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Abstract: Tuberculosis (TB) remains one of the leading causes of death among infectious diseases
worldwide. Early screening and diagnosis of pulmonary tuberculosis (PTB) is crucial in TB control,
and tend to benefit from artificial intelligence. Here, we aimed to evaluate the diagnostic efficacy of a
variety of artificial intelligence methods in medical imaging for PTB. We searched MEDLINE and
Embase with the OVID platform to identify trials published update to November 2022 that evaluated
the effectiveness of artificial-intelligence-based software in medical imaging of patients with PTB.
After data extraction, the quality of studies was assessed using quality assessment of diagnostic
accuracy studies 2 (QUADAS-2). Pooled sensitivity and specificity were estimated using a bivariate
random-effects model. In total, 3987 references were initially identified and 61 studies were finally
included, covering a wide range of 124,959 individuals. The pooled sensitivity and the specificity
were 91% (95% confidence interval (CI), 89–93%) and 65% (54–75%), respectively, in clinical trials, and
94% (89–96%) and 95% (91–97%), respectively, in model-development studies. These findings have
demonstrated that artificial-intelligence-based software could serve as an accurate tool to diagnose
PTB in medical imaging. However, standardized reporting guidance regarding AI-specific trials and
multicenter clinical trials is urgently needed to truly transform this cutting-edge technology into
clinical practice.

Keywords: pulmonary tuberculosis; artificial intelligence; medical imaging; diagnostic accuracy;
sensitivity; specificity

1. Introduction

Tuberculosis (TB) is one of the major communicable diseases that seriously endanger
human health primarily in developing countries [1], and at least 5.8 million people were
estimated to have contracted tuberculosis in 2020. However, around one-sixth of people
with active tuberculosis are left undetected or not officially reported each year, which may
delay the progress of elimination of this disease before 2035 [2]. Timely diagnosis and
treatment could benefit a wide range of tuberculosis patients and minimize the transmission
of pathogen in the whole population.

Mycobacterium tuberculosis culture on solid and/or liquid media is still the golden
standard for diagnosis. However, the efficiency of culture-based diagnosis in clinical prac-
tice is diminished due to long turnaround times and lack of laboratory infrastructure, espe-
cially in resource-limited countries. To solve this, the Xpert MTB/RIF assay has emerged as
a maturely implemented tool in many countries haunted greatly by TB disease, which is a
semiautomated rapid molecular method allowing for rapid diagnosis based upon detection
of Mycobacterium tuberculosis DNA and resistance to rifampicin [3], but the application of
such rapid tests remains far too limited, with only 1.9 million (33%) people having taken it
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as an initial diagnostic test in 2022. Simultaneously, the World Health Organization (WHO)
has recommended using chest X-ray (CXR) images as a screening technique to better target
individuals needing a further microbiological test, which has been proved to be relatively
easy to operate, low-cost and highly sensitive [4]. However, an accurate diagnosis with
CXRs extremely depends on the clinical experience of radiologists, which poses a huge
challenge in the aforementioned countries. As such, there has been increasing interest in
using artificial-intelligence-based (AI-based) software in medical imaging for pulmonary
tuberculosis (PTB) detection, achieving diagnostic accuracy improvement and cost reduc-
tion at the same time. Currently, more than 40 AI-based software programs certified for
CXR or computed tomography (CT) examination are available, among which only five are
certified for CXR tuberculosis detection [5]. In 2021, Creswell and colleagues conducted a
study that tested the five certified software programs (CAD4TB (v6), InferRead®DR (v2),
Lunit INSIGHT CXR (v4.9.0), JF CXR-1 (v2), and qXR (v3)) with cohorts in Bangladesh and
found that AI-based software significantly outperformed radiologists in TB detection [6].
However, poor reporting and wide variations in design and methodology limit the reliable
interpretation of reported diagnostic accuracy [7]. Furthermore, systematic reviews [8,9] of
the diagnostic accuracy of this software also identified several limitations in the available
evidence, and uncertainty remains regarding its performance in PTB diagnosis.

Hence, we conducted a systematic review and meta-analysis to synthesize evidence of
the accuracy of AI-based software in medical imaging for PTB and to provide new insights
for future research.

2. Materials and Methods
2.1. Data Source and Search Strategy

A MEDLINE and Embase search through the OVID platform was performed on
update to November 2022 without any restriction of country. The search terms were built
as follows: ‘artificial intelligence’ (deep learning, machine learning, computer assisted, or
cnn), ‘imaging’ (radiography, computed tomography, CT, photograph, or X-ray), ‘diagnostic
accuracy metrics’ (sensitivity or specificity), and ‘pulmonary tuberculosis’ (Tuberculosis or
tb). The full search strategy is laid out in Supplementary Materials File S2. This systematic
review was registered in PROSPERO with the number CRD42022379114 and followed the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines
(Supplementary Materials File S3).

2.2. Study Selection

Two researchers independently assessed the candidate studies for inclusion via screen-
ing of titles and abstracts, followed by the full text. Any discrepancy between the two
researchers was resolved by a third researcher to achieve a consensus. We included all
published studies that used AI-based software to analyze medical imaging in PTB diagnosis.
Studies that met the following criteria were included in the final group: (1) Any study
that analyzed medical imaging for PTB diagnosis with AI-based software; (2) Studies that
provided raw diagnostic accuracy data, sensitivity, specificity, area under curve (AUC),
accuracy, negative predictive values (NPVs), or positive predictive values (PPVs). Studies
were excluded when they met the following criteria: (1) Case reports, conference reports,
reviews, meta-analyses, abstracts without full articles, commentaries/editorials, mathemat-
ical modeling studies, and economic analyses; (2) Studies that investigated the accuracy of
image segmentation or disease prediction; (3) Triage studies; (4) Studies without outcomes
or separate data; (5) Studies that failed to report the source of the included population.

2.3. Data Extraction

Two researchers independently extracted demographic and diagnostic-accuracy data
using a standardized extraction form from the included studies. When disagreements could
not be resolved, we consulted with a third researcher. We extracted data that included
study characteristics (first author name, country, year, study design, patient selection
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methods), demographic information (gender, age, human immunodeficiency virus (HIV)
status, drug resistance, history of TB, treatment, imaging modality), AI-based software
descriptions (type of artificial intelligence, model, data set, validation methods, threshold
score), reference standards, and diagnostic accuracy measures (true and false positives and
negatives (TP, FP, FN, TN), AUC, accuracy, sensitivity, specificity, PPV, NPV, and other
reported metrics). If there were more than one reported accuracy data set for the same
software, with other conditions consistent except for the threshold, the data set with the
highest summed sensitivity and specificity would be extracted.

2.4. Quality Assessment

The risk of bias and applicability concerns of the included studies were assessed by
two researchers separately, with a revised tool developed for diagnostic studies: QUADAS-
2. Any disagreement between the two researchers was resolved through discussion with a
third researcher.

2.5. Data Synthesis and Analysis

Data from development studies and clinical studies were analyzed separately. We
first obtained the accuracy data that corresponded to TP, FP, FN, and TN in each included
study and calculated the estimated pooled sensitivity, specificity, and AUC associated
with the 95% CI, using bivariate random-effects models. Additionally, forest plots of
sensitivity and specificity were generated for each study. We also used the model to create
a summary receiver operating characteristic (SROC) curve. The I2 index was used to
assess the heterogeneity between the studies. Values greater than 50% were indicative of
substantial heterogeneity [10]. We subsequently chose different study designs, software,
reference standards, and AI types as potential sources of heterogeneity, using subgroup
analyses to explore the results. A sensitivity analysis was also performed to assess the
robustness of the results and identify possible sources of heterogeneity. According to the
PRISMA-DTA statement, neither a systematic review nor a meta-analysis of diagnostic
accuracy studies is required to assess publication bias [11]. Analyses were conducted in
Review Manager version 5.7 and Stata version 17.0 (Stata Corp., College Station, TX, USA),
with the midas and metaninf command packages.

3. Results
3.1. Identification of Studies and Study Characteristics

A total of 3987 articles were identified, of which 404 duplicates and 2628 articles
were excluded based on screening of titles and abstracts initially. We then excluded
894 studies upon viewing the full-text articles. Finally, 61 studies (23 clinical and 38
development studies) were included in our descriptive analysis (Table 1) [6,12–71]. Due
to missing information about the raw diagnostic data from the development studies, we
only included 13 development studies, with 18 test evaluation results, in the quantitative
analysis (Figure 1) [38,42,43,47,51,54,63,64,66–70].

Table 1. Methods of studies included in descriptive analysis.

First Author, Year Imaging
Modality Computer Software/Model Reference Standard Accuracy Measures

Maduskar et al., 2013 [12] CXR CAD4TB (v 1.08) AFB smear, MTB culture TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Muyoyeta et al., 2014 [13] CXR CAD4TB (v 1.08) Xpert MTB/RIF, human
reader

TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Steiner et al., 2015 [14] CXR CAD4TB (v 3.07) Human reader AUC

Melendez et al., 2018 [15] CXR CAD4TB (v 5) Human reader TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Zaidi et al., 2018 [16] CXR CAD4TB (v 3.07) Xpert MTB/RIF TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV
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Table 1. Cont.

First Author, Year Imaging
Modality Computer Software/Model Reference Standard Accuracy Measures

Qin et al., 2019 [17] CXR
CAD4TB (v 6),

qXR (v 2),
Lunit INSIGHT CXR (v 4.7.2)

Xpert MTB/RIF TP, FP, TN, FN, AUC,
ACC, Sn, Sp

Philipsen et al., 2019 [18] CXR CAD4TB (v 5) Xpert MTB/RIF, human
reader

TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Murphy et al., 2020 [19] CXR CAD4TB (v 6) Xpert MTB/RIF TP, FP, TN, FN, AUC, Sn,
Sp

Nash et al., 2020 [20] CXR qXR (v 2) AFB smear, Xpert
MTB/RIF or MTB culture AUC, Sn, Sp

Soares et al., 2023 [21] CXR
CAD4TB (v 6),

Lunit INSIGHT CXR (v 3.1.0.0),
qXR (v 3)

Xpert MTB/RIF, MTB
culture AUC, Sn, Sp, PPV, NPV

Qin et al., 2021 [6] CXR

CAD4TB (v 7),
InferRead DR (v 2),

Lunit INSIGHT CXR (v 4.9.0),
JF CXR-1 (v 2),

qXR, (v 3)

Xpert MTB/RIF AUC, Sn, Sp

Breuninger et al., 2014 [22] CXR CAD4TB (v 3.07) AFB smear, MTB culture Sn, Sp, PPV, NPV

Khan et al., 2020 [23] CXR qXR (v 2),
CAD4TB (v 6) MTB culture ACC, Sn, Sp, PPV, NPV

Young et al., 2020 [24] CXR Not named Human reader AUC, Sn, Sp

Liao et al., 2022 [25] CXR JF CXR-1 (v 2) Human reader TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Codlin et al., 2021 [26] CXR

qXR (v 3),
CAD4TB (v 7),

Genki (v 2),
Lunit INSIGHT CXR (v 3.1.0.0),

JF CXR-1 (v 3.0),
InferRead DR Chest (v 1.0.0.0),

ChestEye (v 1),
T-Xnet (v 1),

XrayAME (v 1),
COTO (v 1),

SemanticMD (v 1),
Dr CADx (v 0.1)

Xpert MTB/RIF TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Habib et al., 2020 [27] CXR CAD4TB (v 3.07) Xpert MTB/RIF AUC, Sn, Sp, PPV, NPV

Koesoemadinata et al.,
2018 [28] CXR CAD4TB (v 5) Composite reference

standard(s) AUC, Sn, Sp

Lee et al., 2020 [29] CXR Lunit INSIGHT CXR (v 4.7.2)
MTB culture, AFB smear,

TB polymerase chain
reaction, human reader

TP, FP, TN, FN, AUC,
ACC, Sn, Sp, PPV, NPV

Gelaw et al., 2022 [30] CXR
CAD4TB (v 6),

Lunit INSIGHT CXR (v 4.9.0),
qXR (v 2)

Xpert MTB/RIF,
Mycobacterium

tuberculosis (MTB) culture
TP, FP, TN, FN, Sn, Sp

Ehrlich et al., 2022 [31] CXR CAD4TB (v 7) Human reader TP, FP, TN, FN, AUC, Sn,
Sp

Kagujje et al., 2022 [32] CXR CAD4TB (v 7),
qXR (v 3) Xpert MTB/RIF TP, FP, TN, FN, AUC, Sn,

Sp

Tavaziva et al., 2022 [33] CXR Lunit INSIGHT CXR (v 4.9.0)
Xpert MTB/RIF,
Mycobacterium

tuberculosis (MTB) culture

TP, FP, TN, FN, AUC,
ACC, Sn, Sp

Shen et al., 2010 [34] CXR Bayesian classifier Human reader ACC
Melendez et al., 2015 [35] CXR si-miSVM+PEDD Human reader AUC

Pasa et al., 2019 [36] CXR CNN Human reader AUC, ACC
Xie et al., 2020 [37] CXR RCNN Human reader AUC, ACC, Sn, Sp

Ma et al., 2020 [38] CT U-Net Sputum smear AUC, ACC, Sn, Sp, PPV,
NPV

Rajpurkar et al., 2020 [39] CXR DenseNet Xpert MTB/RIF, MTB
culture ACC, Sn, Sp

Oloko-Oba et al., 2021 [40] CXR EfficientNets Human reader AUC, ACC, Sn, Sp

Mamalakis et al., 2021 [41] CXR DenseNet-121,
ResNet-50 Human reader AUC, F1, precision, recall

Rajakumar et al., 2021 [42] CXR
VGG16,
VGG19,

KNN
Human reader ACC, Sn, Sp, NPV



J. Clin. Med. 2023, 12, 303 5 of 15

Table 1. Cont.

First Author, Year Imaging
Modality Computer Software/Model Reference Standard Accuracy Measures

Sharma et al., 2021 [43] CXR
Tree,
SVM,

Naïve Bayes

Composite reference
standard(s)

AUC, F1, CA, precision,
recall

Wang et al., 2021 [44] CT 3D-ResNet AFB smear, MTB culture AUC, Sn, Sp, ACC, F1

Showkatian et al., 2022
[45] CXR ConvNet Human reader AUC, ACC, F1, precision,

recall

Zhou et al., 2022 [46] CXR ResNet Human reader AUC, ACC, Sn, Sp, PPV,
NPV

Rajaraman et al., 2021 [47] CXR ImageNet,
VGG-16 Human reader AUC, ACC, Sn, Sp, F1,

precision
Yan et al., 2021 [48] CT SeNet-ResNet-18 Human reader ACC, precision, recall

Zhang et al., 2021 [49] CT CBIR-CSNN Composite reference
standard(s) AUC, ACC

Arzhaeva et al., 2009 [50] CXR MVDB Human reader AUC
Jaeger et al., 2014 [51] CXR SVM Human reader AUC, ACC

Chauhan et al., 2014 [52] CXR SVM Human reader AUC, ACC, Sn, Sp, F1,
precision

Hogeweg et al., 2015 [53] CXR
RF50,
GB50,
LDA,

KNN13

MTB culture, human
reader AUC

Lakhani et al., 2017 [54] CXR AlexNet,
GoogLeNet Human reader AUC, ACC, Sn, Sp

Han et al., 2021 [55] CXR VGG16 Human reader AUC, Sn, Sp
An et al., 2022 [56] CXR E-TBNet (ResNet) Human reader ACC, Sn, Sp, NPV, ppv, F1

Lee et al., 2021 [57] CXR EfficientNet Xpert MTB/RIF, MTB
culture, human reader AUC

Khatibi et al., 2021 [58] CXR CNN,
CCNSE Human reader AUC, ACC

Kim et al., 2020 [59] CXR DCNN Human reader AUC, Sn, Sp, NPV, PPV, F1

Feng et al., 2020 [60] CT CNN Composite reference
standard(s) AUC, ACC, Sn, Sp

Hwang et al., 2019 [61] CXR CNN Human reader AUC, Sn, Sp

Heo et al., 2019 [62] CXR I-CNN(VGG19),
D-CNN(VGG19) Human reader AUC

Aguiar et al., 2016 [63] CXR MLP Human reader AUC, Sn, Sp, PPV, NPV

Faruk et al., 2021 [64] CT

Xception,
InceptionV3,

InceptionResNetV2,
MobileNetV2

Human reader Sn, precision, recall, F1

Karki et al., 2021 [65] CXR InceptionV3,
Xception Human reader AUC

Dasanayaka et al., 2021
[66] CXR

VGG16,
InceptionV3,

Ensemble
Human reader ACC, Sn, Sp

Govindarajan et al., 2021
[67] CXR ELM,

OSELM Human reader Sn, Sp, precision, F1

Acharya et al., 2022 [68] CXR ImageNet fine-tuned
normalization-free networks Human reader Sn, Sp, AUC, ACC,

precision, recall

Kadry et al., 2022 [69] CXR VGG16, Fine Tree

Xpert MTB/RIF,
Mycobacterium

tuberculosis (MTB)
culture, human reader

Sn, Sp, ACC, NPV

Kazemzadeh et al., 2023
[70] CXR NR Human reader Sn, Sp, AUC

Margarat et al., 2022 [71] CXR DBN-AMBO Human reader Sp, ACC, precision, recall,
NPV

Abbreviations: CXR, chest X-ray; CT, computed tomography; CAD, computer-aided detection; CNN, convolu-
tional neural networks; RCNN, regions with CNN features; KNN, K-nearest neighbor; VGG, visual geometry
group; SVM, support vector machine; HIV, human immunodeficiency virus; DLAD, deep-learning-based auto-
matic detection; AFB, acid-fast bacilli; MTB, Mycobacterium tuberculosis; TP, true positive; FP, false positive; TN,
true negative; FN, false negative; AUC, area under the receiver operating curve; ACC, accuracy; Sn, sensitivity; Sp,
specificity; CA, cluster accuracy; DBN-AMBO, deep belief network with adaptive monarch butterfly optimization.
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Figure 1. Study flow diagram. Computer-aided detection (CAD).

A total of 50 trials, described in 23 clinical studies, were included in the review, with
124,959 people reporting the diagnostic accuracy of the software used for CXR. No study
provided prespecified sample-size calculations. In total, twelve studies [6,13,14,19,21,23,25–
28,32,33] used prospectively collected data, and nine studies [6,17,19–21,23,25,26,29] used
deep-learning-based versions. Additionally, twelve studies [6,12,14,17–20,25,26,28–30]
compared software performance with human readers. Reference standards varied greatly;
six studies [14,15,24,25,29,31] compared diagnostic performance with human readers, and
fourteen studies [6,12,16,17,19–23,26,27,30,32,33] used microbiological references, while
three studies [13,18,28] used both. Notably, some studies evaluated the diagnostic accuracy
of AI-based software for special populations. Two studies were conducted on diabetic
populations [27,28] and one study included only people from prison [14]. Only fourteen
studies [6,13,16,17,20–23,26–28,31–33] included their own study populations, and the rest
were collected from other studies.

Within the model-development studies, thirty reported diagnostic accuracy for PTB
identification with deep-learning-based algorithms, compared with eight studies [34,35,
43,50–53,67] that used machine-learning models. Altogether, twenty-seven out of thirty-
eight of the available studies were based on public data sets. Several data sets (Mont-
gomery (NIH), Shenzhen (NIH), and Belarus) were analyzed in most studies, but dataset
demographic details were not described in most of the studies. Only one article explic-
itly described the use of semiautomatic lesion delineation for training data. To validate
model performance, nine studies [44,46,48,49,59–61,68,70] validated algorithms for exter-
nal data, while the remaining only implemented internal validation. Considering the
economics of practical use, thirty-two out of the thirty-eight studies used CXRs as a diag-
nostic tool, with CT remaining to be further developed. In addition, eleven studies [36,39–
42,48,52,53,57,60,70] made all of the code used in their implementation freely available
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to the public. As an important step in the radiomic pipeline, feature extraction played a
decisive role in the whole process. Hogeweg, L. et al. [53] combined the results of shape
analysis, texture analysis, and focal lesion detection into one combined TB score.

3.2. Quality Assessment of Studies

The overall results of the methodological-quality assessment of the included clinical
and development studies are summarized respectively in Figures 2 and 3. For clinical
studies, the main sources of bias included index tests, flow, and timing. Most development
studies were classified as high-risk, particularly with deficiencies in their methods of patient
selection, the reference standards used, and their index tests.
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For the patient-selection domain, a high or unclear risk of bias was observed in 84%
(thirty-two out of thirty-eight) of the development studies, which was mainly related to
missing information in the CXR/CT databases. For the index test, a prespecified threshold
was reported only in 30% (seven out of twenty-three) of the clinical studies, and 18% (seven
out of thirty-eight) of the development studies had a prespecified threshold, while the other
studies had a high risk of bias, since the threshold was determined after the analysis in
each. For the reference standard domain, a high or unclear risk of bias was seen in 76%
(twenty-nine out of thirty-eight) of the development studies, with regards to assessment by
radiologists as the reference standard. For flow and timing, there was a high or unclear risk
of bias in 39% (nine out of twenty-three) of the clinical studies and 50% (nineteen out of
thirty-eight) of the development studies due to the inconsistency of the reference standards
and a lack of inclusion of all patients.

3.3. Diagnostic Accuracy Reported in AI-Based Software Assay for PTB

We found that only 13 development studies reported TP, FP, FN, and TN for index
tests. Of all the 38 articles that included accuracy assessments, the sensitivity ranged from
0.580 to 0.993 and the specificity from 0.570 to 0.996. It is worth noting that CT showed
a higher sensitivity in diagnosis with AI (0.750–0.993 of CT vs. 0.580–0.993 of CXR). The
reported performance is summarized in Figure 4. The pooled sensitivity of all included
studies was 94% (95% CI 89–96%), with I2 = 93.22 (95% CI 91.07–95.37), and the pooled
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specificity was 95% (95% CI 91–97%), with I2 = 97.52 (95% CI 96.94–98.09). After excluding
the CT-based study, we obtained pooled sensitivity and specificity values of 93% (95% CI
87–96%) and 94% (95% CI 90–97%), respectively.
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In total, 23 clinical studies, including 124,959 patients, evaluated the diagnostic efficacy
of AI programs for PTB. The sensitivity ranged from 0.487 to 1.00, and the pooled sensitivity
was 91% (95% CI 89–93%), with I2 = 93.05 (95% CI 91.74–94.36). The specificity ranged from
0.063 to 0.997, and the pooled specificity was 65% (95% CI 54–75%), with I2 = 99.87 (95% CI
99.86–99.88) (Figure 5).

There was significant heterogeneity in both sensitivity and specificity. We also con-
structed SROC curves and calculated the AUC for the included studies. The overall
diagnostic performance of the clinical studies and the development studies was compara-
ble [AUC 0.91 (95% CI 0.89–0.94) and 0.98 (95% CI 0.97–0.99), respectively] (Supplementary
Materials File S1).

3.4. Subgroup and Sensitivity Analyses

Considering the variability of the methods and models tested in the development
studies, we only performed a subgroup analysis in the clinical studies, based on predefined
parameters, including study design, software, reference standard, and AI type. Some
studies were excluded from the relevant subgroup analyses due to missing information or
not being categorized into specific groups.

Compared to different study designs, the pooled specificity was 48% (95% CI 34–62%,
I2 = 99.87; 99.86–99.88) in the prospective assay versus 75% (95% CI 53–89%, I2 = 99.94;
99.93–99.94) in the nonprospective assay. When Xpert MTB/RIF was used as the refer-
ence standard, the pooled specificity of the Xpert MTB/RIF assay [36% (95% CI 24–50%,
I2 = 99.93; 99.93–99.94)] was much lower than that of the studies that used human read-
ers [90% (95% CI 80–95%, I2 = 98.70; 98.32–99.08)]. Furthermore, the sensitivity and the
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specificity of various AI-based software (CAD4TB, qXR, Lunit INSIGHT CXR) evidently
differed. The results of the subgroup analyses are summarized in detail in Table 2. There
was still a substantial level of heterogeneity among each subgroup analysis.
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Table 2. Subgroup analysis based on different standards.

Studies Sensitivity
(95%CI)

Specificity
(95%CI)

DOR
(95%CI) AUC (95%CI)

All (23) 0.91(0.89–0.93) 0.65(0.55–0.75) 20(13–29) 0.91(0.89–0.94)
Study Design

Prospective (12) 0.91(0.87–0.94) 0.48(0.34–0.62) 9(4–20) 0.85(0.82–0.88)
Nonprospective (11) 0.87(0.78–0.93) 0.75(0.53–0.89) 20(5–84) 0.90(0.87–0.92)

Software
CAD4TB (18) 0.89(0.82–0.94) 0.57(0.42–0.70) 11(4–30) 0.83(0.80–0.86)

qXR (8) 0.79(0.61–0.90) 0.55(0.24–0.83) 5(1–38) 0.77(0.73–0.80)
Lunit INSIGHT CXR (8) 0.88(0.75–0.94) 0.78(0.40–0.95) 25(3–211) 0.91(0.88–0.93)

Reference standard
Human reader (5) 0.90(0.84–0.94) 0.90(0.80–0.95) 77(22–269) 0.95(0.93–0.97)

Xpert MTB/RIF (9) 0.90(0.85–0.93) 0.36(0.24–0.50) 5(2–12) 0.79(0.75–0.82)
AI type

Deep learning (13) 0.91(0.89–0.92) 0.62(0.48–0.74) 16(10–23) 0.91(0.88–0.93)
Machine learning (9) 0.93(0.85–0.97) 0.61(0.46–0.75) 21(11–42) 0.87(0.83–0.89)

Abbreviation: DOR, diagnostic odds ratio; AUC, area under curve.

We subsequently performed sensitivity analyses on the clinical and development
studies, respectively. Results of our sensitivity analyses are provided in Supplementary
Materials File S1. In the clinical studies, we found three articles that had great effects on
the overall results. After removal of the corresponding articles, we obtained a still-high
heterogeneity (I2 = 92.97, 91.55–94.39 for sensitivity, I2 = 99.83, 99.82–99.84 for specificity).
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4. Discussion

This study sought to (1) evaluate the diagnostic efficacy of AI-based software for
PTB and (2) describe the study characteristics, and evaluate the study methodology and
the quality of reporting of AI-based software for PTB diagnosis, as well as providing
some advice for future software development and clinical applications. Meta-analysis
demonstrated that AI-based software has high accuracy in both clinical applications and
development studies, indicating that it can assist the physicians in improving the accuracy
of PTB diagnosis. However, due to the high heterogeneity and variability between studies,
relevant results must be treated with caution when the result of AI-based software is used
as a reference standard.

In this systematic review and meta-analysis, we included 23 clinical studies and 38
development studies of PTB diagnosis. Since some missing data were reported, the final
count was 13 development studies and 23 clinical studies eligible for quantitative synthesis.
Our results show that AI-based software has an excellent ability to diagnose PTB in medical
imaging, with pooled sensitivities greater than 0.9 [clinical studies: 91% (95% CI 89%–93%);
development studies: 94% (95% CI 89%–96%)]. Additionally, the pooled specificity of the
software in the clinical studies was only modest [65% (95% CI 54%–75%)], while that in the
development studies was relatively high [95% (95% CI 91%–97%)], which may have been
caused by the application of the same test-data set for diagnostic performance assessment.
However, a high level of heterogeneity was observed in all the results. Subgroup analysis
revealed that nonprospective studies had significantly higher specificity and lower sensitiv-
ity than prospective studies had, which might have been due to the inclusion of identified
PTB patients in the nonprospective studies. Additionally, studies that used Xpert MTB/RIF
as a reference standard had much lower specificity compared to studies that used human
readers, possibly because human readers were weaker than Xpert MTB/RIF in correctly
identifying negative patients. Furthermore, all commercially available software (CAD4TB,
Lunit INSIGHT CXR, and qXR) showed its advantages in improvement of diagnostic accu-
racy, but we found evident differences in sensitivity and specificity among various AI-based
software. The level of heterogeneity between the subgroups remained high, suggesting
that study design, software type, AI type, and different reference standards might not be
source of heterogeneity. Our follow-up sensitivity analysis indicated that different types
of medical imaging might be the sources of heterogeneity, as CT could offer enhanced
sensitivity [72].

A number of methodological limitations in the existing evidence were identified, as
were study-level factors associated with the reported accuracy, which should all be taken
into consideration.

In development studies, most of the current AI-based software was developed for
CXR, and only six studies were applied to CT. Because of the deficiency of accuracy data,
we performed no subgroup analysis for CT versus CXR. In addition, specific accuracy
results, threshold establishment, and inclusion criteria may not have been described well
enough to allow emulation for further comparison and may cause greater clinical and
methodological heterogeneity. A large proportion of the articles used human readers as
the reference standard, meaning systematic overestimation of the diagnostic accuracy of
the software. Furthermore, the lack of external validation made it very difficult to formally
evaluate algorithm performance. Although most of the experiments used publicly available
data sets for model training, few experiments fully disclosed their model details and
codes. In addition, almost all of the development articles used manual-lesion-depiction
data sets. Semiautomated approaches are known to have greater advantages in lesion
delineation, as has been demonstrated with other lung diseases [73], so we encourage
more studies in the future to adopt this approach. Several aspects mentioned above lead
to the inability to guarantee reproducibility of these experiments. Much of the existing
work focuses on multiparametric classification models, ignoring the influence of individual
features. Accumulating evidence has confirmed the important role of individual features
in discrimination of benign and malignant lung lesions [74,75]; this has great potential for



J. Clin. Med. 2023, 12, 303 11 of 15

improvement of accuracy and disease identification, and is also informative for research of
automated classification models for PTB.

All of the clinical studies evaluated commercially available software developed for
CXR. A total of 11 software types were tested, but the version and threshold reported
varied among studies. There were varying methodologies of threshold determination and
population inclusion, potentially resulting in a high level of heterogeneity. It is worth
noting that 13 articles also compared the diagnostic accuracy of AI-based software with
human clinicians, which would provide a more objective criterion allowing for a better
comparison of models between studies.

Our study had several limitations. Although we searched the relevant literature as
comprehensively as possible, some of the literature might have been missed. In addition,
some studies failed to report demographic information in detail, and the corresponding
subgroup analysis could not be performed. Furthermore, the limited number of studies
included for different versions of the software allowed for no further analysis. When
AI-based software was used to diagnose PTB, there was significant heterogeneity among
studies, so it is difficult to determine whether the software is clinically applicable. Lastly,
because current clinical software requires the inclusion of patients over 15 years of age, the
diagnostic efficiency for children needs to be further determined.

To improve the future clinical applicability of AI-based software, we recommend that
studies include detailed reporting of demographic information, and hope that existing
reporting guidelines for diagnostic accuracy studies (STARD) [76] and prediction models
(TRIPOD) [77] can be improved as soon as possible to conduct AI-specific amendments. In
addition, some model training and validations were performed on CXRs from data sets or
sites, potentially resulting in an overestimation of diagnosis power. As such, we suggest
that different data sets should be used for model training and testing. Moreover, research
teams can collaborate with multiple clinical centers for clinical trials and external validation
to make results superior and investigate the stability and heterogeneity of their performance
in clinical scenarios. What is more, we appealed to a large number of open, multi-source,
and anonymous databases, along with detailed reporting of all of the information needed,
such as reference standard, age, HIV status, etc., to fulfill the need for an adequate amount
of data with high quality. At the same time, we recommend that development studies
make their model details and all of the code used for their experiments freely available
to the public to make it possible to reproduce these studies. It is also noteworthy that the
diagnostic accuracy of AI-based software should be evaluated against a microbiological
reference standard. Lastly, we found a lack of use of AI-based software in CT, and more
studies may be needed to explore its superiority in early diagnosis of PTB. In addition, the
influence of parameters such as intensity quantization, on imaging and final diagnosis in
particular, could be considered.

5. Conclusions

In summary, there were relatively high pooled sensitivity and specificity values of
AI-based software, which indicates that AI-based software has potential to facilitate di-
agnosis of PTB in medical imaging, especially in large-scale screening. Heterogeneity
was significantly high and extensive variation in reporting, design, and methodology was
observed. Thus, standardized reporting guidance around AI-specific trials and multicenter
clinical trials is urgently needed to further confirm their stability and heterogeneity in
various populations and settings. In the future, we expect more AI-based software with
high accuracy to be comprehensively applied for early clinical detection of PTB.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12010303/s1, Supplementary Materials File S1: Figure S1
Quality assessment (QUADAS 2) summary of clinical studies: risk of bias & applicability concerns;
Figure S2 Quality assessment (QUADAS 2) summary of development studies: Risk of bias and
applicability concerns; Figure S3 Sensitivity analysis of clinical studies; Figure S4 Sensitivity analysis
of development studies; Figure S5 Summary receiver operating characteristic (SOC) curve of clinical
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