–193].
Such a lack of clear anti-dyskinetic actions is thought to reflect the interaction of non-
subtype-selective ligands with multiple opioid receptors, providing competing pro- and
anti-dyskinetic effects. The leading theory in the field considers the blockage of µ and
δ receptors as anti-dyskinetic, while the blockade of κ-opioid receptors should promote
LIDs [194].

2.8.6. Endocannabinoid System

The endocannabinoid system consists of a family of lipid signaling molecules released
on demand from membrane lipid precursors and the relative biochemical enzyme machin-
ery involved in their synthesis and degradation [195,196]. Arachidonoyl ethanolamine
(anandamide) [197,198] and 2-arachidonoyl glycerol (2-AG) [199] represent the progenitors
of this group of molecules, but the number of new members is rapidly increasing [200].
The main receptors are coupled to G-proteins (CB1 and CB2), while others belong to
the transient receptor potential (TRP) family, as well as nuclear peroxisome proliferator-
activated receptors (PPAR) [201]. CB1 receptors are represented on GABAergic striatofugal
neurons [202,203] and the subthalamic nucleus [204]. The endocannabinoid system has
pleiotropic functions in movement: an increased endocannabinoid transmission reduces
striatal glutamate release, relieving PD symptoms [143,205], while the activation of CB1 on
striatofugal terminals may empower the indirect pathway, amplifying the inhibitory output
of the basal ganglia. However, it is a well-known fact that these molecules counterbalance
the dopamine-mediated hyperactivity [206–208]. LID improvement is attributed to the
reduction in the levodopa-induced sensitization of dopamine receptors, normalization of
aberrant glutamate release and rebalancing of the maladaptive plasticity in the denervated
striatum. In support of this hypothesis, several attempts have shown cannabinoid-mediated
improvement in levodopa-induced abnormal involuntary movements in rodent models
and NHPs [206,209–212] and PD patients [213], avoiding global motor suppression [206].
CB1 receptors are also expressed on serotonergic raphe-striatal fibers [214], through which
they can act as pseudodopaminergic neurons for abnormal dopamine storage and release,
contributing to LID development, as mentioned before (see Section 2.8.1) [132]. To conclude,
it is likely that the endocannabinoid system may promote anti-dyskinetic effects, by both
dampening the ectopic dopamine release from serotonergic terminals and inhibiting 5-HT
release [215,216].

2.8.7. Adenosinergic System

Adenosine, a ubiquitous endogenous nucleoside, is a modulator of neurotransmission
exerted by DA, glutamate and acetylcholine and has been implicated in reward-related
behavior [217–223]. Adenosine receptors are widely expressed in the CNS: A1 subtypes
are distributed in the cortex, hippocampus and cerebellum, A2A are mainly distributed
in the striatum and olfactory bulb, while A2B and A3 subtypes are found at low levels of
expression. The activation of adenosine A2A receptors in the striatum regulates dopamine
and glutamate release. Adenosine A1 receptors generate functionally interacting complexes
in cortical neurons and the basal ganglia [224,225]. A higher number of these receptors has
been found in the striatum in dyskinetic patients compared to PD patients without LIDs
during autopsy studies. The role of adenosine in LID management has not been primarily
investigated so far, and improvement in motor function and OFF time were the primary
endpoints in the few studies that tested adenosine A2A receptor antagonists [226–233].
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However, specific studies addressing LIDs have not been conducted yet, and a direct
anti-dyskinetic effect seems unlikely.

2.9. Imaging Studies

Dopaminergic function can be assessed in vivo using neuroimaging studies [234] with
specific ligands for dopamine receptors, the VMAT2, the plasmalemmal DAT [235,236]
and postsynaptic DA D1R and D2R receptors. Moreover, the uptake and decarboxylation
of levodopa to DA, the storage of DA and the DA turnover could be assessed using the
fluorinated analog of levodopa, [18F]fluoro-L-dopa [237], as shown in Figure 5.
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Clinical observations of the prevalence of dyskinesias in more advanced disease stages
found evidence in a report showing an inverse relationship between [18F]fluoro-L-dopa
uptake and dyskinesias [238]. Although presynaptic DA denervation plays a crucial role in
the pathogenesis of dyskinesia [239], it is not the only factor involved in the development
of dyskinesia, and the pattern of DA receptor stimulation plays a key role too. Patients who
developed motor fluctuations showed a greater magnitude but a less sustained decline in
[11C]Raclopride binding, with respect to patients with a stable response [240]. Moreover,
the relative reduction in [11C]Raclopride binding 1 h after oral levodopa intake advances
with disease duration and is more pronounced in patients suffering from LIDs compared
to those with a stable response. Moreover, no difference was found between dyskinetic and
non-dyskinetic subjects 4 h after levodopa, adding evidence of a more pulsatile pattern
of levodopa in subjects with motor complications [240,241]. Similar findings have been
observed by other groups [242]. Another marker of advanced disease and a risk factor
for dyskinesia onset is the increase in DA turnover. Prolonged scans with [18F]D measure
uptake at 90–120 min and reflection uptake, and decarboxylation to fluoroDA and the
trapping of fluoroDA in synaptic vesicles also reflect the egress and subsequent metabolism
of this trapped radioactivity. The effective distribution volume, which is derived from this
reversible tracer model, correlates well with the inverse of the ratio of tracer loss to tracer
uptake constants [237], which in turn correlates with classical neurochemical measures
of DA turnover [243]. DA turnover measured using this approach is increased early in
PD [244], and further increases occur with disease progression [245]. Sossi and de la Fuente-
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Fernandez [246] investigated the possible age dependency of changes in DA turnover,
in terms of DA distribution volume, as a contributing factor to the levodopa-related
complications, with the analysis of the plasma input uptake rate constant (Ki) after [18F]D
uptake, an indicator of DA synthesis and vesicular storage capacity. The authors concluded
that the magnitude of the increase in DA turnover was greater than the magnitude of the
decrease in DA synthesis and storage rate in PD patients with younger disease onset, in line
with an increased susceptibility of these patients to develop motor complications [247–250].
DAT downregulation plays a role in the DA turnover; however, serotonergic neurons
are able to convert exogenous levodopa into DA too, with a non-regulated release and
uptake of DA. The DA system is not the only actor implied in dyskinesia development,
since other neurotransmitters play a role too. Piccini and Weeks [251] demonstrated
reduced striatal binding of the opioid ligand [11C]Diprenorphine in PD patients with LIDs,
presumably reflecting the occupancy of striatal opioid receptors due to increased opioid
levels. Studies have demonstrated increased adenosine A2 binding in PD patients with
abnormal involuntary movements compared to those dyskinesia-free [252]. Even brain
hemodynamics seem to be influenced by levodopa. Hirano and Asanuma [253] used a
multimodal PET to image both blood flow (rCBF) and glucose metabolism in the same
scanning session: a dissociation between flow and metabolism was found in patients
affected by LIDs after the administrations of oral levodopa. Interestingly, during the OFF-
medication state, regional glucose metabolism and rCBF matched; conversely, after the
administration of oral levodopa, rCBF was greatly enhanced while glucose metabolism
was unchanged in the network composed of putamen, pallidum and midbrain pons.
Flow/metabolism dissociation was greater in LID patients, supporting the hypothesis
of a hemodynamic effect of levodopa. The underlying mechanisms of such evidence
have not been solved yet. An increased capillary density in the striatum and midbrain
that may drive more blood flow to these regions under the conditions of a high DAergic
tone [254,255] is the leading hypothesis in the field so far. Finally, it is worth mentioning
the serotonergic contribution to LIDs, since it gained increasing attention in the last years.
As mentioned in the “Serotonergic system” paragraph, putaminal serotonergic fibers have
the potential to store and release dopamine in a non-physiological manner, promoting
LIDs, and this contribution has been further investigated with radioligand tracers. For
this purpose, Lee and Seo [256] enrolled 30 patients with PD, classified as dyskinetic, non-
dyskinetic and drug-naive and acquired two PET scans and 3T MRI scans for each patient
using [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (11C-DASB),
a ligand of the serotonin transporter, and N-(3-[(18)F]fluoropropyl)-2-carbomethoxy-3-(4-
iodophenyl) nortropane (18F-FP-CIT), a DAT radioligand. The 11C-DASB/18F-FP-CIT ratio
was computed to estimate serotoninergic fiber innervation relative to dopaminergic fiber
availability. The study showed the highest 11C-DASB/18F-FP-CIT ratio in the putamen
and pallidum for dyskinetic PD patients, highlighting the pivotal role of the serotonergic
innervation in LIDs.

3. Therapeutic Options

Different therapeutic approaches have been proposed in order to face the LID
problem [257–259]. On the pharmacological side, one possible solution is to avoid the pul-
satile administration of levodopa, through a continuous administration of levodopa [260–264]
or dopamine agonists like apomorphine [265]. Other pharmacological options include
levodopa regimen optimizations in terms of doses and inter-dose timing and the usage of
long-release drugs or add-on medications. The aim is to flatten the levodopa fluctuations.
However, neurons are responsive to pharmacological stimulation but also to electrical [266],
magnetic [267] or ultrasound stimulations [268,269]. Among stimulation techniques, inva-
sive DBS has been used for the treatment of both hyperkinetic [270–273] and hypokinetic
movement disorders, like Parkinson’s disease [274–277].
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3.1. Levodopa Therapy Optimization

The aim of the therapies for LIDs is to reduce the fluctuations of levodopa levels and
improve the pharmacokinetics of levodopa by the prevention of dopamine catabolism
and the usage of controlled-release levodopa or dopamine agonists [109]. It has been
hypothesized for a long time that providing a more continuous and constant levodopa
administration could reduce the risk of motor complications, even in early PD patients.
This idea was tested in the STRIDE-PD trial, conducted by Stocchi and Rascol [28]: the risk
of developing dyskinesias was compared during a 134-week double-blind trial in 747 PD
patients randomized to levodopa/carbidopa (LC) or levodopa/carbidopa/entacapone
(LCE). It is worth noting that early PD patients on LCE failed to delay the onset of motor
complications: the LCE group was associated with a shorter time to onset and an increased
frequency of LIDs. For the selection of the correct therapeutic scheme, the pharmacoki-
netic/pharmacodynamic of each dose of levodopa should be kept in mind to guide the
selection (Figure 6).
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It is worth noting that the therapeutic approach depends on the type of dyskinesia itself.
For peak-dose and square-wave dyskinesias, the following therapeutic approaches

can be considered [47,278–280]:

- Reducing the dose of levodopa and distributing the inter-dose timing.
- Adding an add-on medication, such as Amantadine, can help to reduce the severity

of dyskinesias.
- For diphasic and square-wave dyskinesias, the following therapeutic approaches can

be considered [47,278–280]:
- Adjusting the timing of medication doses: spreading out the doses throughout the

day can help to maintain more stable medication levels.
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- Adding an add-on medication, such as Amantadine, can help reduce the severity
of dyskinesias.

For OFF dystonia, the following therapeutic approaches can be considered [47,278–280]:

- Adjusting the timing and dosage of medication or increasing the dose of levodopa
can help maintain more stable medication levels.

- Adding an add-on medication, such as an extended-release dopamine agonist, MAO-
B inhibitor or COMT inhibitor, can help to reduce the severity of OFF dystonia by
potentiating the dopaminergic stimulation.

- Apomorphine injections or sublingual administration [281] can provide rapid relief
from OFF dystonia.

All types of LIDs can benefit from continuous levodopa or Apomorphine administra-
tion or deep brain stimulation.

A successful approach to improve pharmacokinetics includes alternative routes of
drug delivery to bypass the delayed gastric emptying [282,283]. More constant plasma
levodopa concentrations are achieved through a gelified version for the intrajejunal admin-
istration of levodopa/carbidopa, in patients with advanced PD [284,285]. The efficacy of
this formulation has been confirmed by a randomized controlled trial [260]. It is worth
noting that the GLORIA registry, a 24-month, non-interventional and observational registry,
conducted by Antonini and Poewe [286], was the study with the largest cohort of PD pa-
tients treated with levodopa/carbidopa intestinal gel (LCIG). In particular, in this registry,
the authors investigated the impact of such device-aided therapy on advanced PD. Results
demonstrated improvements in motor fluctuations and non-motor symptoms, such as sleep,
mood and the quality of life. The more frequent adverse effects were weight loss (6.7%),
device-related infections (5.9%), device dislocations (4.8%) and polyneuropathy (4.5%).

The evolution of LIDs on LCIG therapy deserves a separate discussion. Unexpectedly,
a therapy with LCIG could not completely abort LIDs, but dyskinesias may vary and
change their profile throughout the course of the disease, despite an appropriate ther-
apeutic regimen. While a reduction in motor fluctuations is predictable, less is known
about how the LID profile is modulated by such therapy. For this purpose, Szász and
Constantin [287] investigated dyskinesia features in advanced PD patients before and
after 6, 12 and 18 months from LCIG. As expected, motor fluctuations improved, but
abnormal involuntary movements changed their pattern. In fact, 18 months after LCIG
positioning, severe peak-dose dyskinesias dropped from a mean of 1.61 o 0.04 h, while the
mild/moderate ones increased from a mean of 1.97 to 2.79 h. Diphasic dyskinesias were
reduced from an average of 4.03 to 1.81 h, and dystonia dropped from a total of 12 to 9 h
per day. This work highlights the need for advanced PD patients on LCIG to receive a
customized and targeted therapeutic approach [287].

Other approaches to improve pharmacokinetic parameters include the use of extended-
release formulations of levodopa [288–290], the administration of levodopa gastric retention
formulation [282] and the combination of immediate- and extended-release formulations
with gastric retention [283].

3.2. Non-Dopaminergic Drugs

Non-levodopa-based therapeutic strategies for dyskinesias rely on the possible role of
non-dopaminergic systems, such as the serotonergic ones, for the induction of LIDs [291,292].
The 5-HT1A agonist Buspirone was effective in reducing LIDs after oral administration
and reduced levodopa-evoked striatal synaptic dopamine release [291,292]. Another Sero-
tonin 5-HT1A agonist used to manage LIDs is Sarizotan, whose potential feasibility for the
scope was not confirmed in a large randomized, placebo-controlled, phase IIb trial [293].
5-HT1A/1B receptor agonists Eltoprazine and Anpirtoline [294,295] revealed efficacy in
reducing LIDs in animal models, while the results were not superior to Amantadine in a
translational human study [296]. NMDA antagonists, like Memantine, Remacemide, Dex-
tromethorphan, Milacemide and CP-101.606, were assessed as therapeutic options, without
clinical evidence of any anti-dyskinetic effect in experimental models of LIDs [297–300].
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Antiepileptic drugs were tested too with poor results. For example, Gabapentin showed
no difference with respect to the placebo in reducing dyskinesias [301]. Moreover, a ran-
domized double-blind, placebo-controlled, parallel-group trial with Levetiracetam failed
to show a significant reduction in dyskinesias [302]. Zonisamide at the dosage of 50 mg
decreased dyskinesias, but dizziness, apathy and weight loss were side effects reported
by the patients [303]. Among antipsychotics, Clozapine, Olanzapine and Quetiapine were
the most studied. A large, randomized, placebo-controlled trial with Clozapine showed
a reduction in dyskinesias with increased ON time without dyskinesias and no effect on
increasing OFF time or increased adverse events [304]. Quetiapine failed to show benefits in
dyskinesias compared to placebo [305]. Finally, Olanzapine revealed some anti-dyskinetic
effects during a randomized, placebo-controlled, cross-over trial but also increased OFF
time [306].

3.3. Deep Brain Stimulation

Another possible therapeutic option is DBS, targeting either the GPi or STN. When
the target is the GPi, DBS has a direct effect on LID reduction; conversely, when the STN
is chosen, involuntary movements are reduced through an indirect effect on dyskinesias
by lowering levodopa thanks to the antiparkinsonian effect of STN stimulation. DBS can
lead to new possibilities for LID management, due to the high informative value of basal
ganglia oscillatory activity about the motor state and its potential reliability to be real-time
adjusted for symptom control [86].

3.4. Closed-Loop Therapy

Predictors of motor performances can be used as feedback to real-time fit and opti-
mize therapeutic regimens in a closed-loop fashion to restore a physiologic dopaminergic
stimulation pattern and limit dyskinesias in PD patients [86]. An adaptive closed-loop
administration algorithm improves dyskinesias by reducing the fluctuations in dopamine
levels and reproducing the normal dopaminergic tone. Biochemical, neurophysiological
and wearable sensors are sensing systems expected to provide feedback signals to close this
loop. A multiparametric modular sensing system that combines biochemical, neurophysio-
logical and wearable sensor data could adapt the administration of different combinations
of antiparkinsonian therapies in real time, as shown in Figure 7 [307–309]. Biochemical
and neurocomputational models of the levodopa pharmacokinetics and dynamics were
shown to predict the motor response with a varying levodopa plasma concentration in both
stable and fluctuating PD patients [93,310–313], and a sigmoid curve was demonstrated to
express the relationship between levodopa plasmatic concentration and tapping frequency.
Biochemical levodopa sensing approaches include detection in blood [314], sweat [313],
skin [315], skeletal muscle [314], subcutaneous tissue samples [316] and electrochemical
sensing with amperometry or voltammetry [317]. On the neurophysiological side, syn-
chronized oscillatory rhythms reliably associated with hypokinetic and dyskinetic states
provide potentialities as a control signal in closed-loop DBS [12,318,319]. Sensing cortical
or subcortical brain activity and real-time symptom correlate extraction during DBS is the
most advanced closed-loop strategy: basal ganglia beta activity (13–30 Hz) is related to
hypokinetic state and bradykinesia and is, to date, the most promising neurophysiological
biomarker for closed-loop DBS in PD [320–322], while the basal ganglia activity in the
gamma range (25–140 Hz) is the electrophysiological signature of the dyskinetic state [12].
Wearable sensors integrated with machine learning algorithms can convert kinematic motor
data into quantitative signals, recognizing and predicting changes in the motor state [323].
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multiparametric (LFP, biochemical and kinematic monitoring) sensing system. (Reproduced, under
the terms of the Creative Commons Attribution 4.0 License, from [86]).

4. Discussion

Since its introduction as an antiparkinsonian drug regimen, levodopa has become
the leading therapeutic option for motor control in PD [3]. Abnormal involuntary move-
ments are well recognized as a possible complication secondary to levodopa-based ther-
apy, and it is not only movement disorder specialists that have to frequently face this
therapy-induced drawback [38]. This review points out the complexity of their neurophys-
iological correlates and pharmacokinetic and pharmacodynamic models. The literature
discussed in depth the temporal relationship between different antiparkinsonian drugs
and dyskinesias [7,21–24,28,39–45], highlighting the major role played by levodopa over
dopamine agonists [22–27], COMT inhibitors [28] and MAO inhibitors [29]. Moreover,
LIDs are not stereotyped in nature, since they can be different in phenomenology [46–49].
Such a complexity is reflected in the basal ganglia firing pattern, modified not only in
quantity but also in quality [112–114]. An exhaustive pathophysiologic explanation of LIDs
is an unmet need so far. Imaging studies reinforced the role of dopaminergic transport,
progressive presynaptic terminal denervation and the pattern of DA receptor turnover
in the advanced disease stages as possible contributing factors but not as the primum
movens [239,245–250]. Classical therapeutic choices to manage LIDs are limited in efficacy
due to the poor feasibility to reach a delicate compromise between excessive and poverty
of movement: conventional strategies essentially aim to reduce levodopa fluctuations
and stabilize its blood levels to restore a more efficacious and constant dopaminergic
tone [47,109,278,279,282–285]. New therapeutic scenarios will arise from wearable, bio-
chemical and neurophysiological sensing systems, expected to provide feedback signals
in a closed-loop system to predict the motor response with a varying levodopa plasma
concentration [307–309]. The aim of these techniques is to optimize the administration of
the currently existing therapeutic options in relation to the real-time motor status.
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