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Abstract: Purpose: To identify key biomarkers in the metastasis of uveal melanoma (UM). Methods:
The microarray datasets GSE27831 and GSE22138 were downloaded from the Gene Expression
Omnibus database. Differentially expressed genes (DEGs) were identified, and functional enrich-
ment analyses were performed. A protein–protein interaction network was constructed, and four
algorithms were performed to increase the reliability of hub genes. Biomarker analysis and metastasis-
free survival analysis were performed to screen and verify prognostic hub genes. Results: A total
of 138 DEGs were identified, consisting of 71 downregulated genes and 67 upregulated genes.
Four genes (ROBO1, FMN1, FYN and FXR1) were selected as hub genes. Biomarker analysis and
metastasis-free survival analysis showed that ROBO1, FMN1, FYN and FXR1 were factors affect-
ing the metastasis and metastasis-free survival of UM (all p < 0.05). High expression of ROBO1
and low expression of FMN1 were associated with longer metastasis-free survival. Multivariable
logistic regression and Cox analyses in GSE 27831 indicated that ROBO1 was an independent factor
affecting metastasis and metastasis-free survival of UM (p = 0.010 and p = 0.009), while ROBO1 and
FMN1 were independent factors affecting metastasis and metastasis-free survival of UM in GSE22138
(all p < 0.05). Conclusions: ROBO1, FMN1, FYN and FXR1 should be regarded as diagnostic biomark-
ers for the metastasis of UM, especially ROBO1 and FMN1. High expression of ROBO1 and low
expression of FMN1 were associated with longer metastasis-free survival. This study may facilitate
the understanding of the molecular mechanisms underlying the metastasis of UM.
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1. Introduction

The most common type of intraocular cancer among adults is uveal melanoma (UM).
Metastases develop in up to 50% of patients within 36 months [1,2]. Once metastasis is
identified, the patient survival rate rapidly drops to approximately 15% after one year, with
a median survival time estimated to be between 4 and 15 months [3]. Moreover, there is
currently no efficient treatment for patients with metastasis. Therefore, early screening of
patients at high risk and early diagnosis of metastases are crucial. Creating risk stratification
and developing individualized follow-up plans can save a substantial amount of medical
resources, minimize the cost of unnecessary invasive examinations and testing and result
in a reasonable allocation of medical resources.

Over the past few decades, microarray technology and bioinformatic analyses have
been widely used to screen genetic alterations at the genome level, enabling the identifi-
cation of differentially expressed genes (DEGs) and functional pathways involved in the
carcinogenesis and metastasis of UM. A number of studies have identified genes and path-
ways that have contributed to advancements in the diagnosis and treatment of UM [4,5].
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Nonetheless, the prevalence of false-positive outcomes in independent microarray analysis
makes it challenging to acquire trustworthy data, and few effective biomarkers have been
identified for the assessment of carcinogenesis and metastasis in UM.

Thus, in the present study, two mRNA microarray datasets were acquired from Gene
Expression Omnibus (GEO) and analyzed in order to identify DEGs between metastatic and
nonmetastatic samples. To understand the molecular mechanisms driving carcinogenesis
and metastasis, pathway and process enrichment analysis and protein–protein interaction
(PPI) network analyses were then performed. A total of 138 DEGs and 4 hub genes
were identified, which may be candidate biomarkers for metastasis in UM. Additionally,
biomarker analysis and metastasis-free survival analysis of the hub genes were performed
in order to validate the role of hub genes in predicting metastasis.

2. Methods
2.1. Microarray Data

GEO (http://www.ncbi.nlm.nih.gov/geo (accessed on 2 May 2022)) [6] is a pub-
lic functional genomics data repository of high-throughput gene expression data, chips
and microarrays.

The search strategy (‘uveal melanoma’ [MeSH Terms] AND (‘Homo sapiens’ [Organ-
ism] AND ‘Expression profiling by array’ [Filter]) was adopted.

Inclusion criteria were as follows: [1] UM with metastasis as test samples and [2]
UM displaying no metastasis as controls. We extracted the gene expression datasets
GSE27831 [7] and GSE22138 [8] from the GEO database. The platform for GSE27831 was
GPL570 [HG-133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, which included
11 metastatic samples and 18 nonmetastatic samples. The platform for GSE22138 was GPL570,
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, which contained 35
metastatic samples and 28 nonmetastatic samples. Data table header descriptions and series
matrix files of GSE27831 and GSE22138 were downloaded. The probes were converted into
the corresponding gene symbol according to the annotation information in the platform.

2.2. Identification of DEGs

The DEGs between metastatic samples and nonmetastatic samples were screened using
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r (accessed on 2 May 2022)). GEO2R
is an interactive web tool that allows users to compare two or more datasets in a GEO
series to identify DEGs across experimental conditions. The adjusted p values (adj. p)
and Benjamini and Hochberg false discovery rates were used to apply adjustment to
the p values. Log transformation and force normalization were performed. Probe sets
without corresponding gene symbols or genes with more than one probe set were removed.
|LogFC| > 0.58 and p < 0.01 were considered to be statistically significant. The online tool
jvenn (http://jvenn.toulouse.inra.fr/app/index.html (accessed on 2 May 2022)) was used
to detect common DEGs among the two datasets.

2.3. Pathway and Process Enrichment Analysis of DEGs

GO analysis has been used extensively to identify the characteristic biological attributes
of genes, gene products and sequences, including the biological process (BP), cell compo-
nents (CC) and molecular function (MF) [9]. KEGG analysis provides a comprehensive
biointerpretation of genomic sequences and protein interaction network information [10].

In this study, GO terms and KEGG pathway enrichment analysis of DEGs were auto-
matically completed and visualized using clusterProfiler V3.14.0 [11], pathview V1.36.0 [12]
and the Goplot V1.0.2 package [13] in the R software statistical analysis platform (signifi-
cance was p < 0.05 and a q-value < 0.05).

2.4. PPI Network Construction and Hub Gene Identification

The PPI network of the differentially coexpressed genes was established using the
Search Tool for the Retrieval of Interacting Genes (STRING) [14]. Cytoscape was used to
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build the visual network of molecular interactions with a combined score > 0.15 [15]. The
degree, edge percolated component (EPC), maximal clique centrality algorithm (MCC) and
maximum neighborhood component (MNC) algorithms were used to select hub genes from
the PPI networks [16]. We calculated the degree, EPC, MCC and MNC scores of all nodes
of the PPI network via the CytoHubba plugin. The top 10 nodes with the highest degree,
EPC, MCC and MNC scores were selected, and we took the intersection of the outcomes of
the four algorithms. To increase the reliability of hub genes, their overlapping genes were
established as hub genes.

2.5. Statistical Analysis

Regarding baseline clinical characteristics, the normal distribution of all variables
was verified by the Kolmogorov–Smirnov method. The independent Student’s t test or
Mann–Whitney U test was used to compare continuous variables, whereas the chi-square
test or Fisher’s exact test was applied to compare categorical data.

Univariable and multivariable logistic regression analyses were conducted for the hub
genes in GSE27831 and GSE22138. Then, the receiver operating characteristic (ROC) curves
of the hub genes were examined for metastasis, and the area under the curve (AUC) of each
ROC curve was calculated.

Each dataset was divided into two groups using the median of the hub gene expression
levels as the boundary (the high-expression group and the low-expression group). Metastasis-
free survival analyses of the hub genes were performed using Kaplan–Meier curves and the log-
rank test to explore how these genes affect metastasis-free survival. Univariate Cox regression
analysis was used to screen prognostic hub genes, and a multivariate Cox proportional hazards
regression model was used to screen for independent prognostic hub genes.

A p value of less than 0.05 was considered to be statistically significant. All statistical
analyses were performed using SPSS software (version 22.0; SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Clinical Characteristics

Patient characteristics in the GSE27831 and GSE22138 cohorts are given in Table 1.
There were no significant differences between the two cohorts in metastasis prevalence
(p = 0.116). Metastasis positivity was 37.9% and 55.6% in the GSE27831 and GSE22138
cohorts, respectively. There were significant differences in the proportion monosomy of
chromosome 3 in the GSE27831 and GSE22138 cohorts (p = 0.019 and p = 0.002, respectively).

Table 1. Baseline characteristics of subjects included in the analysis *.

GSE27831 GSE22138

Variables Metastatic Group (n
= 11)

Nonmetastatic
Group (n = 18) p † Metastatic Group (n =

35)
Nonmetastatic
Group (n = 28) p †

Age, y 66.7 ± 12.3 65.6 ± 13.4 0.823 t 62.5 ± 9.6 59.1 ± 15.0 0.306 t

Male gender (%) 7 (63.6) 10 (55.6) 0.717 F 22 (62.9) 17 (60.7) 0.862 P

Tumor location anterior 2 (18.2) 2 (12.5) 0.653 F 2 (5.9) 1 (4.2) 0.305 F

middle 5 (45.5) 10 (62.5) 22 (64.7) 20 (83.3)
posterior 4 (36.4) 4 (25.0) 6 (17.6) 3 (12.5)

2 or 3 locations 4 (11.8) 0 (0)
Tumor diameter (mm) 13.0 ± 4.0 13.0 ± 6.0 0. 912 U 15.2 ± 3.7 15.6 ± 3.9 0.921 t

Tumor thickness (mm) 9.9 ± 4.1 7.8 ± 3.4 0.236 t 11.9 ± 1.9 11.3 ± 2.1 0.306 t

Monosomy of
chromosome 3 (%) 10 (90.9) 8 (44.4) 0.019 P 12 (86.2) 12 (46.2) 0.002 P

Extrascleral extension (%) 4 (36.4) 10 (48.3) 0.450 F 5 (17.2) 0 (0) 0.056 F

Tumor cell type spindle 1 (9.1) 8 (50.0) 0.117 F 0 (0) 0 (0) 0.112 p

epithelioid 3 (27.3) 3 (18.8) 15 (57.7) 6 (33.3)
mixed 7 (63.6) 5 (31.3) 11 (42.3) 12 (66.7)

* Quantitative data and qualitative data are expressed as the mean ± SD or median ± IQR and number of
people (%), respectively; † p values refer to independent Student’s t test, Mann–Whitney U test, Pearson chi-
square test and Fisher’s exact test used for exploring the differences in characteristics between two groups; t refers
to independent Student’s t test; U refers to Mann–Whitney U test; P refers to Pearson chi-square test; F refers to
Fisher’s exact test.
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3.2. Identification of DEGs

After standardization of the datasets (Figure S1), 846 and 666 DEGs were extracted from
GSE27831 and GSE22138, respectively, based on the defined criteria. The DEGs are shown in
the volcano plots and the heatmaps (Figure 1), of which GSE27831 included 400 upregulated
genes and 446 downregulated genes, and GSE22138 included 370 upregulated genes and
296 downregulated genes. The coexpressed DEGs were integrated using the Venn Diagram
online tool and included 67 upregulated and 71 downregulated genes (Figure S2).
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Figure 1. Volcano plots of differentially expressed genes in (A) GSE27831 and (B) GSE22138. Data
points in red represent upregulated genes, and green represents downregulated genes. The differences
were set as p < 0.01 and |log FC| > 0.58. Heatmap of differentially expressed genes identified in
(C) GSE27831 and (D) GSE22138. The legend on the top right indicates the log fold change of
the genes.
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3.3. Pathway and Process Enrichment Analysis of DEGs

The enriched GO and KEGG pathways of 138 coexpressed DEG genes were analyzed
and visualized (Figures 2 and 3). The GO enrichment results indicated that for BP, DEGs
were significantly enriched in response to acid chemical, water-soluble vitamin metabolic
process, folic acid metabolic process, glycoprotein biosynthetic process, modified amino
acid transport, folic-acid-containing compound metabolic process, response to amino acid,
IRE1-mediated unfolded protein response, cellular response to amino acid stimulus and
endoplasmic reticulum unfolded protein response. In terms of CC, DEGs were significantly
enriched in the microtubule, costamere, Golgi apparatus subcompartment, organelle sub-
compartment, phagocytic cup, cytoplasmic microtubule, podosome, trans-Golgi network,
dendritic spine and neuron spine. For MF, DEGs were significantly enriched in modified
amino acid transmembrane transporter activity, glucuronosyltransferase activity, protease
binding, dicarboxylic acid transmembrane transporter activity, acetylgalactosaminyltrans-
ferase activity, SH3 domain binding, actin monomer binding, UDP-glycosyltransferase
activity, vitamin transmembrane transporter activity and neutral amino acid transmem-
brane transporter activity. The KEGG pathway enrichment results indicated that DEGs
were mainly enriched in glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan
sulfate, focal adhesion, cysteine and methionine metabolism and glutathione metabolism.
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Figure 2. Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs). Cnetplot
shows GO enrichment significance items of DEGs in three functional groups: (A) molecular function
(MF), (B) biological processes (BP) and (C) cell composition (CC). Symbols of DEGs are presented
on the left side of the graph. Symbols in red represent upregulated genes, and blue represents
downregulated genes. Gene involvement in the GO terms is indicated by colored connecting lines.
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Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs. (A) Ad-
vanced bubble chart shows enrichment of DEGs in signaling pathways. The x-axis label represents the
gene ratio, and the y-axis label represents the pathway. (B) Chord plot shows the distribution of DEGs
in different KEGG pathways. Symbols of DEGs are presented on the left side of the graph. Symbols
in red represent upregulated genes, and blue represents downregulated genes. Gene involvement in
the KEGG pathways is indicated by colored connecting lines.
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3.4. PPI Network Construction and Hub Gene Identification

The PPI network of the 138 DEGs with 75 nodes and 416 edges is depicted in Figure 4.
The degree, EPC, MCC and MNC scores of DEGs were calculated through the CytoHubba
plugin, and we selected the ten genes with the highest scores in each algorithm and then
took the intersection of the four groups to improve the reliability of hub genes. Finally,
a total of four genes (ROBO1, FMN1, FYN and FXR1) were considered to be hub genes
(Figures 4 and S3).
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Figure 4. Protein–protein interaction (PPI) network of differentially expressed genes. Red represents
the hub genes we selected.

3.5. Biomarker Analysis of the Hub Genes

In the two cohorts, univariable logistic regression analysis showed that ROBO1, FMN1,
FYN and FXR1 were prognostic factors for metastasis (all p < 0.05). Then, multivariable
logistic regression analysis was performed using these four genes (ROBO1, FMN1, FYN
and FXR1). Multivariable logistic regression analysis in GSE 27831 indicated that ROBO1
was an independent factor affecting metastasis (p = 0.010), while ROBO1 and FMN1 were
independent factors affecting metastasis in GSE22138 (p = 0.023 and p = 0.047, respec-
tively; Table 2).
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Table 2. Logistic regression analysis of hub genes affecting metastasis of the study patients.

Univariate Analysis Multivariate Analysis

OR (95% CI) p OR (95% CI) p

GSE27831

ROBO1 1.002 (1.001–1.004) 0.010 1.002 (1.001–1.004) 0.010

FMN1 0.997 (0.995–0.999) 0.013 0.998 (0.995–1.001) 1.197

FYN 1.004 (1.000–1.008) 0.030 1.003 (0.995–1.011) 0.424

FXR1 1.006 (1.001–1.010) 0.010 1.004 (0.999–1.009) 0.134

GSE22138

ROBO1 1.583 (1.173–2.136) 0.003 1.456 (1.054–2.011) 0.023

FMN1 0.432 (0.260–0.719) 0.001 0.577 (0.336–0.992) 0.047

FYN 2.491 (1.414–4.387) 0.002 1.804 (0.929–3.500) 0.081

FXR1 2.009 (1.166–3.461) 0.012 1.078 (0.543–2.139) 0.830

Abbreviations: CI, confidence interval; OR, odds ratio.

As shown in Table 3 and Figure 5, ROC curve analyses were performed in order to
examine risk factors for metastasis. ROBO1, FMN1, FYN and FXR1 all achieved statistical
significance for classifying metastasis status in GSE 27831 and GSE22138 (all p < 0.05).
ROBO1 showed the largest AUC in GSE27831 (0.904). FMN1 showed the largest AUC
in GSE22138 (0.780). Combining ROBO1 and FMN1 in GSE22138 showed that the AUC
was 0.821 (p < 0.001).

Table 3. Individual area under the receiver-operating characteristic curve (AUC) and p values of hub
genes to predict metastasis.

GSE27831 GSE22138

Genes 95% CI AUC p AUC p

ROBO1 0.788–1.000 0.904 <0.001 0.586–0.859 0.722 0.003

FMN1 0.678–0.978 0.828 0.003 0.662–0.897 0.780 <0.001

FYN 0.661–0.975 0.818 0.005 0.629–0.867 0.748 0.001

FXR1 0.697–0.990 0.843 0.002 0.570–0.830 0.700 0.007

ROBO1 combined FMN1 0.703–0.939 0.821 <0.001

Abbreviations: CI, confidence interval; AUC, area under the curve.
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3.6. Metastasis-Free Survival Analysis of the Hub Genes

Each dataset was divided into two groups using the median of the hub gene expression
levels as the boundary (the high-expression group and the low-expression group). As
shown in Figure 6, the Kaplan–Meier curves of GSE27831 and GSE22138 showed that
the metastasis-free survival of the ROBO1 high-expression group was significantly higher
than that of the ROBO1 low-expression group (p = 0.003 and p < 0.001 for GSE27831 and
GSE22138, respectively); the metastasis-free survival of the FYN high-expression group
was significantly higher than that of the FYN low-expression group (p = 0.006 and p = 0.002
for GSE27831 and GSE22138, respectively); the metastasis-free survival of the FXR1 high-
expression group was significantly higher than that of the FXR1 low-expression group
(p = 0.018 and p = 0.016 for GSE27831 and GSE22138, respectively); and the metastasis-free
survival of the FMN1 low-expression group was significantly higher than that of the FMN1
high-expression group (all p < 0.001). The median metastasis-free survival times of each
hub gene in the high-expression group and the low-expression group are shown in Table 4.

Table 4. The median metastasis-free survival times of the low-expression and high-expression groups
of the hub genes.

Low-Expression Group (Months) High-Expression Group (Months)

GSE27831

ROBO1 31.0 41.5

FMN1 44.0 23.0

FYN 25.0 41.5

FXR1 31.0 43.5

GSE22138

ROBO1 24.4 57.9

FMN1 55.8 23.1

FYN 24.5 58.7

FXR1 24.5 55.8

In the two cohorts, univariable Cox regression analysis showed that ROBO1, FMN1,
FYN and FXR1 were all prognostic factors for metastasis-free survival (all p < 0.05). Then,
multivariable Cox regression analysis was performed using those four genes. Multivariable
Cox regression analysis in GSE27831 indicated that ROBO1 was an independent factor affect-
ing metastasis-free survival (p = 0.009), while ROBO1 and FMN1 were independent factors
affecting metastasis-free survival in GSE22138 (p = 0.007 and p < 0.001, respectively; Table 5).

Table 5. Prognostic factors affecting metastasis-free survival of the study patients.

Univariate Analysis Multivariate Analysis

HR (95% CI) p HR (95% CI) p

GSE27831

ROBO1 0.999 (0.997–1.000) 0.009 0.999 (0.997–1.000) 0.009

FMN1 1.002 (1.001–1.002) 0.002 1.000 (0.999–1.002) 0.455

FYN 0.996 (0.993–0.999) 0.021 0.997 (0.993–1.001) 0.125

FXR1 0.996 (0.993–0.999) 0.009 1.004 (0.995–1.002) 0.534

GSE22138

ROBO1 0.768 (0.644–0.915) 0.003 0.768 (0.634–0.931) 0.007

FMN1 1.839 (1.346–2.512) <0.001 1.832 (1.316–2.552) <0.001

FYN 0.605 (0.461–0.794) <0.001 0.788 (0.570–1.090) 0.150

FXR1 0.688 (0.511–0.928) 0.014 0.960 (0.645–1.430) 0.842

Abbreviations: CI, confidence interval; HR, hazard ratio.
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Figure 6. Kaplan–Meier curves of GSE27831 and GSE22138. (A) Kaplan–Meier curves of GSE27831,
divided into two groups using the median ROBO1 expression levels as the boundary. (B) Kaplan–
Meier curves of GSE22138, divided into two groups using the median ROBO1 expression levels as the
boundary. (C) Kaplan–Meier curves of GSE27831, divided into two groups using the median FMN1
expression levels as the boundary. (D) Kaplan–Meier curves of GSE22138, divided into two groups
using the median FMN1 expression levels as the boundary. (E) Kaplan–Meier curves of GSE27831,
divided into two groups using the median FYN expression levels as the boundary. (F) Kaplan–Meier
curves of GSE22138, divided into two groups using the median FYN expression levels as the boundary.
(G) Kaplan–Meier curves of GSE27831, divided into two groups using the median FXR1 expression
levels as the boundary. (H) Kaplan–Meier curves of GSE22138, divided into two groups using the
median FXR1 expression levels as the boundary.
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4. Discussion

UM is the most prevalent intraocular primary tumor in adults, affecting the choroid,
iris and ciliary body and has a strong propensity to metastasize, resulting in a high mor-
tality rate [17–19]. The pathogenesis of melanoma is known to be highly complex and
diverse [20]. Exposure to ultraviolet light has been demonstrated to be a leading cause of
melanoma. Ultraviolet radiation induces a range of gene alterations, including those in
BRAF, RAS, C-Kit and NF1, and promotes the activation of inflammation in melanoma,
according to accumulating evidence [3]. However, the exact mechanism of the development
and metastasis of UM remains unclear, and effective biomarkers to assess carcinogenesis
and metastasis are lacking. In recent years, microarray technology has enabled the investi-
gation of genetic mutations and has proven to be an effective method for identifying new
biomarkers in different diseases.

In this study, two mRNA microarray datasets from GEO were analyzed to obtain
DEGs between metastatic samples and nonmetastatic samples. A total of 138 DEGs were
identified among the two datasets, including 71 downregulated genes and 67 upreg-
ulated genes. Pathway and process enrichment analyses were carried out among the
DEGs. Many of the functions and pathways in the results of this study have been pre-
viously reported to be associated with cancer metastasis or development, including the
folic acid metabolic process [21], glycoprotein biosynthetic process [22], glycosamino-
glycan biosynthesis—chondroitin sulfate/dermatan sulfate [23], glucuronosyltransferase
activity [24], acetylgalactosaminyltransferase activity [25], focal adhesion, cysteine and
methionine metabolism [26] and glutathione metabolism [27].

The ten genes among the DEGs with the highest scores in each algorithm were selected,
including the degree, EPC, MCC and MNC algorithms, and the intersection of the results
of the four groups was analyzed in order to determine four genes (ROBO1, FMN1, FYN
and FXR1) as hub genes.

Roundabout (ROBO) axon guidance molecules perform crucial functions in the devel-
opment of numerous organs and tissues, such as the brain, lung and breast, and govern cell
migration and death [28–31]. ROBO1 is known to be expressed in fetal tissues, particularly
the nervous system, and was first identified as a tumor-specific antigen in liver cancer in
2006 [32]. Several studies have suggested that, in most cancers, ROBO proteins are down-
regulated, such as in lung cancer [33–35], brain cancer [33,36], cervical cancer [37], liver
cancer [34,36] and colon cancer [35], among others. It has been reported that ROBO1 plays
an important role in cancer invasion, migration, epithelial–mesenchymal transition and
tumor-induced angiogenesis through SLIT2/ROBO1 signaling [38–40]. The SLIT2/ROBO1
pathway inhibits cell invasion by interacting with E-cadherin and β-catenin in breast cancer
and colorectal cancer [41–43], whereas in liver cancer, SLIT2/ROBO1 specifically inhibits
hepatocyte growth factor (HGF)–mediated cell migration [42]. These findings indicate that
ROBO1 mainly inhibits tumor progression, invasion, migration and apoptosis through the
SLIT2/ROBO1 pathway.

In the current study, the ROBO1 gene was downregulated in metastatic samples and was
suggested to be a hub gene in all DEGs between metastatic samples and nonmetastatic samples.
Multivariable logistic regression and multivariate Cox proportional hazards regression analysis
indicated that ROBO1 was an independent factor affecting metastasis and metastasis-free
survival. The ROC curve showed that ROBO1 was an eligible biomarker to predict metastasis.
Moreover, the Kaplan–Meier curves showed that high expression of ROBO1 was associated
with longer metastasis-free survival. These data, combined with the results of previous studies,
indicate that ROBO1 may play a crucial role in the metastasis of UM.

Formin-1 (FMN1) is the founding formin family member [44,45]. It is an authentic
formin capable of nucleating actin filaments in vitro [46]. FMN1 is involved in cell–cell
adhesion [46], focal adhesion formation in primary epithelial cells [47], dendritogenesis and
synaptogenesis in hippocampal cultures [47,48]. It has been reported that FMN1 expression
is associated with motility in different cancer cell lines, and its ectopic expression has been
shown to boost fitness indices. Specifically, FMN1 is able to generate actin filaments from



J. Clin. Med. 2022, 11, 7224 13 of 16

the cytosol and microtubule lattice. This could improve the density of the cytoskeleton gel
and the mechanical cohesiveness that facilitates cell migration and direction shift. FMN1
generates robust mechanical cohesion by acting on the microtubule lattice, resulting in
highly invasive motility.

We also found that FMN1 was related to metastasis in UM. Multivariable logistic
regression and Cox regression analysis indicated that FMN1 was an independent factor
affecting metastasis and metastasis-free survival in GSE22138. The ROC curve showed that
FMN1 was also an eligible biomarker to predict metastasis. Moreover, the Kaplan–Meier
curves showed that low expression of FMN1 was associated with longer metastasis-free
survival. Thus, FMN1 might act as an important gene to facilitate the migration of UM.

FYN proto-oncogene, Src family tyrosine kinase (FYN) is a 59-kDa protein-encoding
gene that is implicated in cell growth, survival, cell motility and adhesion [49,50]. Several
studies have revealed that FYN plays crucial functions in a variety of malignancies. Lee
et al. found that FYN establishes a positive feedback loop with STAT5 to promote breast
cancer cell metastasis through NOTCH2 activation [51]. Another group demonstrated that
tumorigenesis induced by the depletion of PTPN23 can be reversed by the suppression
of FYN or through the Src inhibitor AZD0530 [52]. A study of pancreatic cancer also
demonstrated that FYN inhibition promotes the phosphorylation and nuclear localization of
hnRNP E1, which ultimately suppresses pancreatic cancer cell metastasis and invasion [53].
Glioblastoma research has revealed that PIKE-A impairs the tumor suppressive actions
of AMPK, which are mediated by FYN [54]. In hepatocellular carcinoma, FYN-mediated
activation of the STAT3 pathway plays an important role in Fzd2-driven EMT and the
migration of liver cancer cells [55]. In gastric cancer, FYN was overexpressed and positively
correlated with metastasis. FYN knockdown significantly decreased cancer cell migration
and invasion, whereas FYN overexpression increased cancer migration and invasion.
Genetic inhibition of FYN decreased the number of metastatic lung nodules in vivo.

In the present study, the FYN gene was upregulated in metastatic samples, and the degree,
EPC, MCC and MNC scores of the CytoHubba plugin suggested it as a hub gene in all DEGs.
Univariable logistic regression and Cox regression analysis indicated that FYN was a prognostic
factor affecting metastasis and metastasis-free survival. The ROC curve showed that FYN was
also an eligible biomarker to predict metastasis. Taken together, the data suggest that FYN may
act as a crucial oncogene that could promote the migration and invasion of UM.

Fragile X mental retardation-associated protein 1 (FXR1) is a highly conserved cy-
toplasmic RNA-binding protein among vertebrates. It has been studied for its role in
muscle development, inflammation and tumorigenesis. FXR1 has been investigated in
oncology for its potential role as a key regulator of tumor progression. It has been ob-
served to be overexpressed at the genetic level, for example, in human and canine uveal
malignant melanoma [56,57], human lung squamous cell carcinoma, non-small-cell lung
cancer [58,59], rhabdomyosarcoma [60], head and neck squamous cell carcinomas [60],
glioma [61], prostate cancer and colorectal cancer [62]. Downregulation of FXR1 can result
in the inhibition of glioma cell progression [63]. In prostate cancer cells, FXR1 negatively
regulated FBXO4 transcripts via direct association with its 3’UTR and promoted mRNA
degradation. FBXO4 knockdown predominantly rescued the tumor-suppressive phenotype
in FXR1-deficient cells [62].

The results of the present study showed overexpression of FXR1 at the genetic level
in metastatic samples. The degree, EPC, MCC and MNC scores of the CytoHubba plugin
suggested it as a hub gene in all DEGs. Univariable logistic regression and Cox regression
analysis indicated that FYN was a prognostic factor affecting metastasis and metastasis-free
survival. The ROC curve showed that FYN was also an eligible biomarker to predict
metastasis. All these data indicate that FXR1 may act as a promoter of tumor progression
and metastasis, including in UM.

There are some limitations of this study. First, although we used two external
databases, these were all single-omics data of gene expression. Compared with multi-
omics studies, the exploration of the mechanism was not comprehensive enough. Second,
we did not perform functional experiments on hub genes in vivo or in vitro. Therefore, the
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specific mechanism of hub genes in UM progression and metastasis has not been demon-
strated. In the future, combining these biomarkers with clinical indicators and radiomics to
establish an ideal prediction model will be conducive to the early prediction of metastasis
and metastasis-free survival. In addition, we will also use these four hub genes in our
future research to investigate whether they can be used as therapeutic targets.

In conclusion, a total of 138 DEGs and 4 hub genes were identified and may be
regarded as diagnostic biomarkers for the metastasis of UM, especially ROBO1 and FMN1.
High expression of ROBO1 and low expression of FMN1 were associated with longer
metastasis-free survival.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11237224/s1, Figure S1: Box plots of the gene expression
data before and after normalization. (A) The data before standardization of GSE27831, (B) the
data before standardization of GSE22138, (C) the data after standardization of GSE27831, (D) the
data after standardization of GSE22138. The x-axis label represents the sample symbol, and the
y-axis label represents the gene expression values. The black line in the box plot represents the
median value of gene expression. The green bar represents the metastatic group, and the purple bar
represents the nonmetastatic group. Figure S2: Venn diagram of common differentially expressed
genes from the two datasets. (A) Coexpressed DEGs in the two datasets. (B) Seventy-one DEGs were
downregulated in the two datasets. (C) Sixty-seven DEGs were upregulated in the two datasets.
Figure S3: Venn diagram of the degree, edge percolated component, maximal clique centrality
algorithm, and maximum neighborhood component algorithm scores of DEGs calculated through
the CytoHubba plugin.
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