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Abstract: Oocyte cryopreservation (OC) is the process in which ovarian follicles are stimulated, the
follicular fluid is retrieved, and mature oocytes are isolated and vitrified. Since the first successful
pregnancy utilizing previously cryopreserved oocytes in 1986, OC has become increasingly utilized
as an option for future biologic children in patients facing gonadotoxic therapies, such as for the
treatment of cancer. Planned OC, also termed elective OC, is growing in popularity as a means to
circumvent age-related fertility decline. In this narrative review, we describe both medically indicated
and planned OC, focusing on the physiology of ovarian follicular loss, OC technique and risks, timing
of when OC should be performed, associated financial considerations, and outcomes.
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1. Introduction

It has been over 40 years since the first baby was born using in vitro fertilization
(IVF). Since then, the field of assisted reproductive technology (ART) has greatly expanded,
with over 8 million babies born worldwide through the use of IVF [1]. According to the
most recent complete data from the Society for Assisted Reproductive Technology (SART)
National Summary Report, there were nearly 300,000 ART cycles in the United States in
2019, of which nearly 16,000 were for oocyte cryopreservation (OC) [2]. Since the first
successful pregnancy utilizing cryopreserved oocytes occurred in 1986 [3], there has been
significant advancement in laboratory techniques to allow for cryopreserved oocytes to be
a viable option for future fertility in both medical (i.e., cancer) and planned (i.e., delayed
child bearing) indications [4].

Traditionally, OC has been reserved for patients facing gonadotoxic therapy for the
treatment of cancer, such as chemotherapy or pelvic irradiation and, in 2013, the American
Society for Reproductive Medicine (ASRM) removed the experimental label on OC for
such patients [5]. Nearly 200,000 reproductive-aged individuals are diagnosed with cancer
every year in the United States [6]. Presuming an equal ratio of males to females, there is
clearly a large need for access to OC. While the use of OC in patients facing gonadotoxic
therapies is largely accepted, it was not until 2018 that ASRM concluded that planned OC,
more colloquially known as elective or social egg freezing, was ethically permissible [7].
Advertisements for egg freezing are increasingly common, with more women reporting
awareness about the procedure from the media rather than a medical professional [8].
Accordingly, some fertility clinics have shifted to specifically market this service. With
growing exposure and public interest, providers will inevitably encounter questions from
patients on this option. Yet, knowledge on OC across various specialties, including within
obstetrics/gynecology (OB/GYN), is limited [9,10]. In this narrative review, we aim
to provide a comprehensive overview of both medically indicated and planned OC for
providers inside and outside of reproductive medicine.
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2. High Demand and Need for Increased Utilization

Of the 200,000 reproductive-aged women and men diagnosed with cancer each
year in the United States, an estimated 16,000 cases will occur in young children and
adolescents [6,11]. Fortunately, death rates for childhood and adolescent cancers have
steadily declined by 2.1% per year since 1975, with overall 5-year relative survival rates of
86% [11,12]. As of 2010, there were nearly 380,000 survivors of childhood and adolescent
cancer, 70% of whom are over the age of 20 [12]. With continued improvement in cancer
mortality, there has been an increasing focus on improving care and quality of life in the
context of long-term survivorship [13].

Concern over future fertility is common among cancer patients. Over half of patients
newly diagnosed with cancer express a desire for children in the future and 13–16% report
an increase in their desires to have children after diagnosis [14,15]. Fertility concerns are also
common among parents of childhood cancer survivors but are often overshadowed in the
immediate aftermath of a cancer diagnosis [16–18]. Both the ASRM and American Society
for Clinical Oncology (ASCO) recommend early fertility preservation (FP) counseling and
referral to a reproductive endocrinologist and infertility (REI) specialist for patients facing
potentially gonadotoxic therapies [19,20]. Yet, few women of reproductive age diagnosed
with cancer receive fertility counseling and a smaller proportion (1–2%) ultimately go
through any type of FP, including IVF, OC, embryo cryopreservation with or without
donor sperm, ovarian transposition, or ovarian tissue cryopreservation [21,22]. Adult
women ≤ 35 years of age are more likely to undergo FP procedures but still at a low rate
of 6.3% [22]. Inequitable access to FP counseling and treatment has also been linked to
socioeconomic status, education level, insurance coverage, and race/ethnicity [23–26].

There has been an 880% increase in OC cycles in the United States between 2010 and
2016, and it is difficult to delineate between those performed for elective versus medical
indications [27]. More recent SART data show a less dramatic but continued increase in OC
cycles between 2016 and 2019 of 89% [2]. However, it is reasonable to attribute some of this
to the increased utilization of planned OC. Supporting this notion is the decreasing average
age of those undergoing OC for any indication, from 36.7 years in 2010 to 34.7 years in
2016 [27].

Studies of individuals pursuing graduate education and medical professionals have
consistently shown that time-sensitive fertility knowledge is lacking, natural fertility is
over-estimated, and there is lack of alignment between women’s professional and family-
building goals [8,9,28–30]. In addition, lack of a currently suitable partner and financial
concerns are other commonly cited reasons to delay childbearing [8,29,31]. The ethical
arguments for and against wide utilization of planned OC center around patient autonomy
versus non-maleficence and justice [7]. Planned OC allows for increased flexibility with
life circumstances, increasing options to have genetically related offspring at a time when
natural fertility would be in decline. On the other hand, concerns over the inherent risks of
single and multiple ovarian stimulation(s) and retrieval(s), absence of long-term outcomes,
and inequitable access have been raised [7,32].

3. Ovarian Follicular Loss: Iatrogenic and Age-Related

The treatment of cancers with chemotherapy, radiotherapy, and/or surgery is a
well-established iatrogenic cause of ovarian damage. Table 1 lists various oncologic
treatment regimens and their relative gonadotoxicity risk. Total body and pelvic ra-
diotherapy, conditioning chemotherapy regimens for bone marrow transplantation, and
alkylating chemotherapy agents are particularly gonadotoxic, with high rates of post-
treatment premature ovarian insufficiency (POI) and infertility [33,34]. Treatments as-
sessed to have high gonadotoxicity have >80% likelihood of causing permanent amen-
orrhea, whereas intermediate gonadotoxicity is associated with 60–80% risk [35]. Those
with low gonadotoxicity risk have favorable post-treatment rates of return of sponta-
neous menses and fertility, though menopause may occur earlier [35,36]. Anti-metabolites
(e.g., 5-fluorouracil, 6-mercaptopurine, and methotrexate), vinca alkaloids (e.g., vinblastine
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and vincristine), anthracyclines (e.g., doxorubicin and daunorubicin), and topoisomerase
inhibitors (e.g., topotecan and etoposide) are thought to have low gonadotoxicity [33,34].
Various mechanisms of chemotherapy-related ovarian follicle loss have been suggested,
including failure of double-stranded DNA break repair; induction of follicular growth and
apoptosis via activation of the PI3K/PTEN/Akt pathway, with compensatory activation of
primordial follicles; and damage to the ovarian stroma and microvasculature [33,37].

Table 1. Gonadotoxicity risk of various oncologic treatments/regimens.

Gonadotoxicity Risk Treatment/Regimen

High

• Conditioning chemotherapy for bone marrow transplantation
• Total body irradiation
• Alkylating agents
• Pelvic radiotherapy
• Brachytherapy for cervical cancer

Intermediate
• Escalated therapy (e.g., BEACOPP) for Hodgkin’s lymphoma
• Adjuvant chemotherapy agents for breast cancer

Low

• Anti-metabolites
• Vinca alkaloids
• Anthracyclines
• Topoisomerase inhibitors

Gonadotoxicity from radiotherapy results from direct DNA damage and is dependent
on the irradiated field and dose administered. The human oocyte is particularly sensitive
to radiation, with developing (active) follicles being more radiosensitive than primordial
(dormant) follicles [33,38]. Still, the dose of radiation to destroy 50% of primordial ovarian
follicles has been estimated to be as low as <2 Gy [39,40]. Furthermore, the effective steril-
izing dose, at which fewer than 1000 primordial follicles are expected to survive (akin to
the level remaining at menopause), is inversely related to patient age. For a 10-year-old,
the effective sterilizing dose is estimated to be 18.4 Gy, whereas it is around 11.5 Gy for a
40-year-old [40]. Total body irradiation as preparation for hematopoietic stem cell transplan-
tation generally involves a total dose of 12–15 Gy in fractionated doses [41]. Brachytherapy
for cervical cancer can involve substantially higher doses, exceeding 80 Gy [42]. In addition
to direct apoptotic effects on ovarian follicles, a deleterious effect on fertility can result from
hypothalamic–pituitary–ovarian (HPO) axis disruption from cranial irradiation and uterine
damage [38]. Radiation can induce damage to the uterine myometrium, endometrium, and
vasculature, resulting in fibrosis, stunted growth potential, and downstream negative preg-
nancy outcomes [43]. Surgery that necessitates removal of the ovaries or other organs of the
female reproductive tract can clearly impact fertility and the ability to carry a pregnancy.

Finally, it is worth noting that any number of benign conditions and non-oncologic
therapies have the potential to impact fertility. Ovarian surgery for benign gynecologic
conditions, such as endometriomas, can dramatically reduce ovarian reserve [44]. The
treatment of various autoimmune conditions, such as systemic lupus erythematosus, fre-
quently involves gonadotoxic medications [45]. Certain genetic conditions are associated
with accelerated follicular loss and risk of POI, such as FMR1 premutation carriers, Turner
syndrome, and galactosemia. The limited data on fertility preservation, specifically OC,
in these patient populations suggest blunted responses to ovarian stimulation and higher
rates of oocyte aneuploidy [46]. As such, early diagnosis and consideration of OC prior to
the onset of POI is paramount.

The reproductive timeframe (i.e., biological clock) is relatively narrow in females
compared with males, owing to the progressive loss of ovarian follicles with age. The
peak number of follicles exists in fetal life during the second trimester, with approximately
6–7 million primordial follicles [47]. From that point, there is a progressively accelerating
rate of loss, declining to 1 million at birth to 25,000 at age 37 to 1000 by age 51 (average age
of menopause) [48,49]. Moreover, there is an increasing rate of aneuploidy in conjunction
with this shrinking follicular pool. This combination of time-sensitive effects results in an



J. Clin. Med. 2023, 12, 3542 4 of 15

age-related decline in fertility such that the relative fertility rate of someone in their early
30s is 15–19% lower than that of someone in their early 20s, 26–46% lower by the late 30s,
and a striking 95% lower by the early 40s [50]. In contrast, age affects male fertility in a
much more blunted fashion. Spermatogenesis continues well into the later years of life and,
while semen parameters decline after age 35, there is not an appreciable decrease in fertility
until the late 40s and early 50s, and it is accompanied by a concomitant rise in mutations
within sperm [50].

Ovarian reserve is clinically estimated using serum antimullerian hormone (AMH)
and early follicular follicle stimulating hormone (FSH) with estradiol (E2), and ultrasono-
graphically with an early follicular antral follicle count (AFC). AMH is a glycoprotein in
the transforming growth factor-β family and is a proxy for the functional ovarian pool
that is currently available [51]. AMH levels rise in adolescence, peak by the mid-20s, and
then progressively lower to negligible levels by menopause [52]. AMH is relatively stable
in value across and between menstrual cycles and is best utilized to predict the response
to stimulation during IVF [53]. Despite the temptation to use AMH as a fertility marker,
it has not been shown to predict fecundability in a non-infertile population and should
not routinely evaluated in this group [54]. It may, however, provide useful information
for prospective reproductive planning in patients who risk early loss of fertility and may
be monitored to assess for the likelihood of reproductive capacity after gonadotoxic treat-
ment [55,56]. Certain types of cancer may reduce AMH levels. Patients with lymphoma
have been shown to have lower AMH levels compared with healthy age-matched controls
as well as those with other malignancies (e.g., breast, cervical, colon, endometrial, brain,
and leukemia), possibly owing to elevated cytokine levels [57,58]. Combined oral contra-
ceptive pills (containing both estrogen and progesterone) are known to temporarily lower
AMH levels by 19–30% and should be discontinued 2–3 months prior to testing [59–61].
Other hormonal contraceptive methods, such as progestin intrauterine devices (IUDs),
subcutaneous implants, vaginal rings, and progestin only pills, can also negatively affect
AMH levels; non-hormonal IUDs (e.g., copper IUD) do not impact AMH levels [61].

4. Oocyte Cryopreservation Technique

The process of folliculogenesis is a continuous, random process and progresses through
the primordial, primary, secondary, preantral, and antral stages. Follicular growth up until
the preantral/antral stages is gonadotropin-independent, beyond which it is dependent
on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) [62]. In a normal
menstrual cycle, around 10 antral follicles start with gonadotropin-dependent growth, but
gradual lowering of FSH levels during the follicular phase limits the time it is above a
critical threshold, ultimately favoring mono-follicular growth [63]. Typically, only the one
follicle with the highest sensitivity to FSH will continue to be stimulated and ovulate [62].
Primordial follicles are arrested in prophase I (termed a germinal vesicle (GV) oocyte)
and meiotic competence is not gained until just prior to ovulation [64]. Following the LH
surge, the oocyte progresses to metaphase of meiosis II and becomes arrested at this stage;
completion of meiosis does not occur until fertilization.

Regardless of the indication, the general process of oocyte cryopreservation is relatively
straightforward and involves a few key steps (as outlined in Figure 1): controlled ovarian
stimulation (COS) → oocyte retrieval → cryopreservation of mature oocytes (as only
mature oocytes are capable of undergoing fertilization). Administration of exogenous
gonadotropins during COS with daily injections effectively extends the timeframe of the
aforementioned FSH threshold, allowing for multi-follicular development. There are
various ovulation induction regimens/protocols to achieve ovarian stimulation and a more
in-depth review on COS is beyond the scope of this review. Typically, patients will require
7–12 days of ovarian stimulation, during which their progress will be monitoring on a
periodic basis using transvaginal ultrasonography and serum hormone levels. Typically,
once 1–2 follicles are measured to be >18 mm, follicle maturation is “triggered” using
medications that mimic the natural LH surge. The oocyte retrieval is performed around
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36 h after the trigger medication to maximize oocyte maturation rates but minimize the risk
of spontaneous ovulation [65]. The oocyte retrieval is an outpatient procedure of less than
30 min during which needle aspiration of the ovarian follicle contents is performed under
transvaginal ultrasonography guidance. It is within this fluid that oocytes are isolated
and selected for cryopreservation by the embryologist. The entire process can generally
be accomplished in two weeks. In patients who are able to delay gonadotoxic treatment
for a longer duration of around 4 weeks, a DuoStim protocol, in which a second OC
cycle is initiated shortly after the first retrieval, can increase the number of mature eggs
frozen [66,67].
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Complications related to ovarian stimulation include ovarian hyperstimulation syn-
drome (OHSS), adnexal torsion, and thromboembolism. Ovarian hyperstimulation syn-
drome is characterized by internal fluid shifts from the intravascular to extravascular
spaces due to increases in vascular permeability. Human chorionic gonadotropin (hCG),
commonly utilized as the trigger medication, is thought to have a central role in the patho-
genesis by inducing the release of vasoactive substances, particularly vascular endothelial
growth factor (VEGF) [68,69]. Clinical features range from abdominal distension, mild
nausea, and diarrhea in mild cases and can progress to severe/critical stages complicated
by oliguria, severe ascites, hemoconcentration, thromboembolism, arrhythmias, pleural
effusions, adult respiratory distress syndrome, and/or sepsis [68]. Features of mild OHSS
can be present in 20% of IVF cycles but moderate and severe forms are much less com-
mon at <5% [69–71]. Mortality is exceedingly rare. Anticipation of a high risk of OHSS
is associated with a high AMH (>3.3 ng/mL), in which case certain precautions may be
taken, such as pretreatment with metformin, cabergoline at the time of trigger, and use of a
gonadotropin-releasing hormone (GnRH) agonist instead of hCG for the final maturation
of the pre-ovulatory follicles [72]. Other risk factors for OHSS include early follicular phase
AFC > 8, estradiol levels > 3500 pg/mL during COS, polycystic ovary syndrome, a low body
mass index (BMI), and high numbers of oocytes retrieved (≥24) [68,72]. Early recognition
and management by an experienced REI specialist are critical to mitigating the sequalae
of OHSS. Avoiding severe OHSS is particularly relevant in patients undergoing medically
indicated OC as it may delay oncologic treatment for several weeks until it resolves. Risks
of adnexal torsion and thromboembolism are both increased with OHSS, but remain low
overall at <0.2% [69].

Oocyte retrieval is an overwhelmingly safe procedure, with complications such as
major bleeding, infection or abscess, and injury to surrounding structures estimated to occur
in fewer than 1% of cases [70,73]. Data from nearly 24,000 consecutive oocyte retrievals
performed at a single center over a 10-year period noted an overall complication rate of
just 0.76%, with hemoperitoneum as the most common (0.23%), followed by pelvic pain
and anesthesia complications (both 0.06%), infections (0.04%), and vaginal wall bleeding
(0.01%) [73].

Owing to their high water content, human oocytes are particularly susceptible to
damage from the freezing and thawing process. Initially, slow freezing was utilized but
was plagued by low survival and pregnancy rates [74]. However, the introduction and
continued refinement of vitrification (rapid cooling to −196 ◦C) that avoids the forma-
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tion of damaging ice crystals has dramatically improved oocyte survival and allowed
for pregnancy and live birth outcomes similar to those achieved from freshly retrieved
oocytes [74–76]. Indeed, it is the vitrification process that has enabled oocyte cryopreserva-
tion to be a viable option for fertility preservation.

While the thaw survival rates of mature metaphase-II (MII), immature metaphase-I
(MI), and immature GV oocytes are comparable, generally only MII oocytes are cryopre-
served owing to the reduced reproductive capacity of immature oocytes that must undergo
in vitro maturation (IVM) post vitrification and warming prior to fertilization by intra-
cytoplasmic sperm injection (ICSI) [77–79]. Fasano et al. (2012) compared IVM rates of
MI and GV pre- and post-vitrification and found higher rates of maturation in those that
underwent IVM prior to vitrification rather than after (46% vs. 23.8%). Similar results
were seen by Cao et al. (2009). Oocytes that underwent IVM prior to vitrification had
higher maturation rates (70.4% vs. 50.8%). No differences in fertilization or cleavage stage
embryo development were observed [77,78]. Accordingly, MI-oocytes are often allowed
the opportunity to mature to MII-oocytes in culture. While these delayed MI–MII-oocytes
have lower fertilization, blastocyst formation, and euploidy rates compared with those that
are MII at the time of retrieval, the resulting pregnancies have similar live birth rates [80].

5. Timing of Oocyte Cryopreservation

As noted above, the process of OC can generally be completed in two weeks and
should be considered if such a delay in initiating oncologic treatment is medically appro-
priate. Research in breast cancer patients has found mixed data on whether pursuing FP
delays initial chemotherapy. At most, the delay is minimal and does not seem to impact
invasive-disease-free or overall survival rates [81–83]. If unable to take place before initia-
tion of gonadotoxic therapy, OC should be pursued later during a prolonged treatment-free
period owing to concerns over the diminished response to ovarian stimulation and terato-
genic effects [84]. Animal studies have shown increased miscarriage, aneuploidy, and fetal
malformation rates in pregnancies resulting from oocytes being exposed to chemotherapy,
with decreasing risk as the time between exposure and ovulation increases [85,86]. Reas-
suringly, large population-based human studies have not shown increased chromosomal
abnormalities in the children of patients who were previously treated with radiation or
chemotherapy [87,88]. Still, many advocate to wait at least 6 months (the length of follic-
ular development) from the completion of chemotherapy and/or radiotherapy prior to
conception attempts or oocyte/embryo cryopreservation owing to possible teratogenic
effects and increased obstetric complications [84,85,89,90]. Uterine compromise from previ-
ous radiotherapy increases the risk of miscarriage, preterm delivery, intrauterine growth
restriction, and low birth weight [84,89,90]. In contrast, adverse obstetric/perinatal compli-
cations are not consistently observed after chemotherapy, particularly beyond 6 months
post-treatment [84,89,91,92].

Given that oocyte quantity and quality are inversely related to age, pursuing planned
OC at or prior to onset of natural fertility decline is advised. Doyle et al. (2016) analyzed
128 autologous IVF cycles from a pool of 1171 OC cycles, including 1283 previously vitrified
and warmed oocytes, and determined age 38 to be the cutoff at which clinical pregnancy
rates are worse (60.2% for <38 years vs. 43.9% ≥ 38 years). Other studies have suggested
similar age thresholds (between 35 and 38 years) for improved outcomes, including oocyte
survival and cumulative live birth rate [93–95]. The European Society of Human Repro-
duction and Embryology (ESHRE) Task Force on Ethics and Law recommends planned
OC to be performed before age 35, the upper age limit typically used by oocyte donor
programs, and should not be recommended after age 38 [96]. However, this document was
released in 2012 and is not in keeping with current practices, as the mean age at which
individuals pursue planned OC is beyond age 35 and closer to age 37–38 [31,97]. Indeed,
ASRM acknowledges that the available data support improved outcomes for women who
undergo planned OC at a younger age but there are insufficient data to pinpoint an optimal
age [98].



J. Clin. Med. 2023, 12, 3542 7 of 15

A novel approach to counsel on the ideal age for planned OC focuses instead on
cost effectiveness. Devine et al. (2015) conducted a cost-effectiveness analysis comparing
three strategies: (1) planned OC at age 35 with utilization after 6 months of unsuccessful
attempts at natural conception upon turning 40; (2) planned OC at age 35, attempting
spontaneous conception at age 40 and proceeding with two fresh IVF cycles if unsuccessful;
and (3) no planned OC at age 35 and proceeding with two fresh IVF cycles after 6 months
of unsuccessful attempts at natural conception upon turning 40. The first strategy (planned
OC at age 35 and utilization at age 40) was found to be the most cost-effective, with a
62% predicted live birth rate (LBR) at a cost of $39,946. Strategy 2 yielded the highest LBR
at 74%, but at a cost of $61,887 per live birth. Strategy 3 had an LBR of 42% at a cost of
$55,060 [99]. Furthermore, Strategy 1 remained more cost-effective than Strategy 2 at all
ages and was more cost-effective than Strategy 3 until age 38. Therefore, in individuals
planning to defer childbearing until age 40, this model supports planned OC up until
age 38, after which proceeding directly to IVF is recommended. These findings are largely
reinforced by other cost-effectiveness analyses, including a large systematic review and
meta-analysis that found that planned OC is cost-efficient at age 35 assuming a utilization
rate of 60% and cost-efficient at age 37 if the individual is willing to utilize donor sperm,
but deferring OC and proceeding with IVF is favored by age 38 [100,101].

Of note, these models assume a much higher utilization rate (49–60%) of previously
cryopreserved oocytes than actual rates, which range between 7.4% and 38% [93,102,103].
At least one study suggests a lower utilization rate for medically indicated OC compared
with planned OC at 7.4% vs. 12.5%, respectively [93].

6. Utilization by Transmen

Counseling on fertility preservation prior to gender-affirming treatment is recom-
mended by the ASRM, the World Professional Association of Transgender Health (WPATH),
and the Endocrine Society [104–106]. While the majority of transmen report a desire to
parent a child, far less ultimately pursue OC, citing cost, unwillingness to postpone gender-
affirming treatment, distress with the process, fear of gender dysphoria from hormonal
treatment, and concern over attitudes from medical staff as barriers to treatment [107,108].
Furthermore, it is well established that fertility preservation treatment is much more com-
mon in transwomen than in transmen, with one systematic review noting a utilization
rate of 9.6–81.8% compared with just 0–16.7% [107–109]. Rather than a difference in the
underlying desire to have children, this discrepancy is likely attributed more to the higher
barriers inherent to the OC process, including increased cost, invasiveness of an oocyte
retrieval, and the need to be managed by a fertility specialist [108]. History of testos-
terone treatment is not a contraindication to OC and the data are reassuring in terms of
outcomes [110,111]. Typically, testosterone treatment is held for several months prior to
controlled ovarian stimulation. However, case reports suggest patients can remain on even
high-dose testosterone therapy without a deleterious effect on cycle outcome [112–114].
This may be an attractive option for those wishing to avoid stopping gender-affirming
hormonal treatment and minimize feelings of gender dysphoria.

7. Financial Considerations

In the United States, few states have mandated OC benefits for patients facing go-
nadotoxic therapies and pursuing OC is often cost-prohibitive for many patients. A cycle
of oocyte or embryo cryopreservation can be expected to cost around $12,000 USD [115].
In contrast, sperm cryopreservation is considerably less costly, at several hundreds of
dollars per collection. Yearly storage fees continue to add to the financial burden. It is
of no surprise that, compared with countries where fertility preservation (FP) treatment
prior to gonadotoxic therapy is covered (e.g., Israel, France, and Spain), U.S. women report
significant funding concerns and guilt over accruing additional debt [116–118]. Women
who pursued FP prior to cancer therapy are 1.5 times as likely to report financial hardship
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than those who did not [21]. Of those who ultimately proceed with OC, 50% required
additional financial assistance from family members, fundraising, or loans [117].

In January 2018, Connecticut and Rhode Island were the first states to mandate
coverage for FP in patients facing medically necessary but potentially gonadotoxic therapies.
Connecticut House Bill No. 7124 was championed by then state representative Matthew
Lesser and Melissa Thompson, both cancer patients. Passed in June 2017 and effective as of
January 2018, the bill was essentially a rewording of an existing mandate so that fertility
services would be covered when medically necessary, including prior to cancer treatment.
As of January 2023, there are 12 total states with similar mandates and a further 12 with
active legislation [119]. It is important to note these mandates only include patients covered
under Medicaid in two states, Illinois and Utah [120]. Continued expansion is encouraging
as states with comprehensive insurance mandates result in greater utilization of services
and safer ART practices [121].

For planned OC, insurance coverage in the United States is the exception rather than
the norm. However, expansion of fertility coverage by large employers such as Apple,
Google, Netflix, Starbucks, Spotify, and Facebook is steadily increasing as a mechanism to
recruit and retain employees [122]. According to the Mercer National Survey of Employer-
Sponsored Health Plans, 19% of employers with 20,000 or more employees offered planned
OC benefits in 2020 compared with 6% in 2015 [123]. This is still far behind IVF coverage,
however, which increased from 36% to 42% between 2015 and 2020. For companies with
500 or more employees, only 11% offered coverage for planned OC in 2020 [123]. Studies
have shown that more comprehensive insurance coverage increases patient willingness
to consider planned OC and results in increased utilization [8,124]. Cardozo et al. (2020)
found that 81% of surveyed graduate students would be more likely to consider planned
OC if it were covered by insurance or paid for by their employer. In addition, a survey of
medical students found that 73% would consider planned OC if it were covered [28].

Some have raised concern that offering coverage for planned OC may unintentionally
coerce individuals to pursue OC to demonstrate commitment to their career [125]. While
many women report conflict between their family-building goals and career ambitions,
women who would not or were undecided on their decision to pursue planned OC did
not consider employer coverage to be coercive [28]. Furthermore, the majority would
not change their time frame for having children depending on the presence of financial
coverage for OC [8,28].

Private foundations can offer grants in the form of financial assistance or donated
infertility services. A survey of 20 such foundations found that the average grant was
valued at $8191, ranging from $500 to $25,000 [126]. The majority were provided by a
single foundation to patients with a history of cancer. Many (12/20) foundations offered
assistance for medically indicated OC, but only five also included planned OC.

8. How Many Is Enough?

Perhaps one of the most logical and consequential questions raised by any patient
undergoing OC relates to how many eggs are enough. As noted earlier, ovarian aging is
a consequence of declining quantity and quality; with age, there is an increasing rate of
aneuploidy in a diminishing pool of ovarian follicles. Therefore, the age of the patient at the
time they pursue OC has a strong influence on the number needed for a reasonable chance
of live birth. Furthermore, it is anticipated that fewer oocytes are retrieved with increasing
age. In a study of 3362 patients undergoing their first ovarian stimulation cycle, the median
number of oocytes retrieved was greatest in the <30 year group at 18 (interquartile range
(IQR) 11–24) and decreased linearly to 8 (IQR 4–12) in the ≥44 year group [127]. In general,
it is preferable to freeze as many mature oocytes as possible, as the estimated efficiency
from a vitrified and warmed oocyte to a live-born child is only 6.5% per oocyte, ranging
from 5.2% for women aged ≥38 years to 7.4% for women < 30 years at the time of OC [128].
These rates are comparable to that calculated for fresh oocytes, which is 6.7% overall [117].
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Goldman et al. (2017) examined 520 initial ICSI cycles over a 4-year period between
2011 to 2015 to predict the likelihood of achieving one, two, or three live births based on
patient age and number of mature oocytes frozen. As the authors intended to formulate a
counseling tool specifically for women pursuing planned OC, only those cycles performed
for male factor and/or tubal factor infertility were included to better reflect a fertile popula-
tion. Donor egg cycles were separately examined. Their model assumed a 95% survival
rate of thawed mature oocytes for patients < 36 years of age and egg donors and an 85%
survival rate for those ≥ 36 years. Furthermore, the age-dependent probability of having a
euploid blastocyst and a 60% live birth rate per euploid blastocyst transfer were factored.
As anticipated, the model showed that higher numbers of mature oocytes are needed to
be frozen with increasing age. For example, an individual ≤ 35 years of age should aim
to freeze 10 mature oocytes to have a 70% probability of having at least one live birth.
To achieve this same 70% probability, a 38-year-old, 40-year-old, and 42-year-old would
require about 20, 35, and 55 mature oocytes, respectively. Table 2 illustrates this relationship
assuming 10 frozen oocytes by individuals of differing ages.

Table 2. Probability of at least 1, 2, and 3 live birth(s) with 10 frozen mature oocytes. Adapted from
“Predicting the likelihood of live birth for elective oocyte cryopreservation: a counseling tool for
physicians and patients.” by R.H. Goldman, et al., 2017, Hum Reprod, 32(4), pp. 853–859 [129].

Age in Years ≥1 Live Birth (%) ≥2 Live Births (%) ≥3 Live Births (%)

≤35 69 30 9
38 45 11 2
40 30 5 <1
42 20 2 <1

A subsequent study by Maslow et al. (2020) examined the likelihood of cryopreserving
sufficient oocytes to achieve a 50%, 60%, or 70% estimated live birth rate (eLBR) with one
or two cycles of OC. The authors included 1799 planned OC cycles from 1241 non-infertile
patients in the analyses and found that two-thirds of patients were able to achieve a 50%
eLBR and just over half were able to achieve a 70% eLBR with a single cycle of OC [130].
The data are more reassuring with two cycles of OC, from which nearly 80% reach the 50%
eLBR threshold. As expected, there was a significant impact of age, with patients younger
than 37.5 years of age significantly more likely to achieve a 60% eLBR with their first OC
cycle compared with those older than 37.5. Controlling for age, AMH was also shown to
be significantly associated with the probability of eLBR; those with an AMH value greater
than 1.995 ng/dL were seven times more likely to achieve a 60% eLBR with the first OC
cycle compared with those with an AMH lower than 1.995 ng/dL [130].

9. Outcomes

Cobo et al. (2018) compared the characteristics and reproductive outcomes of more
than 6000 women who underwent over 8000 medically indicated and planned OC cycles.
Patients who underwent planned OC were older, underwent more treatment cycles, had
fewer oocytes retrieved per cycle, and had fewer oocytes vitrified per cycle. They were
also more likely to return to utilize their vitrified oocytes with a shorter interval between
cryopreservation and utilization. The thaw survival rates of vitrified oocytes were similar.
The planned OC group had higher implantation rates (42.6% vs. 32.5%), but this did not
translate into a difference in clinical or ongoing pregnancy rates. Other smaller studies
have shown no differences in the number of vitrified oocytes between medically indicated
and planned OC, and the utilization rate remains too low to make meaningful conclusions
on differences in reproductive outcomes [97].

Compared with fresh oocytes (i.e., those used immediately for in vitro fertilization),
previously vitrified oocytes have similar fertilization and ongoing pregnancy rates [128].
The limited studies on obstetrical and perinatal outcomes from pregnancies resulting from
OC are reassuring, with no increase in congenital anomalies compared with naturally
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conceived pregnancies and no difference in maternal/perinatal complications compared
with pregnancies resulting from fresh oocytes [97,131,132].

10. Concluding Remarks

As knowledge and social norms continue to evolve, access to OC will increase and
become more prevalent. Providers who care for prepubertal or reproductive-aged women
need to be aware of OC as a mainstream option to enable having genetically related children
for those who face iatrogenic or age-related loss of fertility.
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