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Abstract: Background: Galectin-3 (Gal-3) is considered a potential cardiovascular inflammatory
marker that may provide additional risk stratification for patients with acute heart failure. It is un-
known whether mild therapeutic hypothermia (MTH) impacts Gal-3 levels. Therefore, this biomarker
study aimed to investigate the effect of MTH on Gal-3. Methods: In the randomized SHOCK-COOL
trial, 40 patients with cardiogenic shock (CS) complicating acute myocardial infraction (AMI) were
randomly assigned to the MTH (33 ◦C) or control group in a 1:1 ratio. Blood samples were collected
on the day of admission/day 1, day 2, and day 3. Gal-3 level kinetics throughout these time points
were compared between the MTH and control groups. Additionally, potential correlations between
Gal-3 and clinical patient characteristics were assessed. Multiple imputations were performed to
account for missing data. Results: In the control group, Gal-3 levels were significantly lower on day
3 than on day 1 (day 1 vs. day 3: 3.84 [IQR 2.04–13.3] vs. 1.79 [IQR 1.23–3.50] ng/mL; p = 0.049).
Gal-3 levels were not significantly different on any day between the MTH and control groups (p for
interaction = 0.242). Spearman’s rank correlation test showed no significant correlation between
Gal-3 levels and sex, age, smoking, body mass index (BMI), and levels of creatine kinase-MB, creatine
kinase, C-reactive protein, creatinine, and white blood cell counts (all p > 0.05). Patients with lower
Gal-3 levels on the first day after admission demonstrated a higher risk of all-cause mortality at
30 days (hazard ratio, 2.67; 95% CI, 1.11–6.42; p = 0.029). In addition, Gal-3 levels on day 1 had a
good predictive value for 30-day all-cause mortality with an area under the receiver operating charac-
teristic curve of 0.696 (95% CI: 0.513–0.879), with an optimal cut-off point of less than 3651 pg/mL.
Conclusions: MTH has no effect on Gal-3 levels in patients with CS complicating AMI compared to
the control group. In addition, Gal-3 is a relatively stable biomarker, independent of age, sex, and
BMI, and Gal-3 levels at admission might predict the risk of 30-day all-cause mortality.

Keywords: Galectin-3; cardiogenic shock; acute myocardial infarction; mild therapeutic hypothermia

1. Introduction

Acute myocardial infarction (AMI) is the most common cause of cardiogenic shock
(CS), accounting for more than 80% of cases [1]. Early coronary artery reperfusion is the
most effective treatment [2]. Despite advances in medication and devices supporting pa-
tients with CS, overall mortality has not significantly improved during the past 20 years [3]
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and is still as high as 50% [4]. CS complicating AMI is a systemic clinical syndrome accom-
panied by a pronounced systemic inflammatory reaction and severe perfusion insufficiency
of multiple organs [5]. Inflammation causes elevated levels of circulating inflammatory
cytokines, chemokines, and cell adhesion molecules as well as activation of peripheral
leukocytes and platelets; and these alterations result in tissue ischemia, apoptosis, neuro-
hormonal activation, and extracellular matrix degradation [5,6].

The randomized SHOCK-COOL trial has shown that mild therapeutic hypothermia
(MTH) does not improve hemodynamic parameters in patients with CS complicating
AMI [7]. Nevertheless, MTH has been reported to alleviate the inflammatory response
in vitro and in animal models [8–11].

Galectin-3 (Gal-3), a 29–35 kDa protein, is a member of the β-galactoside-binding
lectin family [12]. Although not cardiac-specific, Gal-3 is expressed in cardiac cells and has
emerged as an important regulator of physiological and pathological processes, including
inflammation and fibrosis [13], and has been associated with myocardial infarction and
myocardial fibrosis [14]. Moreover, Gal-3 is currently considered a cardiovascular inflam-
matory marker that can be used to predict the prognosis of patients with heart failure
and coronary artery disease [15,16]. Furthermore, the American Heart Association (AHA)
guidelines suggest that Gal-3 may be used for additional risk stratification in patients with
heart failure [17]. The present biomarker study aimed to elucidate the effect of MTH on
Gal-3 in patients with CS as the most severe form of acute decompensated heart failure.

2. Methods
2.1. Patients and Study Design

The present study is a sub-analysis of the SHOCK-COOL trial (ClinicalTrials.gov
(accessed on 1 December 2022) Identifier NCT01890317). The main study analyzed the
hemodynamic effects of MTH on the cardiac power index in patients with CS complicating
AMI, and the results have been fully published [7]. Briefly, in the SHOCK-COOL trial, 40 pa-
tients with CS complicating AMI were recruited at the Heart Center Leipzig at University of
Leipzig between July 2012 and March 2015 and were assigned to the MTH (33 ◦C) or control
group using a web-based randomized system in a 1:1 ratio. Patients in the MTH group had
cooling initiated in the catheterization laboratory with cooled saline and maintained after
percutaneous coronary intervention by a commercially available system (CoolGard®, ZOLL
Medical Corp, Chelmsford, MA, USA). Central temperature measurements were taken in
the urinary bladder, maintained for 24 h after reaching the target temperature (33 ◦C), and
then rewarmed to 37 ◦C at a rate of 0.25 ◦C/h. Patients in the control group were treated
according to standard care without MTH. All patients underwent early revascularization
with percutaneous coronary intervention and mechanical ventilation. The exclusion criteria
for the study were as follows: (1) patients aged >90 years; (2) patients with MTH indications
for out-of-hospital resuscitation; (3) patients with mechanical complications after AMI; and
(4) patients with CS lasting for more than 12 h. The trial was approved by the Local Ethics
Committee (Medical Faculty, University Leipzig, registration number 230-12-21052012)
and was conducted in compliance with the principles of the Declaration of Helsinki. The
process for written informed consent from all patients has been described previously [7].

2.2. Laboratory Measurements

Blood samples were collected on day 1 (at admission), day 2, and day 3 under standard
conditions. The samples were then centrifuged at 4 ◦C for 10 min at 1000× g to obtain serum
and plasma and were subsequently stored in aliquots at −80 ◦C for future use. The bio-
chemical parameters including creatinine, creatine kinase (CK), creatine kinase-myocardial
band (CK-MB), C-reactive protein (CRP), and white blood cell counts were measured
by standardized laboratory procedures, and Gal-3 was measured using a commercial
enzyme-linked immunosorbent assay (ELISA) kit (R&D systems, Minneapolis, MN, USA).
All samples were assayed in duplicate.
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2.3. Statistical Analysis

Most variables showed skewed distributions. The continuous variables were expressed
as medians and interquartile ranges (IQR), and categorical variables were expressed as
counts and proportions. Inter-group differences were analyzed using Fisher’s exact test for
dichotomous variables and the Mann–Whitney U test for continuous variables. Correlations
between Gal-3 levels and different clinical characteristics and biomarkers were analyzed by
Spearman’s rank correlation test. The main aim of this study was to compare the differences
in Gal-3 levels between and within the MTH and control groups in the first three days
following admission. A mixed linear model with random intercepts was employed to fit
the data for differences in Gal-3 levels between the MTH and control group within three
days after admission with treatment modality as a factor. Furthermore, the values were
adjusted for patient characteristics (age, BMI, CK-MB, CRP, CK, white blood cell counts,
and creatinine), and time was included as a continuous variable. Differences in Gal-3 levels
between the two groups were expressed as medians and 95% confidence intervals (CIs),
which were calculated using the Hodges–Lehmann estimator method. Differences in Gal-3
levels within three days in the MTH and control groups were analyzed by nonparametric
Kruskal–Wallis and Dunn’s tests. In addition, we performed a sensitivity analysis to
account for missing Gal-3 data on days 1, 2, and 3 by multiple imputation, which was
based on five replications of the predictive mean matching algorithm and the Markov
Chain Monte Carlo method [18]. The secondary outcome was all-cause mortality after 30
days. Regardless of the treatment modality, samples from day 1, 2, and 3 were divided into
two groups based on the Gal-3 median, respectively, and time-to-death was estimated by
the Kaplan–Meier method and analyzed using the log-rank test. Moreover, the predictive
value of Gal-3 for 30-day all-cause mortality was analyzed by the area under the receiver
operating characteristic (ROC) curve. Statistical analyses were performed using GraphPad
Prism (version 9.0; San Diego, CA, USA), STATA (Version 12.0; Stata Corporation, College
Station, TX, USA), and SPSS (version 26; SPSS Inc., Chicago, IL, USA) software. A two-tailed
p-value < 0.05 was considered statistically significant.

3. Results

In the SHOCK-COOL trial, 40 patients aged 50–87 years (median, 76 years) were
enrolled at the Heart Center Leipzig and randomly assigned to MTH or control, with
20 patients in each group. From these patients, 38 blood samples from day 1 were available
for testing, 31 from day 2, and 25 from day 3 (Figure 1). Ultimately, after quality control,
38 samples (19 MTH and 19 control) on day 1, 30 samples (14 MTH and 16 control) on day 2,
and 25 samples (11 MTH and 14 control) on day 3 were included in the data analyses. The
demographic and clinical characteristics, except CK, of patients in the two groups within
three days after admission were comparable (Table 1).
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Creatinine, µmol/L 
(IQR) 

131 (78–217) 158 (99–250) 0.26 
123.5 (69–

171) 
147 (95–223) 0.22 119 (67–162) 

146.5 (91.5–
227) 
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CRP (IQR) 21.4 (3.1–72) 12.4 (7–64.9) 0.72 5.5 (2.5–78.6) 14.3 (7.2–64.3) 0.48 12 (2.4–86.1) 14.3 (7.6–63.1) >0.99 
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Table 1. Demographic and clinical characteristics of patients during three days of hospitalization.

Day 1 Day 2 Day 3

MTH
(n = 19)

Control
(n = 19)

p-
Value

MTH
(n = 14)

Control
(n = 16)

p-
Value

MTH
(n = 11)

Control
(n = 14)

p-
Value

Age, years (IQR) 76 (71–80) 75 (70–81) 0.79 76
(68.5–78.5)

75.5
(70.8–82) 0.67 75 (61–77) 73.5

(65–81.5) 0.68

Female, n (%) 8 (42.1) 5 (26.3) 0.5 4 (28.6) 5 (31.3) >0.99 5 (45.5) 5 (35.7) 0.7

Active smoker, n (%) 4 (21) 4 (21) >0.99 4 (28.6) 3 (18.8) 0.67 2 (18.2) 4 (28.6) 0.66

Diabetes mellitus, n (%) 7 (36.8) 4 (21) 0.48 4 (28.6) 3 (18.8) 0.67 4 (36.4) 4 (28.6) >0.99

CK (U/L) (IQR) 6.4
(3–21.9)

19.7
(7.4–39) 0.1 4.8 (1.8–15) 19.1

(9.8–35.3) 0.022 3.8 (2.8–9.2) 15 (4.7–29) 0.067

BMI, kg/m2 (IQR)
27.5

(23.6–33)
27.8

(26–31) 0.85 26.9
(23.5–30.6)

27.8
(25–30.7) 0.53 29.4

(23–36.7)
28.4

(25.7–31) 0.85

White blood cell, 109/L (IQR)
16.5

(13–19)
13

(9.6–17.7) 0.12 15.9
(13.2–18.2)

14.1
(10.5–17.8) 0.3 16.8

(15.2–19.3)
13.1

(8.5–17.5) 0.1

Creatinine, µmol/L (IQR) 131
(78–217)

158
(99–250) 0.26 123.5

(69–171)
147

(95–223) 0.22 119
(67–162)

146.5
(91.5–227) 0.32

CRP (IQR) 21.4
(3.1–72)

12.4
(7–64.9) 0.72 5.5

(2.5–78.6)
14.3

(7.2–64.3) 0.48 12
(2.4–86.1)

14.3
(7.6–63.1) >0.99

Maximum CK-MB, U/L(IQR) 2.6
(1.4–6.2)

3.5
(1.9–8.8) 0.49 2.3 (1.3–8.5) 2.6 (1.8–9) 0.71 2.7

(5.51–1.41)
2.64

(1.6–6.6) 0.85

MTH, mild therapeutic hypothermia. IQR, interquartile range. CK, creatine kinase. CK-MB, creatine kinase-MB.
CRP, C-reactive protein.

Gal-3 Levels in MTH and Control Groups

The Gal-3 levels between the MTH and control groups were comparable during the
three days after admission (Figure 2). There were no significant differences in Gal-3 levels
between the MTH and control groups over time (p for interaction = 0.242, Figure 2); day
1 (MTH 3.08 [IQR 1.45–6.40] vs. control 3.84 [IQR 2.04–13.3] ng/mL; median difference,
−1.34 ng/mL; 95% CI, −4.67 to 1.14; p = 0.223; Tables S1 and S2), day 2 (MTH 2.39
[IQR 1.22–4.39] vs. control 3.0 [IQR 1.38–6.09] ng/mL; median difference, −0.37 ng/mL;
95% CI, −2.50 to 1.26; p = 0.532), and day 3 (MTH 2.24 [IQR 0.97–4.38] vs. control 1.79
[IQR 1.23–3.50] ng/mL; median difference, 0.27 ng/mL; 95% CI, −1.31 to 1.74; p = 0.770).
Sensitivity analyses were performed by multiple imputation of missing data, and the
results were consistent before and after imputation (Table S1). In the control group, Gal-3
levels were higher on day 1 than on day 3 (day 1 vs. day 3:3.84 [IQR 2.04–13.3] vs. 1.79
[IQR 1.23–3.50] ng/mL; mean rank difference, 12.06; p = 0.049; Table S2), yet this was not
observed in the MTH group (p > 0.05; Table S2). These results remained consistent before
and after imputation. Gal-3 levels within three days after admission were not correlated
with sex, age, smoking, BMI, as well as the levels of CK-MB, CK, CRP, creatinine, and white
blood cell count (p > 0.05 for all).

Furthermore, as a secondary outcome, we explored the potential association between
median Gal-3 levels at day 1, 2, and 3 and 30-day all-cause mortality. Patients with lower
Gal-3 levels on the first day after admission showed a higher risk of all-cause mortality at
30 days (hazard ratio, 2.67; 95% CI, 1.11–6.42; p = 0.029; Figure 3), regardless of treatment
modality. Gal-3 levels on days 2 and 3 were not associated with 30-day all-cause mortality
(day 2, hazard ratio, 1.81; 95% CI, 0.61–5.35; p = 0.285; day 3, hazard ratio, 1.09; 95% CI,
0.27–4.42; p = 0.903). Moreover, the ROC curve depicted a good predictive value of Gal-3
levels on day 1 for 30-day all-cause mortality, and the under-area ROC curve (AUC) was
0.696 (95% CI: 0.513-0.879), as shown in Figure 4. The optimal cut-off point was less than
3651 pg/mL, with a sensitivity and specificity of 72.7% and 81.3%, respectively.
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4. Discussion

This is the first study analyzing the effects of MTH on Gal-3 levels and kinetics during
three days after admission in patients with CS complicating AMI. The findings of this study
are summarized as follows: (1) The levels of Gal-3 in the control group gradually decreased
during three days after admission. (2) MTH had no effect on Gal-3 levels compared to
the control group. (3) Regardless of treatment modality, higher Gal-3 levels on day 1 may
be associated with a lower risk of 30-day all-cause mortality. Furthermore, Gal-3 levels
at admission had a good predictive value for the risk of all-cause mortality at 30 days.
(4) Gal-3 levels are independent of age, sex, and BMI in patients with CS complicating AMI.

MTH has been reported to reduce mortality and neurological damage after cardiac
arrest [19] and has been recommended for patients with out-of-hospital cardiac arrest
caused by ventricular fibrillation [20]. However, randomized trials on hypothermia in
cardiac arrest often excluded patients with CS. Therefore, our knowledge of the effect of
MTH on these patients remains limited.

Gal-3 is primarily secreted by activated macrophages [21] and has been identified as an
initiating molecule involved in the pathogenesis of various diseases characterized by tissue
injury and/or stress [22,23]. Gal-3 is released during the acute phase of AMI and reflected
by its elevated levels in peripheral blood [24]. Indeed, in the control group, Gal-3 levels
were highest on the day of admission and decreased significantly until day 3. Bivona et al.
observed comparable Gal-3 patterns in AMI patients for 5 days, presumed an association
with revascularization, and proposed a pharmacological intervention mechanism [25].

MTH may have several beneficial effects in patients with CS complicating AMI: (i) re-
duced metabolic rate and increased left ventricular contractility without increasing oxygen
consumption [26,27]; (ii) improved post-ischemic cardiac function and reduced myocardial
injury [28]; (iii) reduced end-organ damage due to prolonged hypoperfusion [29]; and
(iv) reduced inflammatory response due to hypothermia, as suggested by in vitro mod-
els [8–11]. Because of these observations, we hypothesized that MTH may regulate the
inflammatory response and thus decrease the circulating levels of Gal-3 [29]. However,
in the present study, this was not the case. This finding is consistent with the proteomic
findings of Mohammad et al. who analyzed cardiovascular and inflammatory biomarkers
in patients with ST-segment elevation myocardial infarction treated with hypothermia
versus normothermic controls [30]. The exact mechanism of the effect of MTH on Gal-3 is
unknown, but it has been hypothesized that activated macrophages and other inflamma-
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tory cells express Gal-3 under various pathological conditions such as tissue injury [31].
Interestingly, previous studies have reported that Gal-3 expression in brain tissue was
inhibited by hypothermia [32], whereas Gal-3 release in breast tissue was not affected
by temperature [33]. Thus, the degree of tissue injury and the intensity of the inflamma-
tory response are expected to correlate with Gal-3 levels. On the other hand, as shown
by Mohammad et al., the effect of hypothermia on biomarker peaks was modest, so the
impact of MTH on Gal-3 may be limited [30]. The present study analyzed the circulating
levels of Gal-3, which are representative of total Gal-3 levels; thus, the origin of Gal-3 is
unclear, and specific tissue and organ damage cannot be assessed. Unlike control group,
Gal-3 levels in the MTH group were comparable over the three days, presumably as a result
of the joint effect of hypothermia and rewarming. Indeed, a growing number of studies
has demonstrated that hypothermia and rewarming can have pro- or anti-inflammatory
effects, which are closely associated with the target temperature of hypothermia, the du-
ration of hypothermia, the rate of rewarming, and the activation of complement after
rewarming [30,34–36].

Currently, there is strong evidence that Gal-3 is not a simple bystander but an im-
portant player in the cardiac remodeling process after AMI [24]. During cardiac injury,
cardiomyocytes release cytokines such as tumor necrosis factor-α, interleukin (IL)-18, IL-6,
and IL-1b, which subsequently activate macrophages, which rapidly enhance the expres-
sion and release of Gal-3 [37]. Upregulation of Gal-3 plays a crucial role in the initial phase
of tissue repair [38] and has anti-apoptotic activity rescuing cardiomyocytes, thus reducing
myocardial infarct size in vivo [39,40]. However, Gal-3 overexpression interferes with the
early stages of cell death, mediated by the perturbation of mitochondrial homeostasis and
the formation of reactive oxygen species [41]. Therefore, depending on the amount of the
initial Gal-3 increase and the kinetics over time, Gal-3 may be protective or destructive.
These underlying mechanisms may explain the higher risk of mortality within 30 days in
patients with low Gal-3 levels on day 1.

Over the past decade, several novel biomarkers have been identified in patients with
CS complicated by AMI. Growth-differentiation factor 15 and catalytic iron levels on admis-
sion predict short-term mortality risk in patients with CS complicating AMI [42,43]. High
levels of angiopoietin-2 are independently associated with increased short- and long-term
mortality risk [44]. Similarly, we have previously shown that monocyte chemoattractant
protein-1 levels on admission may be associated with short-term mortality [45]. However,
these studies all suffer from limitations such as single-center, inadequate sample size, and
small number of events. Hence, more studies are needed for their future validation. It
is worth noting that Gal-3 has been reported to be a stable biomarker independent of
age, BMI, and sex [16], which is consistent with our observations. Moreover, Gal-3 has a
half-life of a few hours [46] and is stable for nine freeze-thaw cycles after storage at −20 ◦C
or −70 ◦C [47]. These properties of Gal-3 make it a good candidate for possible clinical
applications in the future.

5. Limitations

This study has some limitations. First, this was a single-center study with Caucasian
patients only and a high proportion of patients with old age and obesity; therefore, the
generalizability of the results may be limited. Second, the small sample size is insufficient
to adjust for additional variables (e.g., troponin, left ventricular ejection fraction, etc.) in
the regression analysis; therefore, no conclusions about their effect on mortality could be
drawn. Due to the absence of previous relevant studies as references, a post hoc analysis of
statistical efficacy was performed, and a power of 82% for the current results was calculated.
The presented analysis of short-term mortality was only exploratory and cannot adequately
address these prognostic questions. Third, patients with early-stage CS have a very high
mortality rate, and hence missing data is common in these patients. To ensure maximum
statistical efficiency, multiple imputations were performed to account for the missing data.
Although the complete case analysis yielded consistent results, potential bias due to missing



J. Clin. Med. 2022, 11, 7168 8 of 10

data cannot be ruled out. Fourth, patients underwent echocardiography, but no detailed
data in addition to left ventricular ejection fraction were documented in the case report
form. Although the hemodynamics of the MTH and control groups were comparable
throughout the study, the influence of inter-patient differences in cardiac structure and
function on the results of this study cannot be excluded.

6. Conclusions

In conclusion, MTH has no effect on Gal-3 levels in patients with CS complicating AMI.
In addition, Gal-3 is a relatively stable biomarker, independent of age, sex, and body mass
index, and Gal-3 levels at admission might predict the risk of 30-day all-cause mortality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11237168/s1. Table S1: Differences in Gal-3 levels between the
MTH and Control groups on day 1, day 2, and day 3; Table S2: Multiple comparisons of Gal-3 differences
within the MTH and Control groups during three days of hospitalization.
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