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Abstract: (1) Introduction: The role of soluble integrins in post-COVID-19 complications is unclear,
especially in long-term pulmonary lesions. The purpose of this study was to investigate the associa-
tion between soluble ITGa2, ITGaM and ITGb2 integrin subunits and long COVID-19 pulmonary
complications. (2) Methodology: Post-COVID-19 patients were enrolled. According to the evidence
of persistent interstitial lung lesions on CT, patients were divided into a long-term pulmonary com-
plications group (P(+)) and a control group without long-term pulmonary complications (P(−)). We
randomly selected 80 patients for further investigation (40 subjects for each group). Levels of ITGa2,
ITGaM and ITGb2 integrin subunits were determined by ELISA assay. (3) Results: The serum con-
centration of sITGaM and sITGb2 were significantly higher in the P(+) group (sITGaM 18.63 ng/mL
[IQR 14.17–28.83] vs. 14.75 ng/mL [IQR 10.91–20] p = 0.01 and sITGb2 10.55 ng/mL [IQR 6.53–15.83]
vs. 6.34 ng/mL [IQR 4.98-9.68] p = 0.002). We observed a statistically significant correlation between
sITGaM and sITGb2 elevation in the P(+) group (R = 0.42; p = 0.01). Patients from the P(+) group
had a lower (1.82 +/−0.84 G/L) lymphocyte level than the P(−)group (2.28 +/−0.79 G/L), p = 0.03.
Furthermore, we observed an inverse correlation in the P(−) group between blood lymphocyte count
and sITGb2 integrin subunit levels (R = −0.49 p = 0.01). (4) Conclusions: Elevated concentrations
of sITGaM and sITGb2 were associated with long-term pulmonary complications in post-COVID-
19 patients. Both sITGaM and sITGb2 may be promising biomarkers for predicting pulmonary
complications and could be a potential target for therapeutic intervention in post-COVID-19 patients.

Keywords: ITGaM; CD11b; ITGb2; CD18; integrins; biomarkers; COVID-19; long COVID-19; post-
COVID-19; pulmonary complications; fibrosis

1. Introduction

Integrins are pivotal receptors in leukocyte adhesion [1]. We have focused on the role
of leukocyte-specific β2 integrins, mainly expressed and exposed on the white cell surface,
during the COVID-19 disease. This group of transmembrane receptors is composed of a
variable α (from CD11a to CD11d) and a constant β (CD18; ITGb2) subunit. The expression
of subunit α regulates the surface number of leukocyte-specific β2 integrins, as subunit
β is continuously expressed in leukocyte cells [2,3]. Leukocyte-specific β2 integrins are
presented in an inactive conformational form with low affinity. Conformational activation
resembles a switchblade-like motion in which integrin extends and the binding packet
“opens” for ligands [4,5]. Integrins mediate the inflammatory response and contribute to
anchoring leukocytes in endothelium, which allows their diapedesis. They play critical
roles in leukocyte chemotaxis during cell adhesion and migration [6]. Moreover, β2 in-
tegrins are inherent in (1) phagocytosis of opsonized pathogens and immune complexes;
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(2) modulation of other receptors, for example toll-like receptor (TLR); (3) interaction be-
tween immune cells, and immune cells and target cells; (4) differentiation of white cells via
stimulation of transcription factor function [2].

Integrins are directly involved in severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection via the arginylglycylaspartic acid motif (RGD motif) [7]. The
RGD motif is similar to the angiotensin-converting enzyme 2 (ACE2) receptor. SARS-
CoV-2’s spike protein (S protein) utilizes the ACE2 receptor to enter epithelial-like cells.
Therefore, the integrin RGD motif mediates ACE2-independent cell entry of the SARS-
CoV-2 virus [8]. On the other hand, integrins could suppress virus entry by shielding the
interaction between S protein and ACE2 [9]. Integrin-mediated cell access is possible in
their active conformation [10]. Viral binding via integrins contributes to the dysregulation
of integrin pathways with consequent cell damage [11]. Importantly, integrins are not
simple adhesion molecules. They are associated with downstream signaling cascades,
modulate gene-transcription programs, and facilitate phagocytosis and extracellular matrix
reorganization [12].

Recently, soluble serum forms of β2 integrins have gained significance. The expres-
sion of a soluble form of integrin Mac-1(sITGaM/sITGb2; sCD11b/sCD18) reveals a new
direction in integrin research [13]. The functional form of the sITGaM/sITGb2 extracellular
integrins domain arises during the detachment of leukocytes via enzymatic cleavage [14].
An additional source of sITGaM/sITGb2 is the membrane release stimulated by tumor
necrosis factor alpha (TNF-alpha) [15]. Altered levels of soluble integrin beta 2 subunit
(sITGb2, sCD18,) are associated with spondylarthritis activity and sepsis outcomes. A
decreased concentration of sITGb2 correlates with alcoholic hepatitis and spondylarthritis.
Moreover, sITGb2 has been established as a biomarker of fatal sepsis outcome [16–18].

The emerging problem seems to be long-term health complications after COVID-19
recovery [19]. According to the European Respiratory Society Statement, long COVID-19
is defined as “signs and symptoms that continue or develop after acute COVID-19 and
post-COVID-19 syndrome, encapsulates those with symptoms persisting > 12 weeks” [20].
Common symptoms of long COVID-19 involve fatigue (58%), headache (44%), attention
disorder (27%), hair loss (25%), and dyspnoea (24%). Meta-analysis of the long-term
complications indicates that abnormal chest X-ray and/or CT results are revealed in 34%
(27–42%) of post-COVID-19 patients after more than two weeks of observation [21,22].

This study aimed to investigate the association between main soluble integrin sub-
units and long COVID-19 pulmonary complications. Our research aimed to evaluate the
significance of sITGa2, sITGaM and sITGb2 integrins as biomarkers and their involvement
in immune response after COVID-19.

2. Materials and Methods
2.1. Subjects

We enrolled 283 patients (mean age = 55 ± 12) from the Outpatient Clinic and De-
partment of Pneumology of the Medical University of Lodz from 2020 to the end of 2021,
who were recovered from COVID-19. In all patients, viral infection was confirmed by
real-time polymerase chain reaction test (RT-PCR). From the entire study cohort, we se-
lected 80 patients for further investigation (40 subjects for each group), as described below.
Pulmonary manifestation of long COVID-19 was defined by lung lesions, with or without
decreased parameters of pulmonary function tests (PFTs), which persisted after approxi-
mately 3 months after recovery from active COVID-19. This group was labelled as P(+).
The control group consisted of patients who had recovered from COVID-19 and neither
presented lung lesions nor decrease in PFTs in a 3-month follow-up. Patients in this group
were selected randomly using the web-based tool served by the research randomizer page
(https://www.randomizer.org, accessed on 23 March 2022). This group was labelled as
P(−). Smokers and ex-smokers were defined according to recommendations of the Center
for Disease Control and Prevention [23]. We performed a comprehensive assessment of the
participants, presented in Table 1. The Experiment design was shown in Scheme 1.

https://www.randomizer.org
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Table 1. Characteristics of the study group.

P(+)
n = 40

P(−)
n = 40 p-Value

AGE, mean ± SD 56 (12.21) Mean = 53 ± 11.3 0.2100
Male sex, n (%) 31 (77.5%) 21 (52%) 0.0191

BMI, mean ± SD 28 ± 5.28 28 ± 4.7 0.6988
Comorbidities, n (%)

Hypertension 18 (45%) 14 (35%) 0.8333
Obesity 10 (25%) 7 (17.5%) 0.4123

Heart failure 5 (12.5%) 1 (2.5%) 0.0895
Type 2 diabetes 4 (10%) 8 (20%) 0.2104

Asthma 4 (10%) 4 (10%) 1
Coronary heart disease 4 (10%) 2 (5%) 0.3959

Pulmonary hypertension 2 (5%) 1 (2.5%) 0.5562
Smoking

Active smokers, n (%) 2 (5%) 8 (20%) 0.0425
Pack-years, mean ± SD 16 ± 13 11 ± 13 0.1194

Ex-smokers, n (%) 22 (55%) 18 (45%) 0.3711
Abbreviations: BMI, Body Mass Index; SD, standard deviation; P(+), long-term pulmonary complications group;
P(−), non long-term pulmonary complications group.
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2.2. Pulmonary Function Tests

Spirometry and the single-breath transfer factor of the lung for carbon monoxide
(TLCO) measurements were performed using a Lungtest 1000 system (MES, Cracow,
Poland) according to ATS/ERS standards [24]. Forced expiratory volume in 1 s (FEV1),
forced vital capacity (FVC), FEV1/FVC% and TLCO corrected for hemoglobin concentration
were recorded.

2.3. Samples

Venous blood samples were collected by venipuncture into tubes with K2EDTA and
tubes for preparing serum with gel (total volume 4.5 + 5 mL). Samples for serum were
allowed to clot and after 30 min were centrifuged at approximately 1000× g, at 4 ◦C for
10 min (Centrifuge MPW 223e). The serum was then transferred to an Eppendorf tube
and stored at −80 ◦C for later use. Morphology and biochemistry measurements were
performed using a Sysmex 2000XN and a Beckman Coulter au480, respectively.
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2.4. ELISA

Serum levels of sITGa2, sITGaM and sITGb2 were measured by an Enzyme-linked
Immunosorbent Assay Kit (Cloud-Clone Corp., Houston, TX, USA). The manufacturer’s
protocol was followed. Detection was performed on the microplate reader (Microplate
Reader BioTek 800 Elx) and measurement was conducted at 450 nm immediately. The mini-
mum detection range of sITGaM and sITGb2 could be less than 13.3 pg/mL (0.0133 ng/mL)
and 116 pg/mL (0.116 ng/mL), respectively.

2.5. Statistical Analysis

Statistical analysis was performed using Statistica v13.3 2017 TIBCO software for
Windows OS. Continuous data were presented as the mean with standard deviation (SD)
or median with interquartile range (IQR), depending on the distribution of data. Variables
were compared using the unpaired Student’s t-test and the U Mann–Whitney test with
continuity correction, depending on data normality and homogeneity of variance. Pearson’s
correlation test was used for correlation analyses.

3. Results
3.1. Pulmonary Function Test Results

For technical reasons, in the P(+) group the spirometry results were was obtained from
36 patients and in the P(−) group in 37 patients. The results are presented in Table 2. We
noted a statistically significant difference in FVC, FEV1 and TLCO between the investi-
gated groups.

Table 2. Pulmonary function test results.

Parameter P(+)
n = 36

P(−)
n = 37

Volume [L] % of Predicted Value * Volume [L] % of Predicted Value * * p-Value

FVC, mean ± SD 3.2 ± 1.24 74 ± 20.2 3.8 ± 0.99 92 ± 11.56 <0.001
FEV1, mean ± SD 2.6 ± 0.95 76 ± 18.45 3 ± 0.72 90 ± 12.28 <0.001
TLCO, mean ± SD 5.7 ± 2.56 67 ± 25.67 7.9 ±2.13 97 ± 12.87 <0.001

Abbreviations: FVC, forced vital capacity; FEV1, forced expiratory volume in one second; TLCO, single-breath
transfer factor of the lung for carbon monoxide; P(+), long-term pulmonary complications group; P(−)non
long-term pulmonary complications group; * statistically significant difference

3.2. Analysis of Integrin Subunits Profiles

Serum concentrations of sITGaM, sITGa1 and sITGb2 were analyzed. The sITGa1
concentration was under the detection range in both groups of patients (data not shown).

The serum concentrations of sITGaM and sITGb2 were significantly higher in patients
with long-term pulmonary complications (P(+)) as compared with the control P(−) group
(sITGaM 18.63 ng/mL IQR 14.17–28.83 vs. 14.75 ng/mL IQR 10.91–20 p = 0.01 and sITGb2
10.55 ng/mL IGR 6.53–15.83 vs. 6.34 ng/mL IGR 4.98-9.68 p = 0.002) (Figure 1a,b).

Moreover, we observed a statistically significant correlation between sITGaM and
sITGb2 elevation in the P(+) group. Pearson’s correlation factor was R = 0.42, p = 0.01
(Figure 2). In the P(−) group, this correlation was not observed (data not shown).
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Additionally, we noted a statistically significant difference in lymphocyte blood count
levels between the studied groups (Figure 3). Patients in the P(+) group had lower (mean
= 1.82+/−0.84 G/L) lymphocyte levels than the P(−) group (mean = 2.28+/−0.79 G/L).
Furthermore, we observed an inverse correlation between peripheral blood lymphocyte
levels and sITGb2 integrin subunit levels in the P(−) group. Pearson’s correlation factor in
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the P(−) group was R = −0.49, p = 0.01 (Figure 4). In the P(+) group, this correlation was
not observed (data not shown).
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4. Discussion

Levels of sITGaM and sITGb2 in SARS-CoV2 infection were investigated here for
the first time. In reviewing the literature, no data were found on the role of integrin
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soluble subunits in COVID-19. Thus, their role in long COVID-19 pulmonary complications
is unexplained.

This study suggests that sITGaM and sITGb2 (sCD11b and sCD18) are associated with
long-term pulmonary complications in post-COVID-19 patients. A possible explanation for
these results might be that integrins are secreted by neutrophils to the environment in the
presence of pathogens [25]. Additionally, integrin subunits are cleavaged by sororicides
during leucocyte detachment [14]. ITGaM (CD11b) is necessary for the development of in-
flammation during pulmonary infections [26]. Moreover, sCD11a/b/c and sCD18 integrin
subunits could dimerize and/or orchestrate in complexes [15]. They are fully functional
and could bind to their ligands and microorganisms [13]. The findings mentioned above
might explain the correlation between sITGaM and sITGb2 noted in our study. We observed
elevated sITGaM and sITGb2 integrin subunits in the long-term pulmonary complications
group. These data are consistent with Kragstrup et al. who demonstrated that sITGb2
(sCD18) levels are associated with leukocyte migration and the release of cytokines. This
study supports evidence that intensive monocyte migration increases the serum level of
sITGb2. Simultaneously, macrophages infiltrate tissues, causing damage. Therefore, sITGb2
is a serum biomarker of monocyte migration. In this context, sITGb2 is a crucial regulator
of chemotaxis and migration to infected tissue [17].

Another important finding of our study was the inverse correlation between peripheral
blood lymphocyte levels and sITGb2 serum levels. Through the feedback loop, a high
concentration of sITGb2 inhibits further lymphocyte tissue infiltration by binding and
blocking endothelial migration receptors. Soluble integrin subunits bind to their ligands
and competitively inhibit integrin receptors on the target cells and immune cell surfaces [27].
In this way, blocked receptors cannot function properly, including in their differentiation,
migration, stimulation, and activation of T-lymphocytes (TL) [2]. Specifically, the subset
of CD8+ T cells that include both the active virus-specific cytotoxic TL (CTL) and the
virus-specific memory CTL populations are inactivated. Therefore, the cell-killing ability
is diminished and, in consequence, the viral infection continues to progress [28]. On the
other hand, CD11b−/− polymorphonuclear leukocytes are less prone to apoptosis and
CD11b−/− mice are more susceptible to developing autoimmune diseases [29]. The CD18
knockout impairs wound healing [30].

Likewise, the results of our study suggest that increased levels of sITGaM (sCD11b)
and sITGb2 (sCD18) are associated with long-term pulmonary complications after recover-
ing from COVID-19. We hypothesize that the rapid shedding of a large amount of sITGaM
and sITGb2 integrin subunits from the monocyte surface aggravates lung tissue inflam-
mation. Excessively released integrin sITGb2 subunits impair lymphocytes’ regulatory
functions. A decreased count of lymphocytes leads to prolonged focal inflammation and,
consequently, lung tissue remodeling. Moreover, crosslinking of integrin subunits induces
the activation of granulocytes. Increased levels of over-reactive neutrophils release enzymes
and cytokines [31]. Exocytosis of azurophilic granules and degranulation may enhance
micro-vessel injury and focal tissue damage [32] (Figure 5).

On the other hand, fluctuations of sITGb2 levels are sufficient to affect the infection
state. Inadequate sITGb2 shedding and/or cellular expression processes could cause
chronic inflammation. Equally, decreased or increased levels of sITGb2 could be involved
in pulmonary lesions. The outcome depends on several variables including monocyte
dysfunction, metalloproteinase activity, detachment enzyme activity, ITGaM/ITGb2 lev-
els, and expression of their ligands [16]. Therefore, further research on these processes
is needed.
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These findings might have important implications for screening, preventing, and
treating long-term pulmonary complications [9,10,33]. Elevated levels of integrins could be
utilized as biomarkers of interstitial lung lesions [33]. Levels of integrins could be used to
predict the course of the disease and its outcomes. Early identification of patients suscepti-
ble to lung lesions could improve their further health care. Integrins should be considered
a target for fibrosis inhibitors [34], especially in pulmonary fibrosis [35]. Moreover, antifi-
brotic agents could be used against integrin ligands to decrease the activation of fibrosis
cascades [36]. Integrins have a crucial role in leucocyte activation and migration [6]. Our
study suggests that disturbances in soluble integrin subunits homeostasis may contribute
to immunological dysregulation [37]. This probably has an association with T lymphocyte
immune response [2]. Investigations of serum integrin subunits play an important role in
elucidating the pathophysiology of interstitial lung lesions after COVID-19 [9].

Despite the novel findings of the present study, it has several limitations. This study
was limited by the absence of a healthy control group and the small size of the investigated
groups. Due to technical reasons, some clinical and laboratory data were not available or
were limited. The generalizability of these results is subject to specific limitations: wide
follow-up range, heterogeneity of patients, and pulmonary complications. Subtypes of
lymphocytes were not identified. These factors might have introduced a selection bias for
some data.

5. Conclusions

Our study’s findings suggest an association between sITGaM, sITGb2, and long-term
pulmonary complications in post-COVID-19 patients. The correlated elevation of soluble
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integrin subunits in the P(+) group compared to the P(−) control group implies an as-
sumption that they may be promising biomarkers for predicting pulmonary complications
and could be a potential therapeutic target in post-COVID-19 patients. In addition, our
study results support the hypothesis that elevated sITGb2 integrin subunit levels inhibit
T-lymphocyte-dependent immune response. Additional research is warranted to validate
the present study findings.
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