
Citation: Zhang, C.; You, W.-D.; Xu,

X.-X.; Zhou, Q.; Yang, X.-F.

Nomogram for Early Prediction of

Outcome in Coma Patients with

Severe Traumatic Brain Injury

Receiving Right Median Nerve

Electrical Stimulation Treatment. J.

Clin. Med. 2022, 11, 7529. https://

doi.org/10.3390/jcm11247529

Academic Editor: Moussa

Antoine Chalah

Received: 9 November 2022

Accepted: 13 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Nomogram for Early Prediction of Outcome in Coma Patients
with Severe Traumatic Brain Injury Receiving Right Median
Nerve Electrical Stimulation Treatment
Chao Zhang 1, Wen-Dong You 1, Xu-Xu Xu 2, Qian Zhou 1 and Xiao-Feng Yang 1,*

1 Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine,
Hangzhou 310003, China

2 Department of Neurosurgery, Minhang Hospital, Fudan University School of Medicine,
Shanghai 201100, China

* Correspondence: zjcswk@zju.edu.cn

Abstract: Background: Accurate outcome prediction can serve to approach, quantify and categorize
severe traumatic brain injury (TBI) coma patients for right median electrical stimulation (RMNS)
treatment, which can support rehabilitation plans. As a proof of concept for individual risk prediction,
we created a novel nomogram model combining amplitude-integrated electroencephalography
(AEEG) and clinically relevant parameters. Methods: This study retrospective collected and analyzed
a total of 228 coma patients after severe TBI in two medical centers. According to the extended
Glasgow Outcome Scale (GOSE), patients were divided into a good outcome (GOSE 3–8) or a poor
outcome (GOSE 1–2) group. Their clinical and biochemical indicators, together with EEG features,
were explored retrospectively. The risk factors connected to the outcome of coma patients receiving
RMNS treatment were identified using Cox proportional hazards regression. The discriminative
capability and calibration of the model to forecast outcome were assessed by C statistics, calibration
plots, and Kaplan-Meier curves on a personalized nomogram forecasting model. Results: The study
included 228 patients who received RMNS treatment for long-term coma after a severe TBI. The
median age was 40 years, and 57.8% (132 of 228) of the patients were male. 67.0% (77 of 115) of coma
patients in the high-risk group experienced a poor outcome after one year and the comparative data
merely was 30.1% (34 of 113) in low-risk group patients. The following variables were integrated into
the forecasting of outcome using the backward stepwise selection of Akaike information criterion: age,
Glasgow Coma Scale (GCS) at admission, EEG reactivity (normal, absence, or the stimulus-induced
rhythmic, periodic, or ictal discharges (SIRPIDs)), and AEEG background pattern (A mode, B mode,
or C mode). The C statistics revealed that the nomograms’ discriminative potential and calibration
demonstrated good predictive ability (0.71). Conclusion: Our findings show that the nomogram
model using AEEG parameters has the potential to predict outcomes in severe TBI coma patients
receiving RMNS treatment. The model could classify patients into prognostic groups and worked
well in internal validation.

Keywords: coma; traumatic brain injury; RMNS; EEG; nomogram; prognosis

1. Introduction

Traumatic brain injury (TBI) is a severe life-threatening illness and has become a big
social challenge [1,2]. Numerous TBI patients become comatose. Coma is an unconscious
state characterized by the failure of the brain’s arousal and alerting system (ascending
reticular activation system, ARAS) [3]. Coma patients who suffered from severe TBI cannot
always be woken with conventional medical interventions [4]. Some patients can regain
consciousness within the first few days after severe trauma, but some enter a protracted
coma or vegetative state, which is a form of wakeful unawareness [5]. Others progress into
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brain death [6]. The best outcome that the family of patients and physical therapists desired
is that patients can be effectively treated to restore recovery during the acute period.

Right median electrical stimulation (RMNS) is an important consciousness-promoted
rehabilitation therapy used to hasten awakening from coma [6]. It took more than two
decades to establish the right median nerve electrical stimulation (RMNS) application in
coma awakening. Researchers from the United States and Japan indicated RMNS can
accelerate the consciousness of coma patients [7,8]. Four representative scientific clinical
studies verified the capacity of RMNS treatment to arouse coma patients [7,9–11] but 40% of
post-traumatic coma patients still suffered unsatisfactory neurological outcome after RMNS
treatment [11]. However, the assessment of coma patients’ prognosis after RMNS is difficult.
This calls for multi-dimensional clinical information of the patient for consideration. The
details cover information of demographics, etiology, disease severity, laboratory testing,
imaging, and electroencephalogram (EEG). Such multi-dimensional research on predicting
the course of coma patients treated with RMNS therapy is, however, lacking at the moment.

Amplitude-integrated electroencephalography (AEEG) is frequently a component of
multimodal monitoring on TBI patients treated in neurological intensive care units (N-ICU),
where it is mostly used to identify (non-convulsive or electrographic) seizures [12,13].
Various initiatives have been made for correlating EEG characteristics to the neurological
outcome of TBI patients [13–16]. As its background pattern feature and normal EEG
reactivity have shown good evaluation value in predicting brain injury [17–19], AEEG
has become a convenient and potential neurological outcome indicator for individuals
in a coma after TBI. To screen out the ideal types of patients who could benefit from
the RMNS treatment, we proposed a novel nomogram with the amplitude-integrated
electroencephalography (AEEG) application to build one early prediction model.

2. Methods
2.1. Study Participants

From November 2016 to December 2021, consecutive coma patients who were at
the two-week stage following severe TBI in our study centers routinely received RMNS
as consciousness-promoted rehabilitation therapy. A total of 228 patients were finally
retrospectively collected and analyzed from the intensive care unit (ICU) of The First
Affiliated Hospital, Zhejiang University School of Medicine, and the neurosurgical intensive
care unit (N-ICU) in Renji Hospital, Shanghai Jiaotong University School of Medicine. The
inclusion criteria were as follows: (1) the age of 18 years or older; (2) a confirmed history
of TBI caused by a traffic accident, a fall, or other causes, and intracranial contusion and
hematomas, subarachnoid hemorrhage, or diffuse axonal injury could be diagnosed with
a CT scan; (3) a GCS score ≤8 on admission, with the GCS score continuing to be under
or equal to 8 following one week of intense therapy; (4) prolonged coma (>7 days); (5) a
stable condition with respect to the vital signs and the intracranial imaging on CT scan,
for example no diffuse brain swelling or active bleeding. The exclusion criteria were as
follows: (1) severe heart arrhythmias or pacemaker placement in the past; (2) epilepsy;
(3) pregnancy; (4) decreased life expectancy and co-occurring systemic disorders.

2.2. Prognostic Assessment

Each recruited patient was followed up on by one or more investigators at the clinic or
by videophone 12 months following discharge. The purpose of our research was to explore
the characteristics of ideal patient for receiving RMNS consciousness–promoted treatment,
and whether awakening is our primary concern. The primary outcome measurement
was the extended Glasgow Outcome Scale (GOSE), which was divided into poor outcome
(GOSE 1–2) or good outcome (GOSE 3–8). One year later is the time node that we mainly
focus on.
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2.3. Clinical Parameters

Age, gender, pupillary responses, and laboratory parameters (hemoglobin and arterial
partial pressure of oxygen, PO2) at admission were recorded. According to the electronic
health record system, the following data were retrospectively collected at the beginning
of RMNS treatment: GCS and mean arterial blood pressure (MAP). Age is a significant
predicting factor in TBI recovery [20]. and hypotension is related to poor outcome and
increased mortality after TBI [21–23].

2.4. RMNS Programing

The recruited comatose patients received RMNS after one-week standard neurosurgi-
cal therapy according to the guidelines [24,25]. To conduct the electrical therapy, a couple
of lubricated, 1-inch-square rubberized surface electrodes were used. They were adhered
to the right distal forearm’s volar side above the medulla. An electrical neuromuscular
stimulator was utilized by Verity Medical Ltd. in the UK to deliver trains of asymmetric
biphasic pluses with amplitudes of 10–20 milliamps and pulse lengths of 300 s at 40 Hz
lasting 20 s/min. The duration of the RMNS treatment was one week, at 10 hours per
day [8].

2.5. AEEG Monitoring and Analysis

Before patients were treated with RMNS, AEEG was used to perform 3-day-long syn-
chronous monitoring for exclusion of epilepsy, affirmation of patients’ elementary AEEG
background patterns and other AEEG related indicators (EEG reactivity, absence, or pres-
ence of sleep-related waveforms). Two AEEG analysis experts in our study center, blinded
to patients’ identity and clinical condition, examined the traces of AEEG, respectively. The
raw EEG data were checked to certify the AEEG evaluation.

According to the modified criterion of Hellstrom-Westas et al. and Toet et al., the
AEEG background patterns were categorized into five subtypes [26–28].

(1) Flat tracing (FT): continuous low-voltage pattern with an upper margin of <5 µV;
(2) Continuous extremely low voltage (CLV): continuous low-voltage pattern with an

upper margin of <10 µV and a lower margin of <5 µV;
(3) Burst suppression (BS): discontinuous pattern, with periods of very low voltage

intermixed with high amplitude and a lower margin constantly at 0–1 µV and a burst
amplitude of >25 µV more than 50% of the recording time;

(4) Discontinuous normal voltage (DNV): electrical attenuation (with an upper margin
of >10 µV) or suppression occurring (a lower margin of <5 µV) 10–49% of the record-
ing time.

(5) Continuous normal voltage (CNV): continuous pattern with a low voltage margin
of 5–10 µV and an upper voltage margin of 10–50 µV. Only with sporadic electrical
attenuation or suppression (<10% of the record).

Most CNV cases appeared in full-term asphyxiated neonates who returned to normal
or shallow sleep within 24 hours. BS, CLV, and FT cases were related to the cortical electrical
activity of full-term asphyxiated neonates with poor prognosis, while cases of DNV were
identified in the AEEG of both normal and pathological neonates [28,29]. Referring to the
classification of previous studies [17,30,31], all of the patients with a CNV background
patterns were divided into A mode, those with DNV background patterns were divided
into B mode, and others with BS, CLV, and FT background patterns were divided into C
mode in our research.

EEG reactivity was defined as alteration in the EEG generated by stimulus. When
patients were given moderate external stimulations such as painful (pinching the nipple
or limbs), visual (opening eyes under light), and auditory (continuing to call out the
patient’s name) [32,33]. If the patients’ EEGs displayed reactivity changes in frequency
or amplitude, this demonstrated they had EEG reactivity; otherwise, there was no EEG
reactivity. Reactivity was not defined as electromyographic activity or blink artifacts.
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SIRPIDs (stimulus-induced rhythmic, periodic, or ictal discharges) are abnormal discharges
caused primarily by vigilant stimulation such as sensory stimulus, chest constriction, limb
constraint, turning, and other nursing intervention.

Vertex sharp waves, spindles, and K-complexes were identified as sleep-related wave-
forms because they were clearly recognizable and related to the sleep phase. [34,35]. We
defined the presence of sleep-related waveforms as the appearance of one or more wave-
forms throughout monitoring.

It was inevitable for patients to use central nervous system (CNS) drugs (propofol,
chlorpromazine, diazepam, etc.) in the intensive care unit, and these neurological drugs may
affect the results of AEEG. According to the rate of metabolism of the drugs in the blood, we
excluded the period (15–30 mins) of applying neurological drugs when analyzing the AEEG
data. This criterion was also applied when using drugs (dexamethasone, indomethacin) and
temperature maintenance equipment to correct hyperpyrexia or hypothermia.

2.6. Statistical Analysis

Unless otherwise indicated, continuous variables were presented as medians with
interquartile ranges (IQRs), while categorical variables were given as round numbers and
proportions. The Kaplan-Meier method was used to produce the outcome for the research
population. A priori, clinical and EEG variables associated with outcome were evaluated
according to the clinical significance, scientific cognition, and predicting variables identified
in previously research [19,36,37]. A correlation matrix was applied to test explanatory
variables for co-linearity, as well as plausible interaction subjects, such as interactions
between age, GCS at admission, EEG reactivity (normal, absence, or SIRPIDs), and AEEG
background pattern, were investigated (A mode, B mode, or C mode). Since no significant
correlation was discovered, no interaction component was contained at the multivariable
analysis. To be comparable with previous data [17,19], the AEEG background pattern was
modeled as a categorical variable (A mode, B mode, or C mode), and EEG reactivity as a
categorical variable (absence, SIRPIDs vs normal). Cox proportional hazards regression
models were performed to assess the relationships between pertinent clinical and EEG
variables and outcome. The variables for the multiple Cox proportional hazards regression
models were identified using backward stepwise selection with the Akaike information
criterion (AIC). Using statistical software, some characteristics were incorporated into
the nomograms to forecast the likelihood of coma patients’ 1-year favorable outcomes
following RMNS treatment (rms in R, version 3.6.3). We use regression coefficients to
construct the linear predictor for each individual observation when assigning points in
the nomograms.

The efficiency of the nomograms was assessed by C statistics. The C statistic, which is
equal to the area under the receiver operating characteristic curve, estimates the likelihood
of accordance between predicted and observed outcomes [38]. Calibration was tested with
the bootstrapped sample of the research cohort and a calibration plot. Predictions in a
well-calibrated model would drop on the 45-degree diagonal line. To further evaluate
calibration, we constructed Kaplan-Meier curves over the dichotomy of coma patients strat-
ified by the points predicted by the nomograms. Data was then analyzed statistically using
software programs (SPSS version 29.0 and R, version 3.6.3), and p < 0.05 was considered
statistically significant.

3. Results
3.1. Demographic and Clinical Physiology Characteristics

A total of 228 patients at two centers were finally included. The median age of patients
was 40 years (IQR, 33.0–47.0 years), and 57.9% (132 of 228) of the patients were male
(Table 1). On admission, 32.0% (73 of 228) of patients had a bilateral reacting pupillary
response, 39.9% (91 of 228) with unilateral reacting pupillary response, and 28.1% (64 of 228)
with no reacting pupillary response on both sides. The median GCS score was 5 (IQR, 4–6).
A minority of the patients had hyphemia (36.0% [82 of 228]), or hypoxia (29.4% [67 of 228]).
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Emergency surgery was performed on 63.6% (145 of 228) of the patients. The AEEG was
dynamically monitored for 3-day period from the fourth day after the patient’s admission.
On the final AEEG report, most patients (61.4% [67 of 228]) showed B mode in AEEG
background pattern, with the remaining patients exhibiting C mode (11.4% [26 of 228]) and
A mode (27.2% [62 of 228]), respectively. Among all of the patients, most had a normal
EEG reactivity (47.8% [109 of 228]) or SIRPIDs (37.3% [85 of 228]), while only 14.9% (34 of
228) of the patients presented absence in EEG reactivity. The sleep-related wave can be
detected in 55.7% (127 of 228) of the patients. In our study, a patient with one or several
kinds of complications after TBI was defined as the existence of a complication, including
neurological complications: hydrocephalus, cerebrospinal fluid (CSF) leakage, intracranial
infection, and non-neurological complications: bedsore, pneumonia, liver and kidney
insufficiency. Before receiving RMNS therapy, most patients had an appropriate MAP
(76.3% [174 of 228]), and no complications (86.0% [196 of 228]).

Table 1. Baseline Patient and AEEG Characteristics of the Patients Undergoing a Post-traumatic Coma.

Characteristic Total (n = 228)

Age, years, median (IQR) 40.0 (33.0–47.0)
Gender, n (%)

Male 132.0 (57.9)
Female 96.0 (42.1)

GCS, median (IQR) 5.0 (4.0–6.0)
Pupillary response, n (%)

Both reacting 73.0 (32.0)
Single reacting 91.0 (39.9)

Neither reacting 64.0 (28.1)
Hyphemia, n (%)

Yes 82.0 (36.0)
No 146.0 (64.0)

Arterial PO2, mmHg, n (%)
<60 67.0 (29.4)
≥60 161.0 (70.6)

Surgical operation, n (%) 145.0 (63.6)
EEG reactivity, n (%)

Absence 34.0 (14.9)
Normal 109.0 (47.8)
SIRPIDs 85.0 (37.3)

AEEG background pattern, n (%)
C mode 26.0 (11.4)
B mode 140.0 (61.4)
A mode 62.0 (27.2)

Sleep-related wave, n (%)
Absence 101.0 (44.3)
Presence 127.0 (55.7)

MAP, mmHg, n (%)
<70 54.0 (23.7)

70–105 174.0 (76.3)
Complication, n (%)

Existence 32.0 (14.0)
Absence 196 (86.0)

Abbreviations: MAP, mean arterial blood pressure; GCS, Glasgow Coma Scale; PO2, partial pressure of oxygen;
AEEG, amplitude-integrated electroencephalography; SIRPIDs, the stimulus-induced rhythmic, periodic, or
ictal discharges.

The median follow-up time was 12.7 months (range, 4.3–38.2 months); 26 patients died
(GOSE 1) and 58 stayed in a persistent vegetative state (GOSE 2) within 1 year. Five patients
were missed for follow-up because they unable to be contacted via telephone. Then, based
on medical records, their outcomes were evaluated; three of them were in a vegetative
state upon discharge and allocated to the poor outcome group (GOSE 1–2), whereas the



J. Clin. Med. 2022, 11, 7529 6 of 14

other two patients were allocated to the good outcome group (GOSE 3–8). In total, 111 of
228 (48.7%) patients had a poor outcome at 1 year, and the remaining 117 (51.3%) patients
had a good outcome. A flow diagram for including and excluding eligible coma patients is
represented in Figure 1.
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Figure 1. Recruitment flow chart of patients. Abbreviations: TBI, traumatic brain injury; RMNS, right
median electrical stimulation.

3.2. Model Configuration and Predictors of the Outcome

Established risk factors, together with demographic and clinical physiological char-
acteristics, were chosen as candidate variables for the prognosis model. In the Cox pro-
portional hazards regression modeling, the backward stepwise selection revealed the four
variables with the strongest association with a favorable outcome (GOSE 3–8): age, GCS
at admission, EEG reactivity, and AEEG background pattern (Table 2). On multivariable
analysis, age (HR, 1.02; 95% CI, 1.00–1.04; p = 0.013), GCS (HR, 0.83; 95% CI, 0.68–1.02;
p = 0.032), SIRPIDs (HR, 1.76; 95% CI, 1.16–2.68; p = 0.008), and A (HR, 0.45; 95% CI,
0.27–0.73; p < 0.001), B (HR, 0.29; 95% CI, 0.16–0.50; p < 0.001) mode of AEEG background
pattern were each independently related to a good outcome.
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Table 2. Cox Proportional Hazards Regression Model Presenting the Association of Variables with a
Good Outcome.

Univariable Multivariable

Variable HR (95% CI) p Value HR (95% CI) p Value

Factors Selected
Age, years 1.03 (1.02–1.05) <0.001 1.02 (1.00–1.04) 0.013

GCS 0.68 (0.59–0.79) <0.001 0.83 (0.68–1.02) 0.032
EEG reactivity

Absence 1[Reference] NA 1[Reference] NA
Normal 0.54 (0.35–0.84) 0.006 0.69 (0.43–1.09) 0.011
SIRPIDs 1.58 (1.04–2.37) 0.030 1.76 (1.16–2.68) 0.008

AEEG background pattern
C mode 1[Reference] NA 1[Reference] NA
B mode 0.56 (0.35–0.91) 0.020 0.29 (0.16–0.50) <0.001
A mode 0.39 (0.18–0.54) <0.001 0.45 (0.27–0.73) <0.001

Factors Not Selected
Gender

Male 1[Reference] NA NA NA
Female 0.93 (0.61–1.49) 0.54 NA NA

Pupillary response
Both reacting 1[Reference] NA NA NA

Single reacting 2.96 (0.75–4.03) 0.41 NA NA
Neither reacting 0.76 (0.38–0.93) 0.24 NA NA

Hypoxia
Yes 1[Reference] NA NA NA
No 1.43 (0.98–2.64) 0.60 NA NA

Arterial PO2, mmHg
<60 1[Reference] NA NA NA
≥60 1.67 (0.84–3.04) 0.31 NA NA

MAP, mmHg
<70 1[Reference] NA NA NA
≥70 1.13 (0.76–2.13) 0.57 NA NA

Sleep-related wave
Absence 1[Reference] NA NA NA
Presence 0.86 (0.44–1.24) 0.28 NA NA

Abbreviations: NA, not applicable; HR, hazard ratio; GCS, Glasgow Coma Scale; AEEG, amplitude-integrated
electroencephalography; PO2, partial pressure of oxygen; MAP, mean arterial blood pressure.

3.3. Nomograms Performance

The nomograms predicting a good outcome of severe TBI coma patients at 1 year are
presented in Figure 2. The following four independent prognostic factors built the final
nomogram model: age, GCS at admission, EEG reactivity (normal, absence, or SIRPIDs),
and AEEG background pattern (A mode, B mode, or C mode). Higher total scores based on
the nomograms were linked to a worse prognosis. As an example, a 40-year-old patient with
GCS-5 at admission, evidence of normal EEG reactivity, and B mode in AEEG background
pattern would recieve a total of 115 points (35 points for age, 45 points for GCS, 0 points
for normal EEG reactivity, and 35 points for B mode), for a predicted 1-year good outcome
of 61.0%. The model’s discriminative ability for outcome was also evaluated utilizing C
statistics (0.71; 95% CI, 0.69–0.73).

To test the model’s discriminative capacity further, the predicted probability of a poor
outcome was obtained by plotting as Kaplan-Meier curves stratified with the dichotomy of
scores calculated from the total nomograms. The optimal cut-off value of the total nomo-
gram scores was determined to be 140; then, patients with a total nomogram score above
140 were classified into high-risk group and those with low total nomogram scores into the
low-risk group (Figure 3). Patients in the high-risk group had substantially higher 1-year
and 2-year predicted poor outcomes (67.0% (77 of 115), and 45.2% (52 of 113), respectively)
compared with patients in the low-risk group (30.1% (34 of 113), and 14.1% (16 of 113),
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respectively) (p < 0.001). Bootstrap validation with 200 re-samplings was used to assess
model accuracy and potential model overfit. A 40-sample bootstrapped calibration plot for
the forecast of a good outcome is shown in Figure 4.
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Follow-up cross represents the result of each point corrected by hierarchical Kaplan-Meier’ after the
word ‘bootstrap-corrected estimates’ in the annotation of Figure 1. The calibration plot for predicting
a 1-year good outcome with 40 samples is presented. The gray line signifies best fit; circles show
nomogram-predicted probabilities; crunode represents bootstrap-corrected estimates, and error bars
stand for 95% confidence intervals for these estimates.

4. Discussion

As an effective intervention treatment for coma arousal, RMNS was first proposed
in 1999 [7] and proved that it can lead to faster emergence from a coma by several ran-
domized trials [7,9,11]. Jin Lei et al., showed that the proportion of coma patients who
regained consciousness in the RMNS group is comparatively higher than in the control
group (59.8% vs. 46.2%, p < 0.01) [11]. While RMNS treatment remains the important
consciousness-promoted choice for coma patients after severe TBI in our medical centers,
approximately forty percent of the coma patients, who eventually stepped into death or
vegetative state within one year, still cannot benefit from it. Therefore, we need to design
a multifactor prediction model to precisely forecast the prognosis of coma patients who
received RMNS, and further select patients suitable for this treatment. Furthermore, op-
timized outcome predictions may aid in the credible quantification and classification of
coma and TBI severity [39].

The International Mission for Prognosis and Clinical Trial Design (IMPACT) predic-
tor [36] and Corticosteroid Randomization after Significant Head Injury (CRASH) [37]
predictor are currently the best influential predictors for neurological outcome after TBI.
However, these prediction models, which are determined by parameters at admission,
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have not taken into account the progression of secondary injury in TBI patients, nor the
influence of therapy [40]. Given the heterogeneity of the primary injury and the evolution
of secondary injury in these patients, combining multiple AEEG features may reveal more
factors related to the prognosis of coma TBI patients. We eventually developed a nomogram
depending on patient-related and AEEG-related parameters that digitally predicted an
individual’s outcome after RMNS treatment. A mode of AEEG background pattern, normal
EEG reactivity, a low age, and a high GCS were the independent relevant factors for a good
outcome in the outcome prognosis model with high accuracy.

Rundgren et al., first applied the AEEG pattern to predict prognosis in adult coma
patients with cardiac arrest. It was shown that the continuous AEEG pattern (A mode)
was closely associated with a higher survival rate and improved consciousness recovery.
While an FT, BS (belonged to C mode), or status epilepticus AEEG was strongly predictive
of an unfavorable outcome [41,42]. The prognostic value of the AEEG pattern for cardiac
arrest patients who received hypothermia treatment was then affirmed by Oh et al. and
Sugiyama et al. [43–45] Wendong You et al., demonstrated that the AEEG pattern is also a
promising predictor of outcome for coma patients of varied etiologies including TBI and
stroke [17]. In contrast to the previous studies, we found that coma patients in B mode had
a nearly good prognosis as patients in A mode after receiving RMNS, with hazard ratios
(HR) of 0.56 and 0.39 for patients in C mode, respectively (Table 2). This may be because
coma patients have a more stable brain electrical activity basis in both A and B modes.

The brainstem reticular formation and the thalamocortical cortical loop are the anatom-
ical foundations of EEG reactivity [46]. Some specific diseases, including severe TBI and
hypoxic ischemic encephalopathy (HIE), can damage these structures, with the basal
ganglia and neocortex of man being especially vulnerable, so that the absence of EEG
reactivity signifies that these structures have been injured, with potential neurological
implications [47]. The Synek and Young grading scales, which are both now recognized
as EEG prognostic criteria, have both included the EEG reactivity as significant param-
eters [48,49]. According to prior research on the predicting outcome of coma patients,
48–92% of patients with EEG reactivity regain coma arousal after 5 months [49], while
patients with no EEG reactivity have a mortality rate of up to 93% within 1.5 years [50].
SIRPIDs are a kind of abnormal EEG reactivity that can be induced by alertness stimuli in
different etiologies [12]. Alvarez et al. monitored 114 cardiac arrest patients with continu-
ous EEG (CEEG) monitoring and discovered that when patients emerged SIRPIDs, their
outcome at 3 months was unfavorable [51]. In our study, the HR for normal EEG reactivity
and SIRPIDs to the absence of EEG reactivity are 0.54 and 1.58, respectively. The study’s
findings were in accordance with those of prior studies, which suggests that aberrant or
nonexistent EEG reactivity is a sign of impaired brain function and a significant risk factor
for unfavorable outcomes.

Age and GCS were both important components of our final nomogram model and
made an effective definition of the overall physiological conditions of coma patients at
admission. This is in line with the fundamental prognostic model of TBI in IMPACT
and CRASH. Less significant to our models were gender, pupillary response, hypoxia,
arterial PO2, MAP, and sleep-related wave. Though several studies have indicated that
sleep-related waves were independently associated predictor of a good outcome in patients
with acute encephalopathy [35,52], this lacks sufficient relevance for prognosis in our study,
which may be related to the heterogeneity of origin disease in coma patients or due to the
absence of subgroup analysis of sleep waves.

Considering the prediction of patients could be heterogeneous, appropriate risk strati-
fication of coma patients before RMNS treatment is meaningful. Instead of applying staging
information from the IMPACT or CRASH gradation classification, which is generated from
population-relied or massive cohort data, nomograms could provide a more individualized
and visible way to make a prognosis. When stratified into dichotomy by the optimal cut-off
of nomogram accumulated scores, the proposed nomograms could distinguish between
groups of coma patients who were at a high or low risk of a poor outcome (Figure 3). More-
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over, our nomograms demonstrated a favorable discriminative ability, with a C statistic
of 0.71 for forecasting a good outcome (Figure 2). When the nomogram model predicted
1-year survival, it resembled the actual survival as determined by Kaplan-Meier curves
(Figure 4). Altogether, the data effectively suggests the proposed nomograms can provide
individual patient information about likelihood of a certain outcome for coma patients after
severe TBI receiving RMNS consciousness-promoted treatment.

Some studies have reported that RMNS therapy could provide neurological outcome
benefits for coma patients with severe TBI [6,7,9,11]. While only about half of patients
received RMNS, 40% of post-traumatic coma patients still could obtain satisfactory neuro-
logical outcomes after RMNS. In our study, 69.9% (79 of 113) of severe TBI coma patients
in the low-risk group could have a good outcome at the 1-year follow-up. Personalized
risk prediction models, such as the current nomograms, may be used to help choose ideal
coma patients for RMNS and guiding rehabilitation treatment in the future. Although EEG
measurements are time-consuming work, the prognostic model based on EEG parameters
can not only diagnose epilepsy early but also provide timely intervention for coma patients
suitable for RNMS treatment, and the benefits may outweigh the extra efforts.

The current study had several limitations. As a retrospective study, there might be
some unobserved or uncontrolled confounding factors and we might miss a few factors
affecting the development of outcome among coma patients. Depending on the integrity of
the measured data (such as clinical characteristic parameters, laboratory parameters, and
AEEG data), the inability to control exposure and intervention of curing TBI are also the
main limitations of this retrospective experiment. Therefore, the conclusion of this research
only provides a reference of causality for large-scale prospective studies in the future. In
addition, the GOSE does not take non-neurological causes of death into account (in the
case of severe multiple trauma patients, pneumonia or bedsores caused by poor nursing
and long-term bedridden eventually lead to death, and these patients in the low-risk group
may receive a poor outcome) and that kind of patient’s survival mostly relies on clinical
decision-making. Since awakening is our primary concern, we generally defined a good
outcome as severe disability to good recovery (GOSE 3–8), while a good neurological
recovery is also a concern for the clinician and patient’s family. The poor neurological
outcome group defined as death to severe disability (GOSE 1–4) and good neurological
outcome as the moderate disability to good recovery (GOSE 5–8) should also be further
studied. Since we were unable to intervene in the treatment method, the possible effect of
the CNS drugs application on the data derived from the AEEG measurement can only be
corrected by excluding the EEG data at a brief period, which will still be biased depending
on the accuracy of the AEEG parameters.

Another limitation of the study is that because the intent of this research was to utilize
the data before RMNS treatment as an outcome predictor, it may fail to dynamically identify
changes in the interval between RMNS. However, the principal purpose of this study is to
find the target coma patients for electrotherapy early, and the early clinical characteristics
prior to RMNS treatment are the main subjects of our concern. Certainly, large randomized
clinical tests in the future to incorporate clinical and EEG data of changes before and
after RMNS treatment can be conducted to further explore the prognostic impacts of this
treatment on coma patients.

Finally, the findings lack generalizability, and more medical centers should collaborate
in further study to externally validate the proposed nomograms.

5. Conclusions

The nomogram model, which incorporates AEEG traits and clinical data, has the
capacity to forecast neurological outcome in coma patients after severe TBI receiving
RMNS treatment.



J. Clin. Med. 2022, 11, 7529 12 of 14

Author Contributions: Conceptualization, C.Z.; Methodology, C.Z. and X.-X.X.; Software, W.-D.Y.
and Q.Z.; Formal analysis, C.Z.; Investigation, W.-D.Y., X.-X.X. and Q.Z.; Resources, X.-F.Y.; Data
curation, C.Z., W.-D.Y., X.-X.X. and Q.Z.; Writing—original draft, C.Z.; Writing—review & editing,
X.-F.Y.; Supervision, W.-D.Y.; Project administration, X.-F.Y.; Funding acquisition, X.-F.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Study was conducted in accordance with the Declaration of
Helsinki, and approved by the Institutional Ethics Committee of the First Affiliated Hospital (main
undertaking unit), Zhejiang University School of Medicine (protocol code 566/2022 and date of
17 February 2022), and Renji Hospital, Shanghai Jiaotong University School of Medicine (protocol
code [2022]168K, and data of approval date was 9 March 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the first
author (C.Z.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008, 7, 728–741.

[CrossRef] [PubMed]
2. Laureys, S.; Owen, A.M.; Schiff, N.D. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004, 3,

537–546. [CrossRef] [PubMed]
3. Young, G.B. Coma. Ann. N. Y. Acad. Sci. 2009, 1157, 32–47. [CrossRef] [PubMed]
4. Gosseries, O.; Zasler, N.D.; Laureys, S. Recent advances in disorders of consciousness: Focus on the diagnosis. Brain Inj. 2014, 28,

1141–1150. [CrossRef] [PubMed]
5. Levin, H.S.; Saydjari, C.; Eisenberg, H.M.; Foulkes, M.; Marshall, L.F.; Ruff, R.M.; Jane, J.A.; Marmarou, A. Vegetative state after

closed-head injury. A Traumatic Coma Data Bank Report. Arch. Neurol. 1991, 48, 580–585. [CrossRef]
6. Pignat, J.M.; Mauron, E.; Jöhr, J.; Gilart de Keranflec’h, C.; Van De Ville, D.; Preti, M.G.; Meskaldji, D.E.; Hömberg, V.; Laureys,

S.; Draganski, B.; et al. Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor
Behavioural Tool. PLoS ONE 2016, 11, e0156882. [CrossRef]

7. Cooper, J.B.; Jane, J.A.; Alves, W.M.; Cooper, E.B. Right median nerve electrical stimulation to hasten awakening from coma. Brain
Inj. 1999, 13, 261–267. [CrossRef]

8. Cooper, E.B.; Cooper, J.B. Electrical treatment of coma via the median nerve. Acta Neurochir. Suppl. 2003, 87, 7–10. [CrossRef]
9. Peri, C.V.; Shaffrey, M.E.; Farace, E.; Cooper, E.; Alves, W.M.; Cooper, J.B.; Young, J.S.; Jane, J.A. Pilot study of electrical stimulation

on median nerve in comatose severe brain injured patients: 3-month outcome. Brain Inj. 2001, 15, 903–910. [CrossRef]
10. Liu, J.T.; Wang, C.H.; Chou, I.C.; Sun, S.S.; Koa, C.H.; Cooper, E. Regaining consciousness for prolonged comatose patients with

right median nerve stimulation. Acta Neurochir. Suppl. 2003, 87, 11–14. [CrossRef]
11. Lei, J.; Wang, L.; Gao, G.; Cooper, E.; Jiang, J. Right Median Nerve Electrical Stimulation for Acute Traumatic Coma Patients. J

Neurotrauma 2015, 32, 1584–1589. [CrossRef]
12. Claassen, J.; Taccone, F.S.; Horn, P.; Holtkamp, M.; Stocchetti, N.; Oddo, M. Recommendations on the use of EEG monitoring

in critically ill patients: Consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013, 39,
1337–1351. [CrossRef] [PubMed]

13. Tolonen, A.; Särkelä, M.O.K.; Takala, R.S.K.; Katila, A.; Frantzén, J.; Posti, J.P.; Müller, M.; van Gils, M.; Tenovuo, O. Quantitative
EEG Parameters for Prediction of Outcome in Severe Traumatic Brain Injury: Development Study. Clin. EEG Neurosci. 2018, 49,
248–257. [CrossRef] [PubMed]

14. Williams, D. The Electro-Encephalogram in Acute Head Injuries. J. Neurol. Psychiatry 1941, 4, 107–130. [CrossRef] [PubMed]
15. Moulton, R.J.; Marmarou, A.; Ronen, J.; Ward, J.D.; Choi, S.; Lutz, H.A.; Byrd, S.; Desalles, A.; Maset, A.; Muizelarr, J.P.; et al.

Spectral analysis of the EEG in craniocerebral trauma. Can. J. Neurol. Sci. 1988, 15, 82–86. [CrossRef]
16. Thatcher, R.W.; Walker, R.A.; Gerson, I.; Geisler, F.H. EEG discriminant analyses of mild head trauma. Electroencephalogr. Clin.

Neurophysiol. 1989, 73, 94–106. [CrossRef]
17. You, W.; Tang, Q.; Wu, X.; Feng, J.; Mao, Q.; Gao, G.; Jiang, J. Amplitude-Integrated Electroencephalography Predicts Outcome in

Patients with Coma After Acute Brain Injury. Neurosci. Bull. 2018, 34, 639–646. [CrossRef]
18. Edgren, E.; Hedstrand, U.; Kelsey, S.; Sutton-Tyrrell, K.; Safar, P. Assessment of neurological prognosis in comatose survivors of

cardiac arrest. BRCT I Study Group. Lancet 1994, 343, 1055–1059. [CrossRef]
19. Li, F.; Huang, L.; Yan, Y.; Wang, X.; Hu, Y. A novel nomogram for early prediction of death in severe neurological disease patients

with electroencephalographic periodic discharges. Clin. Neurophysiol. 2021, 132, 1304–1311. [CrossRef]

http://doi.org/10.1016/S1474-4422(08)70164-9
http://www.ncbi.nlm.nih.gov/pubmed/18635021
http://doi.org/10.1016/S1474-4422(04)00852-X
http://www.ncbi.nlm.nih.gov/pubmed/15324722
http://doi.org/10.1111/j.1749-6632.2009.04471.x
http://www.ncbi.nlm.nih.gov/pubmed/19351354
http://doi.org/10.3109/02699052.2014.920522
http://www.ncbi.nlm.nih.gov/pubmed/25099018
http://doi.org/10.1001/archneur.1991.00530180032013
http://doi.org/10.1371/journal.pone.0156882
http://doi.org/10.1080/026990599121638
http://doi.org/10.1007/978-3-7091-6081-7_2
http://doi.org/10.1080/02699050110065709
http://doi.org/10.1007/978-3-7091-6081-7_3
http://doi.org/10.1089/neu.2014.3768
http://doi.org/10.1007/s00134-013-2938-4
http://www.ncbi.nlm.nih.gov/pubmed/23653183
http://doi.org/10.1177/1550059417742232
http://www.ncbi.nlm.nih.gov/pubmed/29172703
http://doi.org/10.1136/jnnp.4.2.107
http://www.ncbi.nlm.nih.gov/pubmed/21611387
http://doi.org/10.1017/S0317167100027244
http://doi.org/10.1016/0013-4694(89)90188-0
http://doi.org/10.1007/s12264-018-0241-7
http://doi.org/10.1016/S0140-6736(94)90179-1
http://doi.org/10.1016/j.clinph.2021.03.002


J. Clin. Med. 2022, 11, 7529 13 of 14

20. Haveman, M.E.; Van Putten, M.; Hom, H.W.; Eertman-Meyer, C.J.; Beishuizen, A.; Tjepkema-Cloostermans, M.C. Predicting
outcome in patients with moderate to severe traumatic brain injury using electroencephalography. Crit. Care 2019, 23, 401.
[CrossRef]

21. Murray, G.D.; Butcher, I.; McHugh, G.S.; Lu, J.; Mushkudiani, N.A.; Maas, A.I.; Marmarou, A.; Steyerberg, E.W. Multivariable
prognostic analysis in traumatic brain injury: Results from the IMPACT study. J Neurotrauma 2007, 24, 329–337. [CrossRef]
[PubMed]

22. Haddad, S.H.; Arabi, Y.M. Critical care management of severe traumatic brain injury in adults. Scand. J. Trauma Resusc. Emerg.
Med. 2012, 20, 12. [CrossRef] [PubMed]

23. Walia, S.; Sutcliffe, A.J. The relationship between blood glucose, mean arterial pressure and outcome after severe head injury: An
observational study. Injury 2002, 33, 339–344. [CrossRef]

24. Bratton, S.L.; Chestnut, R.M.; Ghajar, J.; McConnell Hammond, F.F.; Harris, O.A.; Hartl, R.; Manley, G.T.; Nemecek, A.; Newell,
D.W.; Rosenthal, G.; et al. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and
thresholds. J. Neurotrauma 2007, 24 (Suppl. S1), S65–S70. [CrossRef] [PubMed]

25. Marehbian, J.; Muehlschlegel, S.; Edlow, B.L.; Hinson, H.E.; Hwang, D.Y. Medical Management of the Severe Traumatic Brain
Injury Patient. Neurocrit. Care 2017, 27, 430–446. [CrossRef]

26. Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [CrossRef] [PubMed]
27. Figaji, A.A.; Zwane, E.; Thompson, C.; Fieggen, A.G.; Argent, A.C.; Le Roux, P.D.; Peter, J.C. Brain tissue oxygen tension

monitoring in pediatric severe traumatic brain injury. Part 1: Relationship with outcome. Childs Nerv. Syst. 2009, 25, 1325–1333.
[CrossRef]

28. Kwan, C.L.; Crawley, A.P.; Mikulis, D.J.; Davis, K.D. An fMRI study of the anterior cingulate cortex and surrounding medial wall
activations evoked by noxious cutaneous heat and cold stimuli. Pain 2000, 85, 359–374. [CrossRef]

29. DeMarchi, R.; Bansal, V.; Hung, A.; Wroblewski, K.; Dua, H.; Sockalingam, S.; Bhalerao, S. Review of awakening agents. Can. J.
Neurol. Sci. 2005, 32, 4–17. [CrossRef]

30. ter Horst, H.J.; van Olffen, M.; Remmelts, H.J.; de Vries, H.; Bos, A.F. The prognostic value of amplitude integrated EEG in
neonatal sepsis and/or meningitis. Acta Paediatr. 2010, 99, 194–200. [CrossRef]

31. Kidokoro, H.; Kubota, T.; Hayashi, N.; Hayakawa, M.; Takemoto, K.; Kato, Y.; Okumura, A. Absent cyclicity on aEEG within the
first 24 h is associated with brain damage in preterm infants. Neuropediatrics 2010, 41, 241–245. [CrossRef] [PubMed]

32. Rossetti, A.O.; Oddo, M.; Logroscino, G.; Kaplan, P.W. Prognostication after cardiac arrest and hypothermia: A prospective study.
Ann. Neurol. 2010, 67, 301–307. [CrossRef] [PubMed]

33. Thenayan, E.A.; Savard, M.; Sharpe, M.D.; Norton, L.; Young, B. Electroencephalogram for prognosis after cardiac arrest. J. Crit.
Care 2010, 25, 300–304. [CrossRef] [PubMed]

34. Sutter, R.; Barnes, B.; Leyva, A.; Kaplan, P.W.; Geocadin, R.G. Electroencephalographic sleep elements and outcome in acute
encephalopathic patients: A 4-year cohort study. Eur. J. Neurol. 2014, 21, 1268–1275. [CrossRef]

35. Mofrad, M.H.; Gilmore, G.; Koller, D.; Mirsattari, S.M.; Burneo, J.G.; Steven, D.A.; Khan, A.R.; Suller Marti, A.; Muller, L.
Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load. eLife 2022,
11, e75769. [CrossRef]

36. Lingsma, H.F.; Roozenbeek, B.; Li, B.; Lu, J.; Weir, J.; Butcher, I.; Marmarou, A.; Murray, G.D.; Maas, A.I.; Steyerberg, E.W. Large
between-center differences in outcome after moderate and severe traumatic brain injury in the international mission on prognosis
and clinical trial design in traumatic brain injury (IMPACT) study. Neurosurgery 2011, 68, 601–608. [CrossRef]

37. Roberts, I.; Yates, D.; Sandercock, P.; Farrell, B.; Wasserberg, J.; Lomas, G.; Cottingham, R.; Svoboda, P.; Brayley, N.; Mazairac, G.;
et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC
CRASH trial): Randomised placebo-controlled trial. Lancet 2004, 364, 1321–1328. [CrossRef]

38. Harrell, F.E., Jr.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. Jama 1982, 247, 2543–2546.
[CrossRef]

39. Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.;
et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet. Neurol. 2017, 16,
987–1048. [CrossRef]

40. Ghajar, J. Traumatic brain injury. Lancet 2000, 356, 923–929. [CrossRef]
41. Rundgren, M.; Rosén, I.; Friberg, H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced

hypothermia. Intensive Care Med. 2006, 32, 836–842. [CrossRef] [PubMed]
42. Rundgren, M.; Westhall, E.; Cronberg, T.; Rosén, I.; Friberg, H. Continuous amplitude-integrated electroencephalogram predicts

outcome in hypothermia-treated cardiac arrest patients. Crit. Care Med. 2010, 38, 1838–1844. [CrossRef] [PubMed]
43. Oh, S.H.; Park, K.N.; Shon, Y.M.; Kim, Y.M.; Kim, H.J.; Youn, C.S.; Kim, S.H.; Choi, S.P.; Kim, S.C. Continuous Amplitude-

Integrated Electroencephalographic Monitoring Is a Useful Prognostic Tool for Hypothermia-Treated Cardiac Arrest Patients.
Circulation 2015, 132, 1094–1103. [CrossRef] [PubMed]

44. Oh, S.H.; Park, K.N.; Kim, Y.M.; Kim, H.J.; Youn, C.S.; Kim, S.H.; Choi, S.P.; Kim, S.C.; Shon, Y.M. The prognostic value
of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in
therapeutic hypothermia-treated cardiac arrest patients. Resuscitation 2013, 84, 200–205. [CrossRef]

http://doi.org/10.1186/s13054-019-2656-6
http://doi.org/10.1089/neu.2006.0035
http://www.ncbi.nlm.nih.gov/pubmed/17375997
http://doi.org/10.1186/1757-7241-20-12
http://www.ncbi.nlm.nih.gov/pubmed/22304785
http://doi.org/10.1016/S0020-1383(02)00053-0
http://doi.org/10.1089/neu.2007.9986
http://www.ncbi.nlm.nih.gov/pubmed/17511548
http://doi.org/10.1007/s12028-017-0408-5
http://doi.org/10.1016/S0140-6736(75)92830-5
http://www.ncbi.nlm.nih.gov/pubmed/46957
http://doi.org/10.1007/s00381-009-0822-x
http://doi.org/10.1016/S0304-3959(99)00287-0
http://doi.org/10.1017/S0317167100016826
http://doi.org/10.1111/j.1651-2227.2009.01567.x
http://doi.org/10.1055/s-0030-1270479
http://www.ncbi.nlm.nih.gov/pubmed/21445813
http://doi.org/10.1002/ana.21984
http://www.ncbi.nlm.nih.gov/pubmed/20373341
http://doi.org/10.1016/j.jcrc.2009.06.049
http://www.ncbi.nlm.nih.gov/pubmed/19781908
http://doi.org/10.1111/ene.12436
http://doi.org/10.7554/eLife.75769
http://doi.org/10.1227/NEU.0b013e318209333b
http://doi.org/10.1016/s0140-6736(04)17188-2
http://doi.org/10.1001/jama.1982.03320430047030
http://doi.org/10.1016/S1474-4422(17)30371-X
http://doi.org/10.1016/S0140-6736(00)02689-1
http://doi.org/10.1007/s00134-006-0178-6
http://www.ncbi.nlm.nih.gov/pubmed/16715325
http://doi.org/10.1097/CCM.0b013e3181eaa1e7
http://www.ncbi.nlm.nih.gov/pubmed/20562694
http://doi.org/10.1161/CIRCULATIONAHA.115.015754
http://www.ncbi.nlm.nih.gov/pubmed/26269576
http://doi.org/10.1016/j.resuscitation.2012.09.031


J. Clin. Med. 2022, 11, 7529 14 of 14

45. Sugiyama, K.; Kashiura, M.; Akashi, A.; Tanabe, T.; Hamabe, Y. Prognostic value of the recovery time of continuous normal voltage
in amplitude-integrated electroencephalography in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia:
A retrospective study. J. Intensive Care 2016, 4, 25. [CrossRef]

46. Procaccio, F.; Polo, A.; Lanteri, P.; Sala, F. Electrophysiologic monitoring in neurointensive care. Curr. Opin. Crit. Care 2001, 7,
74–80. [CrossRef]

47. Kane, N.; Taylor, S. EEG-reactivity: What is it good for? Resuscitation 2019, 142, 186–187. [CrossRef]
48. Synek, V.M. EEG abnormality grades and subdivisions of prognostic importance in traumatic and anoxic coma in adults. Clin.

Electroencephalogr. 1988, 19, 160–166. [CrossRef]
49. Young, G.B.; McLachlan, R.S.; Kreeft, J.H.; Demelo, J.D. An electroencephalographic classification for coma. Can. J. Neurol. Sci.

1997, 24, 320–325. [CrossRef]
50. Gütling, E.; Gonser, A.; Imhof, H.G.; Landis, T. EEG reactivity in the prognosis of severe head injury. Neurology 1995, 45, 915–918.

[CrossRef]
51. Azabou, E.; Navarro, V.; Kubis, N.; Gavaret, M.; Heming, N.; Cariou, A.; Annane, D.; Lofaso, F.; Naccache, L.; Sharshar, T. Value

and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: A systematic review. Crit. Care 2018,
22, 184. [CrossRef] [PubMed]

52. Lee, H.; Mizrahi, M.A.; Hartings, J.A.; Sharma, S.; Pahren, L.; Ngwenya, L.B.; Moseley, B.D.; Privitera, M.; Tortella, F.C.; Foreman,
B. Continuous Electroencephalography After Moderate to Severe Traumatic Brain Injury. Crit. Care Med. 2019, 47, 574–582.
[CrossRef] [PubMed]

http://doi.org/10.1186/s40560-016-0152-5
http://doi.org/10.1097/00075198-200104000-00004
http://doi.org/10.1016/j.resuscitation.2019.07.001
http://doi.org/10.1177/155005948801900310
http://doi.org/10.1017/S0317167100032996
http://doi.org/10.1212/WNL.45.5.915
http://doi.org/10.1186/s13054-018-2104-z
http://www.ncbi.nlm.nih.gov/pubmed/30071861
http://doi.org/10.1097/CCM.0000000000003639
http://www.ncbi.nlm.nih.gov/pubmed/30624278

	Introduction 
	Methods 
	Study Participants 
	Prognostic Assessment 
	Clinical Parameters 
	RMNS Programing 
	AEEG Monitoring and Analysis 
	Statistical Analysis 

	Results 
	Demographic and Clinical Physiology Characteristics 
	Model Configuration and Predictors of the Outcome 
	Nomograms Performance 

	Discussion 
	Conclusions 
	References

