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Abstract: The extraction of the foveal avascular zone (FAZ) from optical coherence tomography
angiography (OCTA) images has been used in many studies in recent years due to its association
with various ophthalmic diseases. In this study, we investigated the utility of a dataset for deep
learning created using Kanno Saitama Macro (KSM), a program that automatically extracts the FAZ
using swept-source OCTA. The test data included 40 eyes of 20 healthy volunteers. For training and
validation, we used 257 eyes from 257 patients. The FAZ of the retinal surface image was extracted
using KSM, and a dataset for FAZ extraction was created. Based on that dataset, we conducted a
training test using a typical U-Net. Two examiners manually extracted the FAZ of the test data, and
the results were used as gold standards to compare the Jaccard coefficients between examiners, and
between each examiner and the U-Net. The Jaccard coefficient was 0.931 between examiner 1 and
examiner 2, 0.951 between examiner 1 and the U-Net, and 0.933 between examiner 2 and the U-Net.
The Jaccard coefficients were significantly better between examiner 1 and the U-Net than between
examiner 1 and examiner 2 (p < 0.001). These data indicated that the dataset generated by KSM was
as good as, if not better than, the agreement between examiners using the manual method. KSM may
contribute to reducing the burden of annotation in deep learning.

Keywords: foveal avascular zone; automatic extraction; manually extract; U-Net; annotation

1. Introduction

With the advent of optical coherence tomography angiography (OCTA), studies on
the foveal avascular zone (FAZ) have been actively conducted and yielded various findings
in healthy eyes [1], retinal vascular diseases (e.g., diabetic retinopathy and retinal vein
occlusion) [2,3], vitreous interface lesions (e.g., epiretinal membrane and macular hole) [4,5],
hereditary degenerative diseases (e.g., retinitis pigmentosa) [6], glaucoma [7] and others [8].
In these studies, the methods used to extract FAZ features included manual methods with
tools for manual selection, conventional automatic methods executed by algorithms, and
deep learning [9,10], which has attracted increasing attention in recent years. Although the
manual method is considered the gold standard for examination because it enables more
detailed extraction, it imposes a heavy burden on the examiner performing the extraction
and does not guarantee reproducibility. Conventional automated methods were developed to
overcome the problems associated with manual methods. These included analyses using the
device’s built-in software. For example, several studies have reportedly used Python, which
is a programming language and MATLAB® (MathWorks) numerical analysis software, as
well as ImageJ (https://imagej.nih.gov/ij, accessed on 8 February 2021), an image processing
software distributed free of charge by the National Institutes of Health [11–14]. The advantage
of these automated methods is that good-quality extraction can be obtained with a simple
procedure. Previously, we also reported on automated extraction (Kanno Saitama Macro,
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KSM) using ImageJ Macro [15]. The advantage of KSM is that it can facilitate extraction
that closely approximates the manual method with extremely high reproducibility with
one click of a button. Furthermore, automatic extraction with a deep learning technique
known as semantic segmentation is being actively promoted for medical imaging research
in other specialties [16–21]. Although this method enables the simultaneous extraction of a
large number of images, it requires a vast dataset and tremendous labor for the creation of
the dataset (i.e., annotation). The dataset used in semantic segmentation consists of images
pertaining to the question and the correct answer. In FAZ extraction, the question is the OCTA
image (original image) and the correct answer is the image (label image) showing only the
FAZ area. Extracting FAZ from en face images obtained with OCTA has conventionally
been done manually, requiring 50 to 100 plots per image, which requires an enormous
amount of time. Therefore, we investigated whether a useful data set could be created
using automated methods. We used the dataset we created for training and testing using a
typical U-Net. We then compared the results with the manual method to determine the
usefulness of the dataset.

Although automatic extraction using artificial intelligence (AI) on healthy and diseased
eyes has been introduced [9,10], to our knowledge, there are no previous reports in deep
learning for FAZ extraction that aimed to automatically create FAZ datasets. Thus, we
propose a method to reduce the burden of annotation using the ImageJ macro. The purpose
of this study was to examine the utility of the dataset created by KSM for FAZ extraction.

2. Materials and Methods
2.1. Study Population

This study was conducted according to the Declaration of Helsinki after obtaining
approval from the Saitama Medical University Hospital Ethics Committee (No. 19079.01).
The study sample included 40 healthy volunteers, aged 20 years and above, who provided
written informed consent for participation in the study between October and December
2017. Participants underwent comprehensive ophthalmic examinations including visual
acuity measurement, visual field testing, slit-lamp examination, non-contact tonometry
(TONOREFRII, Nidek, Gamagori, Japan), fundus photography (CX-1, Canon, Tokyo, Japan),
axial length and central corneal thickness measurement (Optical Biometer OA-2000, Tomey
Corporation, Nagoya, Japan), static visual field testing (Humphrey field analyzer, Carl Zeiss
Meditec, Jena, Germany), retinal nerve fiber layer analysis using spectral-domain OCT (SD-
OCT, Spectralis®HRA2, Heidelberg Engineering, Heidelberg, Germany), and swept-source
OCTA (SS-OCTA) photography (PLEX® Elite 9000, Carl Zeiss Meditec, Jena, Germany).

Patients with a spherical equivalent of +3 D or more or −6 D or less; axial length of
26 mm or more; suspected glaucomatous change in the visual field test, fundus photograph
or retinal nerve fiber layer analysis; ocular diseases, such as diabetic retinopathy, macular
disease, severe myopia, pseudoexfoliation; and those with a history of ocular surgery,
were excluded. The training and validation data were obtained from each fellow eye of
patients with unilateral ocular diseases (idiopathic macular hole, vitreomacular traction
syndrome, glaucoma, central serous chorioretinopathy, idiopathic epiretinal membrane,
and rhegmatogenous retinal detachment) who visited our clinic and underwent SS-OCTA
imaging between February 2018 and September 2019. A total of 227 of 257 eyes (from
257 patients) were used to create the training dataset and the remaining 30 eyes were used to
create the validation dataset. Only images with an OCTA signal strength of 8/10 or higher
were incorporated into the dataset.

2.2. Optical Coherence Tomography Angiography

An image, measuring 3 mm× 3 mm, that was centered on the macula was acquired using
SS-OCTA, with a central wavelength of 1060 nm and scanning speed of 100,000 A scan/s.
Each 3 mm × 3 mm OCTA image consists of 300 pixels × 300 pixels, and is output as a
1024 pixels × 1024 pixels image. The algorithm for creating vascular signals uses optical
microangiography, which measures changes in both phase and amplitude [22]. The original
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image used in this study was an en face image of the superficial retinal layer (SRL), defined
as extending from the inner limiting membrane to the inner plexiform layer, constructed
using the OCTA device’s built-in segmentation software.

2.3. KSM (Modified Version) and Annotation Simplification

KSM is a method that utilizes the dilation-erosion [23] morphological process, which
is usually used in multiple consecutive processes, such as opening and closing, and is
effective for noise reduction and edge detection [24]. In KSM, the interruptions in the
vascular signal are connected with successive dilations, and the FAZ region is reproduced
with successive erosions. Moreover, KSM can be customized using various processes
implemented in ImageJ, since KSM is part of the ImageJ Macro. We added noise processing
and changed the area expansion value to 4 pixels because the previously-reported macro
did not include noise processing and had a slightly narrower extraction area. Changing
these settings ensured improvements in the extraction of uneven areas and the extraction
of high-brightness images (Figure 1).
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Figure 1. Effects of the change in KSM settings. A typical captured image (A) and its histogram (B).
High-brightness images (E) and its histogram (F). Represent images extracted with the previously-
reported settings (C,G), Represent images extracted after the settings were changed (D,H). PLEX®

Elite 9000 can acquire images with high-brightness (E). The histogram (F) of an image with high-
brightness is different from the histogram (B) of a typical captured image (A). The higher the
brightness of the image, the stronger the influence of noise during region extraction, thus, resulting
in poorer extraction (G). When noise processing is added, extraction can be improved, as (H) is better
than (G). Moreover, noise processing can enhance the extraction quality for typical captured images,
as (D) is better than (C). KSM: Kanno Saitama Macro.

The code of the setting change is presented below. (Please refer to Code S1: Modified
KSM.)

(1) Noise processing

It was inserted in the first line of the previously-reported macro.
Run (“Bandpass Filter . . . ”, “filter_large = 1024 filter_small = 3.5 suppress = None

tolerance = 5 process”).

(2) Area expansion

The enlarged setting on the 9th line was changed to 4 pixels.
Run (“Enlarge . . . ”, “enlarge = 4 pixels”).
Furthermore, since the previously-reported macro extracted images one-by-one, we

created a macro to simplify the annotation process. In addition to the setting changes, the
macro for continuous extraction was executed using the “stack” function that displays the
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images in the folder in one window and the “region-of-interest (ROI) set” that specifies
each slice.

(1) The interpolation processing setting was changed to “none” when enlarging/reducing
the image.

(2) Extraction was performed with “analyze particles” instead of the wand tool and the
size of the extraction area was specified.

In this study, continuous extraction was performed for every 5 images, and the ROI was
saved after confirming the extraction. The procedure for dataset creation is as follows. (1) The
FAZ was extracted. (2) The label image was created. (3) The label image was saved. The above-
mentioned steps were repeated for the number of datasets. However, the repetition of these
steps is monotonous and time-consuming even if the extraction is performed automatically.
Therefore, each process was divided, and a macro of the process up to the saving step
was created.

The annotation process is shown below. (Please refer to Code S2, Video S1: Annotation
by Continuous Automatic Extraction).

(1) The folder containing the original image was loaded and displayed as a stack.
(2) The FAZ was extracted from all the original images using the continuous method for

every 5 images using ROI sets that specified the slices and the ROI sets were saved.
(3) The entire window was selected and the “fill” command was used to suffuse all the

original images with black (brightness value: 0). This image served as the background
of the label image.

(4) The ROI set saved in step 2 was loaded. The ROI for each slice was specified and the
images were filled with white (luminance value: 255) (completion of label image).

(5) The completed label images were saved one-by-one using the ROI sets specific to the
slices.

The mechanism of label image creation is based on stack-based processing and ex-
tremely simple macros. Using this mechanism, dataset amplification can also be performed
automatically using inversion and rotation. Creating training and validation datasets
from 257 eyes, including the annotation process and FAZ extraction using KSM, required
approximately 4 h—that is, approximately 1 min per eye.

Moreover, the dataset created in the above-mentioned process has a large image size
of 1024 pixels × 1024 pixels, which was reduced to 512 pixels × 512 pixels to accommodate
the deep learning networks. These were subsequently cropped to 256 pixels × 256 pixels.

2.4. Deep Learning Network

We used a typical U-Net for the semantic segmentation network [25]. The U-Net ar-
chitecture is based on the fully convolutional neural network, which does not use fully-
connected layers and allows images to be used as input and produces binary maps as
output. As shown in Figure 2, the U-Net consists of a contracting (encoding) path and a
symmetric expanding (decoding) path. In the contracting path, successive convolution
layers are followed by pooling operations. In the expanding path, pooling operators are
replaced by upsampling operators. The combination of the upsampled output and high-
resolution features from the contracting path can supplement the information lost in the
pooling process. The U-Net exhibits satisfactory performance in biomedical image seg-
mentation because of its special structure [26]. This study used a 4-layered U-Net, binary
cross entropy as the loss function, Adam [27] as the optimization algorithm, and binary
accuracy as the evaluation function. Moreover, the environment was built using a graphics
processing unit in Google Colaboratory Notebook. Python 3 was used as the programming
language and Keras was used as the library.
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2.5. The FAZ Extraction Method

The 3 types and 4 methods of extraction used in this study are described below.

2.5.1. The Manual Method (Examiner 1 and Examiner 2)

The SRL image was imported into ImageJ. Subsequently, two examiners (H. Ibuki and
H. Ishii) used the polygonal manual selection tool to trace the FAZ boundaries and save
the ROI sets. An FAZ mask image was created using the above-mentioned method for the
label image using the previously-obtained ROI sets.

2.5.2. The Conventional Automatic Method (ARI)

The Advanced Retina Imaging Zeiss Macular Algorithm (ARI; v 0.6.1) [15] is a pro-
totype of Carl Zeiss’s proprietary algorithm, which is available online and can be used to
extract the FAZ in the SRL. Uploading an anonymized raw file to the ARI network portal
causes an FAZ mask image, measuring 512 pixels × 512 pixels, to be downloaded in the
Portable Network Graphics format.

2.5.3. Automatic Methods Using Deep Learning (U-Net)

The dataset created by KSM was used to train and test the U-Net. First, we performed
several training sessions and adjusted the number of epochs to 20 and the batch size to
12. After setting the brightness of the output image to 0 for the background and 1 for
the extraction area, training and testing were performed 5 times, and all the results were
acquired. The extracted image obtained was captured in ImageJ, converted into an FAZ
mask image, and compared with the mask image of the manual method. The images that
possessed the best results in comparison with the manual method were used in this study.

2.6. Evaluation of the Extraction Accuracy

The FAZ mask image obtained by each method was imported into ImageJ and con-
verted to the same size as the extracted image obtained by the U-Net. This was followed
by the evaluation of the extraction accuracy using the following indices, with the manual
method as the gold standard.



J. Clin. Med. 2023, 12, 183 6 of 15

2.6.1. Coefficient of Variation and Correlation Coefficient of the Area

The area of the FAZ on the OCTA image was calculated using the correction formula
of the magnification based on the axial length [28]. The area was quantified by inputting
the measured values into a “set scale”, followed by correction. The coefficient of variation
(CV) and the correlation coefficient of the area obtained, were evaluated. CV was calculated
from the mean and standard deviation of the area per subject between methods.

2.6.2. Measures of Similarity

The extraction accuracy is often evaluated using two measures of similarity [29,30].
However, since the evaluation differs due to the difference in the nature of the indices,
both values were calculated. The similarity index evaluates the extraction target, extraction
result, and the overlap between the two areas. Using the “image calculator,” we calculated
and quantified the intersection and union, and the false negative (FN) and false positive
(FP), and evaluated the excess and deficiency of the extraction. The above-mentioned
quantification was calculated from the number of pixels in each region.

Jaccard Similarity Coefficient

The Jaccard similarity coefficient (Jaccard index), [11,31] which is also called Inter-
section over Union, is calculated by dividing the intersection of two regions (extraction
target: A, extraction result: B) by the union. The results are expressed as numerical values
between 1.0 to 0.0, which are graded as follows: 0.4 or less, poor; 0.7, good; and 0.9 or
more, excellent.

Jaccard (A, B) =
A∩ B
A∪ B

Dice Similarity Coefficient

The Dice similarity coefficient [32,33] (DSC) is calculated by dividing the twice the
value of intersection by the sum of the two regions. It is expressed as a numerical value
between 1.0 to 0.0; the closer the value is to 1.0, the better the similarity. It is expressed
as a higher value than the Jaccard coefficient due to the difference in the nature of the
two indices.

DSC (A, B) =
2(A∩ B)

A∪ B

2.7. Statistical Analysis

The participants’ background variables were expressed as the median and interquartile
range, and the FAZ area was expressed as the mean and standard deviation (SD). The CV,
Jaccard coefficient, and DSC were represented as the mean and 95% confidence interval
(CI). The FN and FP values were expressed as percentages (%).

We evaluated the extraction accuracy of the automatic method using the manual
method as the gold standard, and also examined the accuracy between the manual methods.
Nonparametric analysis was used for the obtained results since normality was rejected
by the Shapiro-Wilk normality test. The area correlation coefficient was tested using
Spearman’s rank correlation coefficient, and each extraction method was compared using
the Friedman and multiple comparison tests (Bonferroni). The FN and FP values were
compared using the Wilcoxon signed rank sum test. A p-value of <0.05 was considered
statistically significant. All statistical analyzes were performed using the R software
(version 3.6.3; R Foundation for Statistical Computing, Vienna, Austria).

3. Results

In this study, we used the dataset created by KSM to extract the test data (40 eyes from
20 healthy subjects) with the typical U-Net and compared the extraction results with the
manual method to verify its usefulness. The participants’ background variables that were
used in the test data were expressed as the median (interquartile range). The age of the
target group was 30.00 (26.50 to 44.25) years. The corrected equivalent visual acuity was
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−0.08 (−0.08 to −0.08) logarithm of the minimum angle of resolution. The axial length was
24.15 (23.56 to 24.85) mm. The spherical equivalent was−1.25 (−2.31 to 0.00) D. Three of the
20 participants (7.5%) had a history of smoking, 1 participant (2.5%) had hypertension, and
1 participant (2.5%) had dyslipidemia; none of them had diabetes or cardiovascular disease.

3.1. Coefficient of Variation and Correlation Coefficient of the Area

Table 1 shows the results of the FAZ area and the Friedman test for each extraction
method. Figure 3A shows the results of multiple comparisons. The area of the FAZ was
0.271 mm2 for examiner 1, which was significantly larger than that obtained by other
methods (p < 0.001). The area of the FAZ for examiner 2 and the U-Net was 0.265 mm2,
which was not significantly different (p = 1.00). The area of the FAZ measured using ARI
has the smallest value at 0.240 mm2 (p < 0.001).

Table 1. The FAZ area obtained by each extraction method and results of the Friedman test.

Method Area (Mean ± SD) (mm2)

Examiner 1 0.271 ± 0.086
Examiner 2 0.265 ± 0.086

U-Net 0.265 ± 0.085
ARI 0.240 ± 0.081

p-value * <0.001
* Friedman test. FAZ: foveal avascular zone, ARI: Advanced Retina Imaging.
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Figure 3. Multiple comparisons of the FAZ area and its coefficient of variation obtained by each
extraction method. Results of the FAZ area (A) and the coefficient of variation of area (B) obtained by
each extraction method. Comparing each combination of the four extraction methods, significant
differences (p < 0.001) were found for all of those without a p-value listed. Moreover, the area
obtained by U-Net is significantly different from examiner 1 (p < 0.001), but not from examiner 2 (A).
(p = 1.00). The CV of the area between examiner 1 and the U-Net is not significantly different from
that between the manual methods (p = 0.381), and the CV of the area between examiner 2 and the
U-Net is significantly better than that between the manual methods (B). (p < 0.001). The Bonferroni
correction was used to adjust the p-value. FAZ: foveal avascular zone.
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Table 2 shows the results of the CV and Friedman tests for the extraction methods and
the correlation between the FAZ areas obtained with each extraction method. The results of
multiple comparisons are also shown in Figure 3B. The CV was 1.61% between the manual
methods (examiner 1 and examiner 2) compared to 1.35% between examiner 1 and the U-
Net (p = 0.38), and 1.01% between examiner 2 and the U-Net (p < 0.001), indicating that the
CV between the manual methods and the U-Net was as good as or better than that between
the manual methods, with the best value for the comparison between examiner 2 and the
U-Net. The results of the manual method and ARI were both higher than 4% (p < 0.001).
The correlation coefficient showed a strong association between all the extraction methods,
but the values obtained with the manual method and ARI were slightly lower.

Table 2. The coefficient of variation and Friedman test results for each extraction method, and
correlation of the FAZ area obtained by each extraction method.

Method CV (Mean [95%CI]) (%) rho p-Value

Examiner 1 vs Examiner 2 1.61 (1.23–1.98) 0.995 <0.001 *
Examiner 1 vs U-Net 1.35 (0.95–1.75) 0.994 <0.001 *
Examiner 2 vs U-Net 1.01 (0.73–1.29) 0.995 <0.001 *
Examiner 1 vs ARI 6.35 (5.68–7.02) 0.987 <0.001 *
Examiner 2 vs ARI 4.99 (4.33–5.65) 0.987 <0.001 *

<0.001 †

* Spearman’s rank correlation. † Friedman test. FAZ: foveal avascular zone, ARI: Advanced Retina Imaging, CV:
coefficient of variation, CI: confidence interval, vs: versus.

3.2. Two Types of Similarity, FN and FP (Excess or Deficiency of Extraction)

Table 3 shows the similarity results and the Friedman test. Figure 4 shows the results
of multiple comparisons. The Jaccard index was 0.931 between the manual methods, 0.951
between examiner 1 and the U-Net (p < 0.001), and 0.933 between examiner 2 and the U-Net
(p = 1.00). The Jaccard index between examiner 1 and ARI was 0.875 (p < 0.001) and 0.894
between examiner 2 and ARI (p < 0.001). The DSC was 0.964 between the manual methods,
0.975 between examiner 1 and the U-Net, and 0.965 between examiner 2 and the U-Net.
The DSC between examiner 1 and ARI was 0.933, and 0.944 between examiner 2 and ARI.
The Jaccard index and DSC for the combination of the manual and the U-Net methods was
equal to or higher than that for the manual methods, similar to the CV results. The best
value was for the combination of examiner 1 and the U-Net, unlike the CV. Table 4 shows
the results of the FN and FP quantification. FN (insufficient extraction) was significantly
more common for all combinations than FP (false extraction) (p < 0.001), except for the
combination of examiner 2 and the U-Net.

Table 3. Two types of similarity and the results of each Friedman test.

Jaccard (95%CI) DSC (95%CI)

Examiner 1 vs Examiner 2 0.931 (0.923–0.940) 0.964 (0.959–0.969)
Examiner 1 vs U-Net 0.951 (0.943–0.959) 0.975 (0.971–0.979)
Examiner 2 vs U-Net 0.933 (0.924–0.942) 0.965 (0.960–0.970)
Examiner 1 vs ARI 0.875 (0.864–0.887) 0.933 (0.926–0.940)
Examiner 2 vs ARI 0.894 (0.881–0.906) 0.944 (0.936–0.951)
p value * <0.001 <0.001

DSC: Dice similarity coefficient, ARI: Advanced Retina Imaging, CI: confidence interval, vs: versus. * Friedman
test.
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Figure 4. Multiple comparisons using the Jaccard index (A) and DSC (B). Results of the Jaccard
index (A) and DSC (B). Comparing each 5 similarities coefficient of extraction methods, significant
differences (p < 0.001) were found for all of those without a p-value listed. For similarities, the results
between examiner 1 and the U-Net are significantly better than those between the manual methods
(examiner 1 and 2) (p < 0.001), and the results between examiner 2 and the U-Net are not significantly
different from those of the manual methods (p = 1.00). The Bonferroni correction was used to adjust
the p-value.

Table 4. Significant differences between the false negatives (FN) and false positives (FP).

Mean FN (%) Mean FP (%) p-Value *

Examiner 1 vs
Examiner 2 4.87 2.21 <0.001

Examiner 1 vs U-Net 3.65 1.34 <0.001
Examiner 2 vs U-Net 3.3 3.66 0.128
Examiner 1 vs ARI 12.22 0.35 <0.001
Examiner 2 vs ARI 10.07 0.68 <0.001

* Wilcoxon signed rank sum test.

Figure 5 shows the extracted image for each method. It is apparent from the extraction
results of each manual method that almost the same area was extracted by both examiners,
but there was a difference in the recognition of the uneven parts (Figure 5, arrows). Figure 6
shows an image in which the extraction lines of the manual and automatic methods are
superimposed. The comparison of the extraction lines of each manual method with respect
to the extraction lines of the U-Net showed that examiner 1 extracted almost the same
boundary as the U-Net, except for the uneven part. Conversely, the extraction of examiner
2 gave the impression of partial intersection.
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of unevenness between the manual methods (Arrows in columns (C,D)). ARI: Advanced Retina
Imaging.
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Figure 6. Superimposed images of the extraction lines of each automatic method and each manual
method. Extraction lines for each automatic method (green line for U-Net and ARI). Extraction line
for each manual method (red line). The extraction lines of examiners 1 and the U-Net demarcated
almost the same area, except for the uneven area (column (A)). The extraction lines of examiners 2
and the U-Net appear to cross each other (column (B)). The extraction line for ARI looks smaller than
any of the examiners (columns (C,D)). ARI: Advanced Retina Imaging.

4. Discussion

In this study, we used the dataset created by KSM to extract the test data (40 eyes from
20 healthy subjects) with the typical U-Net and compared the extraction results with the
manual method to verify its usefulness. The U-Net results trained from this dataset were as
good as or better than the manual results in terms of the CV of the area, correlation coefficient,
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and similarity evaluation. Diaz et al. [11] stated that the results of correlation coefficients
between manual methods used as a gold standard will affect the performance evaluation of
automatic methods. The correlation coefficient between the manual methods in this study
was 0.995, which represented a strong association and seemed to be sufficiently accurate
for use as the gold standard. The correlation coefficient between the manual method and
ARI was also good at 0.987, but the correlation coefficient between the manual method and
the U-Net was higher or equivalent to that of the than that of ARI and manual method
(Table 2).

In some images, we have shown that the boundaries are different even between manual
methods (Figures 5 and 6). Although relatively clear images were used in this study, such
errors were also observed between the manual methods. Moreover, the evaluation of the
CV revealed that the combination of the manual method and the U-Net elicited the same or
better results compared to the combination of the manual methods. The CVs of the manual
method and ARI were more than 4%, while the CVs of the manual method and the U-Net
were less than 1.5%. These findings suggest that the CVs of the manual method and the
U-Net were significantly better than those of the manual method and ARI (Table 2 and
Figure 3B). Similar results were obtained for the evaluation of the degree of similarity. The
combination of examiner 1 and the U-Net had the best value (Table 3 and Figure 4), which
differed from the results of the CV. The reason for the difference in the combination with
the best values may be attributed to the nature of CV evaluation. Evaluation based on the
above-mentioned characteristics of manual extraction and the results of FP and FN (Table 4)
showed that the extraction of the U-Net was similar to that of examiner 1 with respect to
the shape, but the area obtained with U-Net was smaller than that of examiner 1 because
the FN was significantly larger than the FP in the extraction achieved by the U-Net and
examiner 1 (Table 1 and Figure 3A). The area measured by the U-Net was almost the same
as that of examiner 2 (Table 1 and Figure 3A), probably because there was no significant
difference between the FP and FN of U-Net and examiner 2. Hence, the CV of the FAZ area
was lower for the combination of the U-Net and examiner 2 than that for the combination
of the U-Net and examiner 1.

Currently, reports of automated FAZ extraction include both conventional automatic
methods (built-in program) [11–15,34] and methods using deep learning [9,10]. Table 5
presents the details of previous studies that used the Jaccard index and DSC as indicators,
as well as the maximum average for each similarity [9–12,14,34]. This study was the only
one to obtain an excellent (0.9 or higher) value for the Jaccard coefficient from amongst
the previous studies. The lowest value was reported by Diaz et al. [11] but the correlation
coefficient between the manual methods was also low in that study, which seems to be the
result of the influence of the accuracy of the gold standard (as mentioned in a previous
study). Moreover, ARI, which showed the lowest value in this study, also seemed to show
a good result compared to previous studies.
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Table 5. Previous studies using the Jaccard index and DSC, and the maximum average of each
similarity.

Study Using the Jaccard Similarity Coefficient

Author Imaging Device n Slab Method
Maximum Mean of
Jaccard Similarity

Coefficient

Area
Correlation
Coefficient *

Diaz et al. [11] TOPCON DRI OCT Triton 144 SRL Second observer 0.83 0.93
System 0.82 0.90

Zhang et al. [34] Optovue RTVue-XR 22 SRL Automated Detection 0.85

Lu et al. [12] Optovue RTVue-XR 19 Inner
Retinal GGVF snake algorithm 0.87

Current study Zeiss PLEX Elite 9000 40 SRL Second observer 0.931 0.995
Typical U-Net

(KSM Datasets) 0.951 0.994

ARI 0.894 0.987

Study Using the Dice Similarity Coefficient

Author Imaging Device n Slab Method
Maximum Mean of

Dice Similarity
Coefficient

Area
Correlation
Coefficient

Lin et al. [14] Zeiss Cirrus HD-OCT 5000 34 SRL Second observer 0.931
Level-sets macro 0.924
Unadjusted KSM 0.910

Guo et al. [9] Zeiss Cirrus HD-OCT 5000 45 SRL Improved U-Net
(Manual Datasets) 0.976 0.997

Mirshahi et al. [10] RTVue XR 100 Avanti 10 Inner
Retinal

Mask R-CNN
(Manual Datasets) 0.974 0.995

Current study Zeiss PLEX Elite 9000 40 SRL Second observer 0.964 0.995
Typical U-Net

(KSM Datasets) 0.975 0.994

ARI 0.944 0.987

* Correlation coefficient is the highest Index value. DSC: Dice similarity coefficient, ARI: Advanced Retina Imaging,
OCT: optical coherence tomography, KSM: Kanno Saitama Macro, SRL: superficial retinal layer, R-CNN: region
based convolutional neural networks.

Previous studies that employed the DSC investigated conventional automated meth-
ods and deep learning. Lin et al. [14] used Level Sets, a plugin of ImageJ, to study the
extraction accuracy for images with an image quality index of 6 to 10, obtained with the
Cirrus HD-OCT 5000. The extraction accuracy of Level Sets was comparable to that of the
manual method, and the results were stable with various image quality levels. KSM was
also used for comparison in their study. The extraction accuracy of KSM was poor at low
image quality and showed inadequate reproducibility, which seemed inappropriate for
the Cirrus HD-OCT 5000. The authors speculated that this was due to the false extraction
caused by high-luminance noise. We assumed that the images presented in the previous
study seem to be strongly affected by noise. We opine that good results can be obtained
by performing noise processing (Figure 1E,F) in such cases. We recommend adjusting
the number of times “dilate” and “erode” are used in the event of poor extraction, since
noise processing also affects the blood flow signal. The results of Lin et al. were the lowest
among the previous studies that used DSC, but even in that study, the similarity between
the manual methods was also low. In other words, the accuracy of the gold standard could
have affected the results in the current study, as well as that undertaken by Diaz et al. [11].
Based on the results of these two studies, there is also a need for a way to evaluate the
accuracy of the gold standard in the future.

Guo et al. [9] used an improved U-Net in their study. Interestingly, that study used
a dataset that included a group that edited the OCTA image and changed the bright-
ness/contrast (B/C) to flexibly handle the extraction of OCTA images with different
levels of B/C. The appeal of deep learning is that it allows for the creation of models
for various conditions using datasets that have been edited to meet this purpose. More-
over, Guo et al. [9] stated that the extraction accuracy would plummet significantly in the
case of conventional automatic extraction if the B/C differs from the default settings. The
extraction disorder becomes stronger as the setting tolerance is exceeded in the conven-
tional automatic method. However, images whose signal strength is reduced to the point
that extraction fails are usually excluded from the study because they adversely affect the
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reliability of the results. Rather, the major factor that causes poor extraction seems to be a
localized decrease in signal strength.

Zhang et al. [34] reported a method to deal with localized signal intensity reduction
in conventional image analysis. Such local signal intensity reduction can cause extraction
failure if it interferes with the FAZ. Semantic segmentation may be able to deal with local
signal strength degradation that interferes with FAZ by devising the dataset. Therefore,
to perform ideal extraction for various OCTA images, it is necessary to create datasets
according to various requirements. To reduce the burden of creating these datasets, there is
also a need for an efficient way to reduce the burden of annotation. In this study, we used
ImageJ macro to simplify the annotation process; ImageJ macro is a recommended tool for
annotation because it can easily automate various processes.

In the comparison of similarity, the past studies using deep learning (Guo et al. [9]
and Mirshahi et al. [10]) showed good results, but this is due to the performance of the
deep learning network, probably because FAZ extraction of the dataset containing the test
labels was also performed by the same person. In this study, we used a typical U-Net, the
FAZ extraction of the data set was performed by KSM, and the test label was extracted by
the manual method. In other words, the evaluation was performed using a test label that
differed from the dataset. Therefore, the results obtained in this study are excellent, and the
utility of the dataset created by KSM is high.

This study has some limitations. First, all images used in the dataset, including the
test data, were images with OCTA signal strength of 8/10 or higher. As shown in the study
by Guo et al. [9], there are images with different luminance and B/C variations in clinical
practice, and this dataset is not sufficient to deal with images with various variations.
Second, the cases used for the test data included only healthy subjects. In the future, studies
including diseased eyes are warranted, as in the study by Diaz et al. [11]. Regardless,
the results obtained in this study are still useful based on the accuracy of the extraction
and the simplification of the annotation. The next step is to evaluate the feasibility of the
current method for diseased eyes. Future studies should also examine whether KSM is
useful for images with lower signal strength, and whether the dataset obtained by KSM
from lower signal images is useful as a dataset for deep learning. Furthermore, we aim
to follow the method of Guo et al. [9] to create a dataset that can handle images with
various variations. The Training: Testing ratio in this study was 8.7:1.3; Guo et al. [9]
reported a ratio of 8:2, and Mirshahi et al. [10] reported a ratio of 7.7:2.3, which is close
to the present study. Third, this study aimed to test the usefulness of the KSM dataset,
not the performance of the neural network, and we used a typical U-Net. Other practice
may have yielded different results. We plan to conduct research using other programs
in the future. Fourth, another limitation is the small sample size. Further studies with
a larger number of cases are needed in the future. Finally, we compared the results of
the measurement method proposed in this study with those of the manual method in the
same way as previous reports. The manual method is not always correct. Automated
methods have reproducibility and rapidity advantages. Establishment of a measurement
method that requires less manual intervention is awaited. The current study demonstrates
the validity of reducing the intervention of manual methods in establishing measurement
methods using AI.

5. Conclusions

This study demonstrated that the deep learning dataset created by KSM provides
comparable performance in the extraction of FAZ with conventional automatic methods.
The results can contribute to reducing the burden of annotation in deep learning and
promote AI research using OCTA images.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12010183/s1. Code S1: Modified KSM. Code S2: Annotation
using continuous automatic extraction. Video S1: Annotation using continuous automatic extraction.

https://www.mdpi.com/article/10.3390/jcm12010183/s1
https://www.mdpi.com/article/10.3390/jcm12010183/s1
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