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Abstract: Infrared thermography can be used to evaluate the inflammation characterizing the joint
environment of OA knees, but there is limited evidence on the response to physical exercise. Identi-
fying the response to exercise of OA knees and the influencing variables could provide important
information to better profile patients with different knee OA patterns. Sixty consecutive patients
(38 men/22 women, 61.4 ± 9.2 years) with symptomatic knee OA were enrolled. Patients were eval-
uated with a standardized protocol using a thermographic camera (FLIR-T1020) positioned at 1 m
with image acquisition of an anterior view at baseline, immediately after, and at 5 min after a 2-min
knee flexion–extension exercise with a 2 kg anklet. Patients’ demographic and clinical characteristics
were documented and correlated with the thermographic changes. This study demonstrated that the
temperature response to exercise in symptomatic knee OA was affected by some demographic and
clinical characteristics of the assessed patients. Patients with a poor clinical knee status presented with
a lower response to exercise, and women showed a greater temperature decrease than men. Not all
evaluated ROIs showed the same trend, which underlines the need to specifically study the different
joint subareas to identify the inflammatory component and joint response while investigating knee
OA patterns.
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1. Introduction

Infrared thermography is an established method that is able to detect the infrared
radiation emitted by the human body, which correlates with the temperature distribution
of a defined region [1]. This technology, used for the first time in the 1960s [2], allows us
to identify and locate thermal abnormalities characterized by an increase or decrease in
temperature at the skin surface, which can reflect the status of a specific pathology [3]. In
particular, infrared thermography has been proposed as a method to evaluate conditions
with an inflammatory component, which plays a central role in the pathophysiology of
several diseases [4]. The awareness of the role of inflammation within a wide range
of diseases as well as the technological advancements in cameras and improvements
in software used for image analysis has led to increased use of infrared thermography
in different scientific fields, from dermatology to oncology [5,6]. Recently, the use of
infrared thermography has been proposed in the orthopedic field as a potential method for
evaluating patients with knee osteoarthritis (OA) to better characterize the pathology and
guide personalized treatment [4].

Knee OA is one of the most common musculoskeletal diseases. It is characterized by
the deterioration and loss of articular cartilage with concomitant structural and functional
changes across the entire joint [7]. Inflammation plays a key role in the pathophysiology
of knee OA, with the involvement of the synovial membrane and the release of several
proinflammatory cytokines [8–10]. The inflammatory component leads to an increase
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in blood flow that can manifest clinically as redness and heat as well as joint swelling
and pain [4]. Infrared thermography has been proven, through the evaluation of the
skin temperature of the knee, to be able to evaluate the inflammation component that
characterizes the joint environment of OA knees [11–14]. However, although the use of
infrared thermography in this setting is growing, there is limited evidence on its use for
the evaluation of the inflammatory response to physical exercise in OA knees. While a few
reports suggest that there are activity-related changes in OA knees, despite documenting
temperature-induced changes after exercise, no studies have evaluated possible factors
influencing the temperature response [15,16]. Identifying the response to exercise of OA
knees and the variables that influence this response could provide important information
to better profile patients with different knee OA patterns.

The aim of this study was to evaluate, through infrared thermography, the response to
a knee flexion–extension exercise and identify the clinical and demographic variables able
to influence this response in patients with symptomatic knee OA.

2. Materials and Methods

This study was approved by the hospital ethics committee of the IRCCS Istituto
Ortopedico Rizzoli, Italy (n. 0017413). Patient screening was performed by orthopedic
physicians in a research outpatient department of a highly specialized referral center for
orthopedics focused on patients with knee OA. The evaluation was performed from De-
cember 2021 to December 2022. Informed consent was obtained from each patient prior
to study participation. Patients were clinically evaluated for their eligibility for study
inclusion according to the following criteria: patients with monolateral symptomatic knee
OA (Kellgren–Lawrence grade ≥ 2) with a history of chronic pain or swelling (for at least
6 months) were included in the study. The exclusion criteria were as follows: previous total
knee arthroplasty; history of trauma or intra-articular injections within 6 months before
treatment or knee surgery within 12 months; the presence of concomitant lesions causing
knee pain or swelling, including radiculopathy; clinical signs of dermatological and vascu-
lar conditions; neoplasms; systemic disorders (i.e., uncontrolled diabetes); uncontrolled
metabolic disorders of the thyroid; severe cardiovascular diseases; rheumatoid arthritis and
other inflammatory arthropathies; hematological diseases; infections; immunodepression;
anticoagulant or antiaggregant therapy; the use of nonsteroidal anti-inflammatories or
other analgesic drugs in the 5 days before the evaluation. According to the Thermographic
Imaging in Sports and Exercise Medicine (TISEM) guidelines [17] as well as considering the
guidelines of the American Academy of Thermology [18], patients were asked to respect
some instructions: avoidance of exercise and physical activity within 48 h; avoidance of
alcohol beverages, smoking, caffeine, large meals, any type of ointment, cosmetics, and
showering within 4 h; avoidance of ice or lotion applications within 48 h; and avoidance of
knee exposure to the sun for long periods during the week prior to the examination.

A total of 60 consecutive patients with symptomatic knee OA were enrolled in ac-
cordance with the inclusion/exclusion criteria. Among them, 38 patients were men and
22 were women, aged 61.4 ± 9.2 years, and with a body mass index (BMI) of 25.4 ± 3.0. All
demographic and clinical characteristics are reported in Table 1.

After enrollment, patients were evaluated clinically thorough knee-specific patient
reported outcome measurements (PROMs), including the International Knee Documen-
tation Committee (IKDC) subjective score, the Knee Injury and Osteoarthritis Outcome
Score (KOOS) subscales, the Tegner score for activity level, the Visual Analogue Scale (VAS)
for pain, and the PainDETECT questionnaire for the evaluation of the neuropathic pain
component. Clinical questionnaires were administered via paper questionnaires during
clinical visits in the research outpatient clinic. Patients completed the questionnaires, and
doctors were available in case of questions. Moreover, the IKDC objective scores were
evaluated by the clinician. All participants underwent weight-bearing antero-posterior
radiographs to assess the baseline OA severity according to the Kellgren–Lawrence classifi-
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cation. Finally, the skin temperature of the knee affected by symptomatic OA was evaluated
with thermographic imaging.

Table 1. Included patients’ characteristics.

Sex, M/W 38/22

Age, years 61.4 ± 9.2 (43–75)

BMI, kg/m2 25.4 ± 3.0 (19.5–33.8)

Side Right: 33—Left: 27

Symptom duration, months 108.3 ± 99.3 (18–372)

Symptom onset Acute: 14—Chronic: 46

Previous knee surgery, yes/no 31/29

Smoker, yes/no 13/47

Kellgren–Lawrence grade

Grade 2: 30

Grade 3: 21

Grade 4: 9

VAS pain 5.6 ± 2.3 (1–9)

IKDC subjective score 41.3 ± 14.2 (9.2–81.6)

IKDC objective score

Grade 1: 8

Grade 2: 29

Grade 3: 10

Grade 4: 13

KOOS pain 59.8 ± 18.9 (2–94)

KOOS symptoms 60.4 ± 19.7 (18–100)

KOOS ADL 69.5 ± 18.4 (6–100)

KOOS QoL 34.5 ± 16.2 (0–75)

KOOS Sport/Rec 43.8 ± 17.7 (20–90)

Tegner score pre-treatment 2.2 ± 1.2 (1–5)

PainDETECT questionnaire 8.7 ± 5.5 (0–25)
Values are expressed as mean ± standard deviation and range (). ADL, Activities of daily living; BMI, body mass
index; IKDC, International Knee Documentation Committee; KOOS, Knee Injury and Osteoarthritis Outcome
Score; M, men; QoL, Quality of Life; Sport/Rec, Function in Sport and Recreation; VAS, visual analogue scale;
W, women.

2.1. Infrared Thermography Procedure, Exercise, and Analysis

The infrared imaging evaluation was performed in a dedicated outpatient clinic
shielded from direct sunlight and with the temperature controlled at 23.0 ◦C [19,20] and
a mean humidity of 45 ± 3%. Image acquisition was performed between 14:00 and 17:00
to minimize the circadian temperature variations. According to Marins et al. [21], the
thermalization period was 10 min. To speed up thermalization, patients were asked to
remove trousers, shoes, and socks, remain seated and undressed on the lower limbs with
light clothing (such as a t-shirt) on the top, and not touch their knees. The patient only rested
the buttocks region on the medical bed, while the remaining parts of the lower limbs had
no contact with other objects or body parts; only feet without socks touched a paper towel,
thus separating them from direct contact with the floor. Thermograms were acquired using
a FLIR T1020 thermographic camera (FLIR® Systems, Stockholm, Sweden) with a resolution
of 1024 × 768 pixels and a thermal sensitivity of 0.02 ◦C. The camera was positioned at a
distance of 1 m, perpendicular to the knee and adjusted to the patellar height [22]. After
the patient was acclimatized, he was positioned on a designated floor map, and image
acquisition (T0) of an anterior view was performed using the autofocus mode.
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Then, one 2 kg anklet was positioned on the ankle of the symptomatic lower limb
of the patient. At this point, with the patient seated, a knee flexion–extension exercise
was performed for 2 min at the rate of one extension every 2 s (1 s flexion phase and
1 s extension phase). A metronome was used to standardize pacing. Immediately after
performing this exercise, the anklet was removed, and the patient was positioned again on
the floor map and a second anterior view image was acquired (T1). Afterwards, the patient
waited in the room for 5 min in a sitting position without touching or moving the lower
limbs. At the end of this resting period, the patient was positioned on the floor map and a
third anterior view image was acquired (T2). Finally, maintaining the same position of the
knee, an anatomical marker (circular adhesive of 2 cm in diameter) was placed at the center
of the patella to obtain a further image in the anterior view in order to facilitate the precise
subsequent location of the patella in the analysis of the previous infrared images (Figure 1).
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Figure 1. Timeline of the study.

During the image analysis process, the three anterior images acquired at T0, T1, and T2
were aligned side by side with the image with the patellar marker on the computer screen,
and a template indicating the region of interests (ROIs) was centered over the patella of
each unmarked image, using the marked image as a guide [23,24]. The ROIs were defined
as follows: the patellar area was a square, 6 cm in diameter, divided into the medial patella
and lateral patella (each area 6 cm high and 3 cm wide); the suprapatellar area was the
area 3 cm over the patella; the medial and lateral areas were the regions 3 cm below the
patella on its medial and lateral sides, respectively. The mean temperatures were extracted
using ResearchIR software (FLIR® Systems, Stockholm, Sweden) to determine the overall
knee area and the 5 ROIs: medial patella, lateral patella, suprapatellar, and medial and
lateral knees.

2.2. Statistical Analysis

All continuous data are expressed in terms of the mean and the standard deviation of
the mean and range, and the categorical data are expressed as frequencies and percentages.
The Shapiro–Wilk test was performed to test normality of continuous variables. The Levene
test was used to assess the homoscedasticity of the data. The Repeated Measures General
Linear Model (GLM) with the Sidak test for multiple comparisons was performed to
assess the differences in different areas. The ANOVA test was performed to assess the
between-group differences of continuous, normally distributed, and homoscedastic data;
the Mann–Whitney nonparametric test was used otherwise. The ANOVA test, followed by
the post-hoc Sidak test for pairwise comparisons, was performed to assess the among-group
differences of continuous, normally distributed, and homoscedastic data, the Kruskal–
Wallis nonparametric test, followed by the post-hoc Mann–Whitney test with Bonferroni
correction for multiple comparisons, was used otherwise. The Spearman rank correlation
was used to assess correlations between temperature and continuous data; the Kendall tau
rank correlation was used for ordinal data. For all tests, p < 0.05 was considered significant.
All statistical analyses were performed using SPSS v.19.0 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Temperature Changes

The mean temperature of the total knee significantly changed after exercise, ranging
from the baseline (T0) value of 32.13 ± 1.07 ◦C to 31.86 ± 1.12 ◦C at T1 and 31.94 ± 1.10 ◦C
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at T2 (p = 0.002). In detail, the mean temperature of the total knee detected at T0 was higher
compared to that at T1 (p = 0.001) with a mean difference T0-T1 (∆T0 T1) of 0.27 ◦C and
compared to that at T2 (p = 0.036) with a mean difference T0-T2 (∆T0 T2) of 0.20 ◦C. No
significant differences in the mean temperature of the total knee were found between T1
and T2 (Figure 2).
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Figure 2. Thermographic basal image (T0), at the end of the 2-min flexion–extension exercise (T1)
and after the 5-min rest period (T2).

Similar changes in the mean temperature after exercise were observed for all knee
subareas (Figure 3). In particular, statistically significant changes (ANOVA test) were
detected for the lateral (p = 0.001), medial (p = 0.002), suprapatellar (p < 0.0005), and medial
patella subareas (p = 0.011), while no significant changes were observed for the lateral
patella subarea. A higher change in temperature from T0 to T1 (∆T0-T1) was found for
the suprapatellar area (p < 0.0005) with a mean ∆T0-T1 of 0.33 ◦C, while a smaller change
was detected for the lateral patella area (p = n.s) with a mean ∆T0 T1 of 0.19 ◦C. A higher
change in temperature from T0 to T2 (∆T0 T2) was found for the medial area with a mean
∆T0-T2 of 0.25 ◦C, while a smaller change was detected for the suprapatellar area (n.s)
with a mean ∆T0-T2 of 0.15 ◦C. Analyzing the changes in temperature between T1 and T2
(∆T1-T2) showed a significant increase in the suprapatellar area (+0.18, p = 0.030), while no
differences were found in any other areas.

3.2. Influences of Demographic Variables

Sex influenced the temperature changes after the exercise (Figure 4). Women had
a greater decrease in temperature than men after exercise (∆T0-T1) in the total knee
(−0.47 ± 0.64 vs. −0.16 ± 0.49, p = 0.021) and the medial (−0.48 ± 0.73 vs. −0.17 ± 0.50,
p = 0.042) and suprapatellar (−0.56 ± 0.70 vs. −0.19 ± 0.55, p = 0.022) areas. Similarly,
women had a greater decrease in temperature between T0 and T2 (∆T0-T2) in the total knee
(−0.46 ± 0.49 vs. −0.05 ± 0.59, p = 0.009) and the medial (−0.52 ± 0.50 vs. −0.10 ± 0.60,
p = 0.007), medial patella (−0.48 ± 0.62 vs. −0.03 ± 0.60, p = 0.018), and suprapatellar
(−0.50 ± 0.51 vs. −0.06 ± 0.66, p = 0.001) areas. No significative differences were found in
∆T1T2 between women and men. The other demographic characteristics, including age,
BMI, OA grade, sport activity level, smoking status, previous surgery, and symptom onset
did not influence the thermic response after exercise.
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Figure 3. Mean temperatures of the total knee and subareas at T0, T1, and T2 (* p < 0.05, post-hoc Sidak
test). Box-and-whisker plots showing median values and interquartile ranges. The “x” represents
the mean temperature. T0: baseline; T1: immediately after performing this exercise; T2: 5 min after
performing this exercise.
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Figure 4. Differences in the total mean knee temperature and subareas at T0, T1, and T2 in men
and women (* p < 0.05). Box-and-whisker plots showing median values and interquartile ranges.
“x” represents the mean temperature. F: females; M: males; T0: baseline; T1: immediately after
performing this exercise; T2: 5 min after performing this exercise.

3.3. Influence of Clinical Variables

The ∆T0-T1 of the total knee was negatively correlated with the VAS score (rho = −0.296,
p = 0.022), with a higher temperature change occurring in patients with lower VAS scores
(Figure 5a). This correlation was confirmed for the medial area (rho = −0.320, p = 0.013)
and medial patella area (rho = −0.294, p = 0.023). The medial area was also positively
correlated with the IKDC subjective score (rho = 0.363, p = 0.004) and the KOOS ADL
subscale (rho = 0.259, p = 0.045), with higher temperature changes occurring in patients
with better clinical values.
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Figure 5. VAS pain is negatively correlated with ∆T0-T1 (A, rho = −0.296, p = 0.022) and ∆T0-T2
(B, rho = −0.318, p = 0.013).

The ∆T0-T2 of the total knee was negatively correlated with the VAS score (rho = −0.318,
p = 0.013), with a higher temperature change occurring in patients with lower VAS scores
(Figure 5b). Similar trends were observed for all subareas: lateral (rho = −0.256, p = 0.049),
medial (rho = −0.365, p = 0.004), suprapatellar (rho = −0.270, p = 0.037), medial patellar
(rho = −0.310, p = 0.016), and lateral patellar areas (rho = −0.271, p = 0.036). The IKDC
subjective score was positively correlated with the ∆T0-T2 of the total knee (rho = 0.299,
p = 0.020) and the medial area (rho = 0.371, p = 0.004), with higher temperature changes
occurring in patients with higher IKDC subjective scores. The ∆T0-T2 of the total knee and
the medial area were also positive correlated with the KOOS ADL subscale (rho = 0.256,
p = 0.048 and rho = 0.298, p = 0.021, respectively) and the KOOS Sport/Rec subscale
(rho = 0.307, p = 0.017 and rho = 0.369, p = 0.004, respectively), with higher temperature
changes occurring in patients with higher activity levels. The PainDETECT questionnaire
scores were negatively correlated with the ∆T0-T2 of the total knee (rho = −0.270 and
p = 0.037) and the medial area (rho = −0.281, p = 0.030), with lower temperature variations
occurring in patients with higher PainDETECT scores.

No correlations were found between ∆T1T2 temperatures of all areas and the clinical
variables analyzed.

4. Discussion

This study demonstrated that the temperature response to exercise in symptomatic
knee OA is affected by the different demographic and clinical characteristics of the assessed
patients. Patients with a poor clinical knee status presented with a lower response to
exercise, and women showed a greater temperature decrease compared to men.

The use of infrared thermography for the evaluation of musculoskeletal diseases has
gaining increased interest in recent years, thanks to its simple method of evaluating the
temperature of a body region, for example, for the study of tendinopathies and rheumatic
diseases [4,25–27]. Recently, infrared thermography was proposed as a method for the
evaluation of patients with knee OA to better characterize this pathology and possibly
guide the treatment [4]. Although preliminary studies investigated the use of infrared
thermography as a method for diagnosing and monitoring knee OA, its actual potential for
use in clinical practice is still unclear, and its application remains limited [24,27,28]. In this
scenario, defining how the OA knees respond to physical exercise and identifying which
variables can influence this response could be useful to optimize its potential to detect
OA patterns.

Previous studies evaluated the response to physical exercise in different body areas
of healthy volunteers, reporting different temperature patterns [19,29,30]. In particular,
significant heterogeneity among the different studies was found in terms of the response to
exercise in relation to the intensity and duration of exercise [31]. Studies evaluating the skin
temperature after brief exercise reported an initial temperature decrease and a subsequent
temperature increase, while other studies analyzing skin temperature directly after a long
bout of exercise directly detected a temperature increase compared to baseline conditions,
probably hiding the initial temperature decrease [15,16]. In detail, Arfaoui et al. performed
a 5-min running exercise at a speed of 8 km/h with thermalization for 30 min, a room
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temperature of 18 ± 0.5 ◦C, and a humidity of 60%, while Brito et al. performed a 50-min
training session with thermalization for 10–15 min, a room temperature of 28.2 ± 0.5 ◦C,
and a humidity of 48.1 ± 1.2%. The initial temperature decrease appeared to be due to
vasoconstriction of the skin circulation and a redistribution of blood flow from the skin
to the muscles involved in the exercise [29,30,32]. The following increase in temperature
above the baseline values appeared to be due to the activation of cutaneous mechanisms of
heat dissipation [31].

The current study, focusing on older patients (mean age 61 years) with knee OA,
demonstrated that the temperature of symptomatic OA knees changes in response to
two minutes of physical exercise with a temperature decrease immediately after exercise.
This temperature change two minutes after exercise is similar to that reported in a previous
study conducted by Formenti et al. [33]. Through infrared thermography, these authors ana-
lyzed the response to exercise in 13 young healthy volunteers (mean age 25 years), showing
a peak temperature reduction of between two and three minutes from the beginning of
exercise. However, in this study, the authors documented a subsequent increase in the
temperature which was not confirmed in the different population used in the current study.
The temperature of OA knees seven minutes after the beginning of exercise remained un-
changed compared with that at two minutes, and it was lower than the baseline temperature.
On one hand, this difference could be justified by the different participant ages between
the two studies, with possible differences in the vascular response to exercise [34,35]. On
the other hand, the differences could be explained by the detection of temperature in the
different skin areas in the two studies. In fact, Formenti et al. analyzed the skin temperature
above the quadriceps muscles, while in the current study, the temperature was evaluated
above the knee joint. Interestingly, the subdivision of the knee into subareas allowed us
to highlight different behaviors in different subareas following exercise. For example, the
region of the patella is cooler due to the underlying bone, and other areas may respond
differently. The suprapatellar area showed a response to the exercise similar to that found
in the study of Formenti et al., with a temperature decrease occurring two minutes after
the beginning of exercise, followed by a significant temperature increase. Perhaps this is
due to the proximity of the suprapatellar area to the distal part of the quadriceps muscle,
thus showing a behavior similar to that of the skin over the muscles. On the other hand,
all other subareas and the total knee temperatures demonstrated an initial decrease that
was not followed by a return to baseline values after this short exercise bout and at the last
studied timepoint.

This study also detected a correlation between the clinical status of the patients and the
thermal response of their knees to exercise. A positive correlation was found between the
evaluated clinical scores and the changes in temperature after physical exercise. Patients
with a better clinical status showed a greater change in temperature compared to patients
with a worse clinical status. Therefore, patients with fewer symptoms demonstrated a
temperature decrease comparable with that of healthy subjects, as analyzed in previous
studies [30,33,36]. This trend was confirmed by subjective scores evaluating pain, such
as the VAS, or more complex functional scales, such as the IKDC subjective score and the
KOOS subscales. On the other hand, patients with a worse clinical status had a lower
response to exercise with a reduced temperature variation. This could be explained by
the fact that patients with a worse clinical status could have performed the exercise at a
lower intensity, activating the muscles less. Moreover, the higher association of a worse
clinical status with a higher inflammatory component in knee OA [8,37,38] could also partly
explain the altered response to physical exercise.

The response to exercise in this population also correlated with the results of the
PainDETECT questionnaire, which evaluates the contribution of neuropathic pain to pain
perception by the patient [39,40]. This score has not only been associated with impaired
pain modulation but also with neuropathy, which may contribute to OA knee pain through
damage to nerve fibers in the joint [41–43]. Considering that nerve fibers have a funda-
mental role in regulating skin circulation by releasing catecholamines, their alteration
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could lead to an impaired response to external stimuli, such as exercise [41,44,45]. In fact,
patients in the current study with high PainDETECT questionnaire scores showed less
temperature variation after exercise. This result could be explained by altered cutaneous
vasoconstriction due to neuropathy, resulting in an alteration of the peripheral neuromodu-
lation mechanisms. While the clinical relevance of this finding remains to be established,
this finding confirms the presence of different factors influencing OA joints and the need to
better study knee OA patterns.

The thermal response to exercise in patients with knee OA was also affected by sex.
Women had a greater decrease in skin temperature than men immediately after exercise and
at five minutes after its end. This could be related to differences in the metabolic, contractile,
and hemodynamic properties of skeletal muscle between women and men, as well as the
different cutaneous adipose tissue distribution [46,47]. Women have greater capillarization
of the muscle than men and also a greater vasodilatory response of the arteries supplying
the skeletal muscles, which leads to a greater increase in blood flow [48–50]. Moreover,
women usually have a reduced exercise capacity and a lower blood volume than men;
therefore, the same physical exercise could require a major effort and thus a relatively high
level of blood transfer from the skin to the muscles compared to men. [51]. In previous
work, it has been shown that the same type of exercise with the same number of repetitions
can provide a greater training stress in women than in men [52]. In the current study,
both sexes performed the same exercise for the same amount of time and at the same
frequency. From this perspective, the greater activation of compensatory mechanisms
aimed at redistributing the flow to the muscles involved in the exercise could explain
the greater cutaneous vasoconstriction detected by the infrared thermography in women.
Further studies on a larger numbers of patients should explore whether, besides the overall
higher temperature changes, women present similar or different response patterns to men
based on demographic, clinical, or other influencing factors.

This study presents some limitations. Although this is the largest study evaluating
the thermal response to exercise in symptomatic patients with knee OA, future studies
with larger populations are needed to confirm the identified correlations. Second, a control
group of nonsymptomatic knee OA patients or non-OA knee patients could be used to
better characterize the response of the knee to the exercise stimulus and to better evalu-
ate temperature changes related to the presence and severity of OA disease. Third, the
performed exercise may not have been optimal to generate the largest thermal response
of the evaluated knee, and it could require different stresses among different patients.
Therefore, future studies should investigate other possible exercises tailored to patients
in terms of the type, time, and effort. It was not possible to perform evaluations using
tests, such as Doppler vascular examination to exclude varicose veins or electrodiagnostic
testing to better characterize the neuropathic component of the patients’ pain, and future
studies should better characterize the neuropathic component of pain in these patients.
Although the results obtained are statistically significant, the large interindividual vari-
ability and the many variables influencing temperature may have reduced the power of
the study, so the results need future confirmation. Finally, the method of thermographic
image acquisition and analysis was based on previous literature, but no method has been
described as the gold standard in this field. For example, we adopted a 10-min protocol
for patient thermalization, while other authors prefer a 15-min window of thermalization
before the thermographic evaluation. It is possible that different settings, different lenses,
and different devices could be more suitable for such evaluations in clinical practice. The
standardization of thermography use for the evaluation of knee OA could improve its
potential for identifying different disease patterns both in research and in clinical practice.
In this regard, this study provides new input on how the thermographic findings can be
influenced by simple exercise testing, which could be useful for studying patients and
knees with different OA patterns so that they can be targeted by specific and more effective
treatment approaches in the future.
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5. Conclusions

This study demonstrated that the temperature response to knee flexion–extension
exercise in symptomatic knee OA is affected by the demographic and clinical characteristics
of the assessed patients. Patients with a poor clinical knee status presented a lower response
to exercise, and women showed a greater temperature decrease compared to men. Not all
evaluated ROIs showed the same trend, which underlines the need to specifically study the
different joint subareas to identify the inflammatory component and joint response while
investigating knee OA patterns.
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