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Abstract: Background: Monkeypox virus is gaining attention due to its severity and spread among
people. This study sheds light on the modeling and forecasting of new monkeypox cases. Knowledge
about the future situation of the virus using a more accurate time series and stochastic models is
required for future actions and plans to cope with the challenge. Methods: We conduct a side-by-side
comparison of the machine learning approach with the traditional time series model. The multilayer
perceptron model (MLP), a machine learning technique, and the Box–Jenkins methodology, also
known as the ARIMA model, are used for classical modeling. Both methods are applied to the
Monkeypox cumulative data set and compared using different model selection criteria such as root
mean square error, mean square error, mean absolute error, and mean absolute percentage error.
Results: With a root mean square error of 150.78, the monkeypox series follows the ARIMA (7,1,7)
model among the other potential models. Comparatively, we use the multilayer perceptron (MLP)
model, which employs the sigmoid activation function and has a different number of hidden neurons
in a single hidden layer. The root mean square error of the MLP model, which uses a single input and
ten hidden neurons, is 54.40, significantly lower than that of the ARIMA model. The actual confirmed
cases versus estimated or fitted plots also demonstrate that the multilayer perceptron model has a
better fit for the monkeypox data than the ARIMA model. Conclusions and Recommendation: When
it comes to predicting monkeypox, the machine learning method outperforms the traditional time
series. A better match can be achieved in future studies by applying the extreme learning machine
model (ELM), support vector machine (SVM), and some other methods with various activation
functions. It is thus concluded that the selected data provide a real picture of the virus. If the
situations remain the same, governments and other stockholders should ensure the follow-up of
Standard Operating Procedures (SOPs) among the masses, as the trends will continue rising in the
upcoming 10 days. However, governments should take some serious interventions to cope with
the virus. Limitation: In the ARIMA models selected for forecasting, we did not incorporate the
effect of covariates such as the effect of net migration of monkeypox virus patients, government
interventions, etc.
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1. Introduction

After more than two years of serious economic and health crises, COVID-19 will
soon likely enter an endemic stage. However, concerns about the occurrence of one
viral after another have reached a fever pitch. The world is facing a second new viral
outbreak-the monkeypox outbreak. The “monkeypox virus” (MPV) the causative agent of
monkeypox is not new, as it was first discovered in 1958 in Copenhagen [1]. However, the
first documented case of MPV was in a nine-month-old child from the Democratic Republic
of Congo (DRC) in 1970 [2]. Since then, the outbreaks have risen but are primarily limited
to the African continent. However, a limited spread to Europe and North America was
also noted [3]. More than 48 confirmed cases in six different African countries from 1970
to 1979 were observed, including 38 cases in DRC, 4 in Liberia, 3 in Nigeria, and single
cases in Cameroon, and Cote d’Ivoire. By 1986 the total cases reached 400 with mortality
approaching 10%. Similarly, small outbreaks in equatorial Central and West Africa were
also observed [4], including 500 cases in DRC alone between 1991 and 1999 [5]. Since the
MVP has been in decline or reached an endemic situation in the African continent.

However, once again the MVP infection hits Portugal, Spain, and Canada, when on
18 May 2022, with 14, 7, and 13 cases, respectively reported in these countries [6]. The MVP
continues to spread to Belgium, Sweden, and Italy when they confirm their first MPV cases.
Similarly, on 20 May 2022, Australia reported two cases. One was from Sydney and the
other was in Melbourne. With each passing day, the MVP continues to grow rapidly. It’s
when Switzerland and Israel confirmed their first cases on 21 May. Belgium introduces
a 21-day mandatory quarantine for MVP. Which reflects the seriousness of this possible
pandemic [7]. Thus far, the MVP hits more than 50 countries including Denmark, Canada,
North America, United Arab Emirates, the Czech Republic, Slovenia, and the Canary
Islands.

A cumulative total of 21,099 confirmed cases have been reported as of 28 July 2022
worldwide. Similarly, a single death from MVP has also been reported to WHO from
42 countries in five WHO Regions [8]. The majority of the confirmed cases, i.e., 98% have
been reported since May 2022. Adding to the health concerns, the MVP has greatly affected
people’s lives as well as the world’s economy. Among such questions, the people’s and
government’s main concerns lie in the control of the disease and searching for effective
community or country-wide interventions. For this purpose, a valid analysis and modeling
of the data on daily confirmed cases and mortalities are required.

Several Mathematical and statistical models and methods are available which have
been widely used for observing the behavior of epidemiological diseases and pandemics.
Statistical models such as grey forecasting methods [9,10], mechanistic models and meth-
ods [11], Neural Networks (NN) [12,13], multivariate linear regression [14], computer-
generated simulation models [15], time series models [16], and the Interrupted Time Series
(ITS) regression models [17,18] were successfully applied to predict the intensity and be-
havior of the epidemic disease in near future. Among such models, time series analysis and
neural networks are key and more realistic methods to predict the behavior, nature, and
future of epidemics. There has been quite extensive literature reporting time series analysis
for estimating several future scenarios of different diseases and epidemics. However, epi-
demics are mainly random phenomena due to which the general spread of the outbreaks
is characterized by randomness. Statistical methods cannot be generalized for the preva-
lence of the epidemic in the future that can capture the randomness of the epidemic. To
encounter such a problem, a valid and more acceptable method, the Automatic-Regressive
Integrated Moving-Average (ARIMA), has been successfully adopted by practitioners in
Health science and other fields for estimating epidemics. In many previous studies, the
ARIMA model was used for predicting and assessing the incidence and prevalence of
diseases. For example, the ARIMA model was applied for estimating Dengue Fever [19],
Malaria [20], Hepatitis [21], Tuberculosis [22], Influenza [23], etc. Further, the same ARIMA
model was used for predicting the intensity of the past SARS outbreak. The ARIMA model
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is widely used for forecasting and prediction because it can account for changing trends,
cyclicity, periodicity, and random disturbance in time series.

In the present study, we predicted the cumulative cases of MVP at the top through-
out the world via ARIMA and Neural Networks. The appropriate ARIMA models for
cumulative cases were identified, and then the number of confirmed cases was predicted
for the 10 days The main objective of the present paper is to compare and find the most
appropriate predictive model and to provide a realistic estimate for the peak time, the
intensity of the epidemic, and a realistic picture of the future behavior of the outbreak. The
study provides a road map for the concerned authorities to supply and plan resources
effectively to control the epidemic.

2. Materials and Methods
2.1. Study Area and Data Description

The data for the outcome variable (cumulative confirmed cases) of MVP were taken
from the official website of “Our World in Data” [24]. The data of total confirmed cases
were obtained from 6 May 2022 to 28 July 2022. The descriptive statistics of the MVP
datasets are given in Table 1. For practical and rational modeling through ARIMA, at least
30 observations were required [25]. Therefore, approximately 60 observations from each
country were considered to predict the MVP prevalence in the selected countries. The
distribution of the MVP cases (having more than 50 cases) were shown in Table 1 [26]. The
total cases were forecasted for a period of 10 days, with a 95% relative confidence interval.

Table 1. 2022 MPV global outbreak (having more than 50 cases).

Country Cases Category

United States 4638 Has not historically reported monkeypox
Spain 3738 Has not historically reported monkeypox

Germany 2459 Has not historically reported monkeypox
United Kingdom 2432 Has not historically reported monkeypox

France 1837 Has not historically reported monkeypox
Netherlands 818 Has not historically reported monkeypox

Canada 745 Has not historically reported monkeypox
Brazil 696 Has not historically reported monkeypox

Portugal 588 Has not historically reported monkeypox
Italy 426 Has not historically reported monkeypox

Belgium 393 Has not historically reported monkeypox
Switzerland 251 Has not historically reported monkeypox

Peru 224 Has not historically reported monkeypox
The Democratic
Republic of the

Congo
163 Has historically reported monkeypox

Israel 121 Has not historically reported monkeypox
Nigeria 117 Has historically reported monkeypox
Austria 115 Has not historically reported monkeypox
Ireland 85 Has not historically reported monkeypox
Sweden 81 Has not historically reported monkeypox

Denmark 71 Has not historically reported monkeypox
Mexico 59 Has not historically reported monkeypox

Total number of cumulative cases = 21,099.

2.2. ARIMA Models

Time series analysis consists of methods for analyzing and extracting meaningful
statistics and other characteristics from time series data [23,27–29]. In time series analysis,
ARIMA modeling is considered one of the most suitable and promising forecasting tech-
niques for predicting the future. The ARIMA model was first introduced in the 1970s by
two statisticians, George Edward Pelham Box and Gwilym Meirion Jenkins [25,30]. Having
the ability to assess the different components of the time series such as trends, cyclicity,
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periodicity, and random disturbance, the ARIMA models are broadly used for time series
analysis.

The ARIMA model is generally expressed as ARIMA (p, d, q), where, p is the order
of auto-regression, d signifies the difference trend, while q denotes the order of moving
average [25].

The Auto-Regressive AR (p) model specifies that the output variable of the time
series Yt depends linearly on its previous values Yt−1 + Yt−2, . . . , Yt−p and on the current
residuals εt (stochastic term), while the Moving-Average MA (q) model emphasizes that
the output variable Yt linearly depends on the current and its previous residual series
(stochastic terms) εt−1 − εt−2, . . . , εt−q. The AR (p) and MA (q) models can be expressed
in Equation (1) and Equation (2), respectively.

Yt = ϕ1Yt−1 + ϕ2Yt−2 + . . . + ϕpYt−p + εt, (1)

Yt = θ1εt−1 − θ2εt−2 − . . .− θqεt−q + εt, (2)

where Yt denotes the observed value of the time series, ϕ and θ are the parameters of
AR and MA models, respectively, and εt denotes the value of random shock at time t.
Furthermore, the residual terms (stochastic terms) εt are assumed to be identically and
independently distributed with zero mean and constant variance σ2 i.e., εt ∼ iid

(
0,σ2).

Combing the MA and AR model, a more general form of the Autoregressive-Moving-
Average (ARMA) model is developed. Being composed of AR and MA models, the ARMA
(p, q) models specify that the output variable of the time series Yt depends linearly on
its previous values Yt−1 + Yt−2, . . . , Yt−p, as well as on the current residual series εt and
the previous residual series εt−1 − εt−2, . . . , εt−q. The ARMA model can be generally
represented by the following equation.

Yt = α+ϕ1Yt−1 + ϕ2Yt−2+ . . . +ϕpYt−p + εt− θ1εt−1−θ2εt−2− . . .− θqεt−q, (3)

where α is a constant, and εt−1 is the previous random shock value. The ARMA model is
modified to the ARIMA model to deal with non-stationary time series. The non-stationary
time series can be differenced and modeled as an ARMA model to perform the ARIMA
model [23].

2.3. Methodology of ARIMA Models

The ARIMA modeling methodology consists of four basic iterative steps:
(1) Identification and assessment of the model, (2) parameters estimation of the identi-

fied model, (3) diagnostic checking for the appropriateness of the identified model, and (4)
prediction for the future, i.e., forecasting. These iterative steps are shown in Figure 1.
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Figure 1. The four iterative steps of ARIMA models for forecasting.

In forecasting via ARIMA models, the Auto-correlation Function (ACF) and Partial
Auto-correlation Function (PACF) are the most important analytical tools as they measure
the statistical relationship between the observations in univariate data series. The auto-
correlation function (ACF), as the word auto-correlation makes clear, only finds out the
correlation with itself, i.e., with its lag values in the considered univariate time series. More
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specifically, the ACF describes how well the present value Yt is related to its past values (lag
values) Yt−1 + Yt−2, . . . , Yt−p, within the same series. While finding a correlation between
the values, the ACF considers all four components (trend, seasonality, cyclic, and residuals),
which is why the ACF is known as a “complete auto-correlation plot” [31].

The Partial Autocorrelation Function (PACF), unlike ACF, finds the correlation of
the residual (retained after the removal of the effects which are already explained by the
earlier lag(s) with the next lag value). In PACF, we first remove the variations found in the
series and then find the next correlation which is why it is called a “partial” not “complete”
auto-correlation plot.

Basically, in PACF, if any hidden information in the residual is left in the series it is
modeled by the next lag, hence PACF might obtain a good correlation between the residual
with its next lag value. It is noteworthy that, in time series modeling, we avoid too many
features which are correlated (may cause multicollinearity) and keep only the relevant
features. The PACF plot is used to find out lag values with high correlation, seasonality in
the series, and some kind of trend in both the mean and variance of the series [31].

For identification of the initial model for forecasting (Step 1 in ARIMA modeling),
ACF and PACF are estimated. The ACF and PACF are not only used to guess the primary
model but also used to approximate estimates of the parameters [25]. When the tentative
model is guessed in the first step, the next step (Step 2) is to estimate the parameters of the
guessed model via Maximum Likelihood Estimation (MLE). Maximizing the probability
of the observation, the MLE finds the parameters of the primary model. In the third
step (Step 3), the model adequacy is checked through different diagnostic tests. The
residuals are assumed to be a white noise process (the residuals themselves are independent
and identically distributed (i.i.d) and the process is stationary and independent). Serval
diagnostic tests such as L-Jung-Box, Q-test, residual analysis, and histogram of the residuals
are performed for checking the assumptions [32]. In this study, we carry out residual
analysis through ACF and PACF of the residuals for validating the assumptions.

Once the assumptions are validated then we move to the fourth step (step 4) which is
forecasting. However, if these assumptions are violated, the model automatically goes to
the first iteration (step 1). Moreover, if there is more than one successful ARIMA model,
the best model among them is selected using certain criteria discussed in the next section
(Section 2.4 Model selection).

2.4. Multilayer Perceptron Network (MLP)

A supervised machine learning model multilayer perceptron model (MLP) which is
also known as the Backpropagation network (BPN) is based on the feed-forward neural
network algorithm with different activation functions. This model is acknowledged as one
of the most dominant and significant models in time series forecasting due to the algorithms
used in processing the information. The structure of the model is consisting of the input
layer and single hidden layer with k hidden neurons and an output layer. For information
processing, this network utilizes two operations, feedforward, and backpropagation. In the
feed-forward operation, the inputs are provided in the form of data and this information is
passed to the hidden layer whereby using the suitable activation function which results in
an output of the network. This information processing network is based on the connecting
layers that are disjoint in the network. Mathematically, the network of the multilayer
perceptron model is given by the equation

W = fs(
K

∑
k=0

Y0
1k( f

N

∑
n=0

Yi
knun + Bn)) (4)

where the network inputs un, Bn is the bias of the network while f is the activation function
of the intermediate layers, and fs is the output layer activation function. Y is the output
signal, Wi

kn is the weights of the intermediate layer, and Y0
1k is the connections of the

output neurons. In the MLP network, the model training is assumed as the process of
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adjusting the suitable weight to obtain the optimum output, and to perform this task, the
backpropagation method is used in most situations.

2.5. Model Selection and Accuracy Measures

Several criteria to test the accuracy of the model are available which compare the
observed and predicted values. Akaike information criterion (AIC), Bayesian information
criterion (BIC), Schwarz information criterion (SIC), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and Root Mean
Square Error (RMSE) [33] are widely used. Among these criteria, MSE, RMSE, MAE, and
MAPE are selected in the present study, which is shown in Equations (5)–(8).

MSE =
1
n

n

∑
t=1

e2
t (5)

RMSE =

√
1
n

n

∑
t=1

e2
t (6)

MAE =
1
n

n

∑
t=1

et (7)

MAPE =
1
n

n

∑
t=1

|et|
|Yt|
∗ 100 (8)

where Yt denotes the observed value at time point t of the series, et is the difference
between the observed and estimated values at time point t, while n is the number of
time points. The minimum is the value of MSE, RMSE, and MAE, MAPE the better will
be the fit of the data. All statistical analyses were performed using MS − Excel − 360
and “forecast, tseries, and zoo” libraries built in R − 4.0.0 software with a statistically
significant level of p < 0.05.

3. Results and Discussion

The daily cumulative samples of monkeypox are collected for analysis purposes.
Recommendations on the minimum necessary number of time points for time series analysis
vary, however, there is considerable consensus that this minimum requirement is in the
middle two-digit range, for instance, “ . . . 40 observations is often mentioned as the
minimum number of observations for a time series analysis” [27], “Most time series experts
suggest that the use of time series analysis requires at least 50 observations in the time
series.” [30]. There are a total of 84 samples that are part of the analysis therefore formal time
series analysis can be performed for future forecasting. The analysis begins by making a
graph of the monkeypox cumulative cases. The graph of the monkeypox series is presented
in Figure 2.



J. Clin. Med. 2022, 11, 6555 7 of 12J. Clin. Med. 2022, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 2. Historigram of the cumulative cases of monkeypox data. 

For processing the analysis ahead, we first describe the summary of the monkeypox 
data the results are shown in Table 2, and then we apply the ARIMA methodology and 
then we apply the machine learning model. For the ARIMA model, we begin with the first 
step of the methodology which is the identification of the model, and to achieve this end 
we begin with the stationary test. For the stationary confirmation, we apply the Aug-
mented dicky fuller test to the series and after confirming that there is no non-stationarity 
in the series, we make the correlogram which is the plot of ACF and PACF to identify the 
model (Table 3). By applying the ADF test it is found that the series is not stationary and 
to make it stationary we apply a different transformation. 

Table 2. Summary statistics for the monkeypox pandemic. 

Min 1st Quartile Median Mode 3rd Quartile Max 
1 401 2654 5218 8657 21,099 

Table 3. Augmented Dickey–Fuller test. 𝐷𝑎𝑡𝑎:  𝑀𝑜𝑛𝑘𝑒𝑦_𝑝𝑜𝑥 𝐷𝑖𝑐𝑘𝑒𝑦 − 𝐹𝑢𝑙𝑙𝑒𝑟 =  3.866, 𝐿𝑎𝑔 𝑜𝑟𝑑𝑒𝑟 = 4, 𝑝𝑣𝑎𝑙𝑢𝑒 =  0.99 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

From the graphical perspective, it is found that the series has stationarity in nature 
and by applying the 1st difference it is removed as mentioned in Table 4. Now to proceed 
with the analysis we will make the ACF and PACF of this 1st difference series to estimate 
the significant parameter. The correlogram is given below to move on to the second step 
of this methodology (Figure 3). 

Table 4. Augmented Dickey–Fuller test. 𝐷𝑎𝑡𝑎:  𝑀𝑜𝑛𝑘𝑒𝑦_𝑝𝑜𝑥 𝐷𝑖𝑐𝑘𝑒𝑦 − 𝐹𝑢𝑙𝑙𝑒𝑟 =  −6.8733, 𝐿𝑎𝑔 𝑜𝑟𝑑𝑒𝑟 =  4, 𝑝𝑣𝑎𝑙𝑢𝑒 =  0.01 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

Figure 2. Historigram of the cumulative cases of monkeypox data.

For processing the analysis ahead, we first describe the summary of the monkeypox
data the results are shown in Table 2, and then we apply the ARIMA methodology and then
we apply the machine learning model. For the ARIMA model, we begin with the first step
of the methodology which is the identification of the model, and to achieve this end we
begin with the stationary test. For the stationary confirmation, we apply the Augmented
dicky fuller test to the series and after confirming that there is no non-stationarity in the
series, we make the correlogram which is the plot of ACF and PACF to identify the model
(Table 3). By applying the ADF test it is found that the series is not stationary and to make
it stationary we apply a different transformation.

Table 2. Summary statistics for the monkeypox pandemic.

Min 1st Quartile Median Mode 3rd Quartile Max

1 401 2654 5218 8657 21,099

Table 3. Augmented Dickey–Fuller test.

Data : Monkey_pox
Dickey− Fuller = 3.866, Lag order = 4, p value = 0.99

alternative hypothesis : stationary

From the graphical perspective, it is found that the series has stationarity in nature
and by applying the 1st difference it is removed as mentioned in Table 4. Now to proceed
with the analysis we will make the ACF and PACF of this 1st difference series to estimate
the significant parameter. The correlogram is given below to move on to the second step of
this methodology (Figure 3).

Table 4. Augmented Dickey–Fuller test.

Data : Monkey_pox
Dickey− Fuller = −6.8733, Lag order = 4, p value = 0.01

alternative hypothesis : stationary
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By using the order of the correlogram and using the subjective approach we will
estimate the significant parameters of the series. The different combination of the candidate
model is given in Table 5. From the output, it is found that among the three different classes
of models the model ARIMA (7,1,7) is the best fit for the series as it has low values of the
accuracy measure so the model is found significant according to the accuracy criteria, we
will check the model and apply the diagnostic checking. To this end, we will make the ACF
of the residuals and if there is no lag out from the boundary of 95% confidence interval
the candidate model seems to be the best and most significant to model the series. The
ACF of the candidate model ARIMA (7,1,7) is given in Figure 4. From the ACF plot, it can
be observed that no lag exceeds the confidence limits, so the model seems significant in
forecasting the series of Monkeypox. Further the actual versus the fitted values from the
model ARIMA (7,1,7) are shown in Figure 5.

Table 5. Candidate model for monkeypox using Box–Jenkins methodology.

Candidate Model MSE RMSE MAE MAPE

ARIMA (5,1,5) 38,549.4 196.34 118.05 6.52
ARIMA (6,1,5) 25,766.67 160.52 94.55 6.29
ARIMA (7,1,7) 22,734.61 150.78 88.65 5.72
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Figure 5. Actual versus fitted plot of ARIMA (7,1,7) for monkeypox data.

Actual cases are the observed number of monkeypox cases and fitted cases are those
which have been obtained from the ARIMA model. Now the model ARIMA (7,1,7) is
used for forecasting purposes. The values with a 95% confidence interval are given below
(Table 6). Table 6 points give the forecasted results from the ARIMA model of monkeypox
cases for future predictions with their confidence intervals.

Table 6. Forecast values of the model ARIMA (7,1,7) for the monkeypox data.

Serial No Forecasted Values Upper 95% C. I Lower 95% C. I

1 21,516.89 21,845.83 21,187.94
2 21,667.12 22,147.57 21,186.67
3 22,137.39 22,724.06 21,550.72
4 23,283.64 23,977.30 22,589.98
5 24,843.72 25,670.73 24,016.71
6 25,930.43 26,834.66 25,026.20
7 25,916.84 26,834.66 24,902.92
8 26,021.02 26,930.75 24,738.57
9 26,474.18 27,303.47 24,930.92
10 27,300.65 28,017.44 25,559.52

Multilayer Perceptron Model

In this part, the model is used with the different combinations of the input and hidden
neurons with a single hidden layer. The sigmoid activation function is used in the single
feed-forward hidden layer. The model is selected according to the criteria of accuracy. A
different combination of the models for the monkeypox data is given in Table 7. From
Table 7 it is found that the model with the single input layer with 10 hidden neurons has
the lowest accuracy measures and also the observed versus the fitted values seem quite
well, which is given below in Figure 6, further this model is used for forecasting purposes.
Forecast values of the MLP model for the monkeypox data are shown in Table 8.

Table 7. Candidate model for monkeypox using multilayer perceptron methodology.

Candidate Model MSE RMSE MAE MAPE

With 5 hidden neurons 6964.31 83.45 56.70 0.27
With 7 hidden neurons 3895.64 62.41 41.66 0.19

With 10 hidden neurons 2960.29 54.40 32.59 0.12
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Table 8. Forecast values of MLP model for the monkeypox data.

Serial No Forecasted Values Upper 95% C. I Lower 95% C. I

1 21,124.99 21,960.54 21,222.59
2 21,856.00 22,859.63 22,454.63
3 21,830.08 23,597.83 23,182.77
4 21,926.20 24,765.09 24,295.99
5 21,704.02 24,806.16 25,108.36
6 22,317.85 25,757.07 25,167.07
7 22,507.93 25,046.78 24,846.67
8 22,722.82 26,909.01 26,709.41
9 22,950.31 27,886.04 27,186.14
10 24,269.96 27,995.00 27,885.02

Here, Actual cases are the observed number of monkeypox cases and fitted cases are
those which have been obtained from the MLP model. Table 8 points give the forecasted
result from the MLP model of monkeypox cases for future predictions with their confidence
intervals.

4. Conclusions

In this work, the comparative analysis was made using the classical time series model
with the machine learning mode. First, in this work, we applied the ARIMA model and
found the significant one to forecast the series. From the results, it was found that the
monkeypox series followed the ARIMA (7,1,7) model among the other candidate models,
with the root mean square error of 150.78. Comparatively, we applied the multilayer
perceptron model with a different number of hidden neurons with a single hidden layer
that uses the sigmoid activation function. The output of this model using single input with
10 hidden neurons resulted in significantly accurate measurements, as this model had the
root mean square error of 54.40, which is much better than the ARIMA model; furthermore,
the actual versus the fitted plot confirmed that the multilayer perceptron model had a better
fit for the monkeypox data than the ARIMA model. For future work, the extreme learning
machine model (ELM) support vector machine (SVM) and other unorganized methods
with different activation functions can be applied for a better fit. In the light of conclusion
drawn from the study, it can be stated that this new monkeypox pandemic is alarmingly
increasing in different countries where these cases have been reported. An effort was made
to select a suitable model, which will help the authorities to adopt the proper measures
for minimizing its effects. If the respective management is unable to stop or reduce the
transmission, the entire world may be faced with yet another catastrophe on the level
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of public health. More importantly, this study provided a comparison of two different
forecasting methods and observed that the MLP model is the most reliable forecasting
model by comparing it with conventional models. However, the main limitation which can
be faced is that the comprehensive study of forecasting this pandemic is still challenging
due to the lack of complete data from each country. Therefore, efforts should be made
to gather the complete dataset images from the whole world in order to detect its future
effects using deep learning or artificial intelligence.
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