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Abstract: Corneal confocal microscopy (CCM) is a rapid non-invasive in vivo ophthalmic imaging
technique that images the cornea. Historically, it was utilised in the diagnosis and clinical manage-
ment of corneal epithelial and stromal disorders. However, over the past 20 years, CCM has been
increasingly used to image sub-basal small nerve fibres in a variety of peripheral neuropathies and
central neurodegenerative diseases. CCM has been used to identify subclinical nerve damage and
to predict the development of diabetic peripheral neuropathy (DPN). The complex structure of the
corneal sub-basal nerve plexus can be readily analysed through nerve segmentation with manual
or automated quantification of parameters such as corneal nerve fibre length (CNFL), nerve fibre
density (CNFD), and nerve branch density (CNBD). Large quantities of 2D corneal nerve images lend
themselves to the application of artificial intelligence (AI)-based deep learning algorithms (DLA).
Indeed, DLA have demonstrated performance comparable to manual but superior to automated
quantification of corneal nerve morphology. Recently, our end-to-end classification with a 3 class
Al model demonstrated high sensitivity and specificity in differentiating healthy volunteers from
people with and without peripheral neuropathy. We believe there is significant scope and need to
apply Al to help differentiate between peripheral neuropathies and also central neurodegenerative
disorders. Al has significant potential to enhance the diagnostic and prognostic utility of CCM in the
management of both peripheral and central neurodegenerative diseases.

Keywords: artificial intelligence (Al); deep learning algorithm (DLA); corneal confocal microscopy
(CCM); corneal nerve fractal dimension (CNFrD)

1. Introduction

Peripheral neuropathies are highly prevalent neurological disorders which result in
motor, sensory and autonomic disturbances, but can pose significant diagnostic challenges [1].
Their epidemiology is dependent on patient population and diagnostic definitions; however,
they affect ~3-8% of the general population, with an increasing prevalence with age [2].
Globally, the most common causes are diabetes mellitus, chemotherapy-induced peripheral
neuropathy (CIPN) and human immunodeficiency virus infection (HIV), which result in
a length-dependent neuropathy [3]. Diabetic peripheral neuropathy (DPN) is present at
diagnosis in ~8% of people with diabetes [4], with an increasing prevalence with longer
diabetes duration, reaching 30-66% in unselected populations [5,6]. Sensory neuropathy
associated with HIV affects up to 35% as a direct consequence of the viral infection, or as
a consequence of toxicity from antiretroviral therapy [7]. CIPN can lead to the cessation or
discontinuation of chemotherapy [8] and can affect ~70% of patients receiving oxaliplatin [9].
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The diagnosis of peripheral neuropathies has relied heavily on identifying neuropathic
symptoms and neurological deficits on neurological examination [10]. Questionnaires for
symptoms and composite scores derived from symptom and signs allow a relatively quick
and cost-effective approach in the clinic with minimal training, but they are imprecise [11].
Quantitative sensory testing quantifies dysfunction of both small and large nerve fibres
but is limited by poor reproducibility and inability to identify the site of the lesion and
underlying pathophysiology [12,13]. Evaluation of intra-epidermal nerve fibre density
(IENFD) is a reliable means to assess small fibre neuropathy [14] and IENFD loss occurs in
pre-diabetes [15] and predicts the onset of clinical neuropathy [16]. Nerve regeneration has
also been reported after successful lifestyle modification [17,18]. However, the requirement
for an invasive skin biopsy, risk of infection at the biopsy site and lack of laboratories
with expertise to quantify IENFD limits its use. Nerve conduction studies (NCS) are
used extensively and are considered the reference standard method for the diagnosis of
peripheral neuropathies, especially in differentiating between axonal and demyelinating
disorders [19]. However, they cannot identify small fibre involvement in mixed and
pure small fibre neuropathies as they primarily assess large, myelinated (3) nerve fibres.
Artificial intelligence (Al) is already established in the screening of diabetic retinopathy
and Al-based deep learning algorithms (DLA) have consistently demonstrated accurate
corneal nerve segmentation of common peripheral neuropathies.

2. Corneal Confocal Microscopy
2.1. Corneal Anatomy

The human cornea is the most densely innervated tissue in the human body, receiving
sensory innervation from the ophthalmic branch (V1) of the trigeminal ganglion. The
trigeminal ganglion contains approximately 27,400 pseudo-unipolar neurons of which
~1.3% innervate the cornea [20]. Nerve bundles from V1 penetrate the cornea at the level
of mid-stroma where their myelin sheath is lost. Following a complex route branching
into several smaller-diameter nerves, they reach the corneal surface to form the sub-basal
nerve plexus, which is located between the Bowman’s layer and the basal epithelium and
consists entirely of unmyelinated C-fibres [21]. A single neuron supports 200-3000 corneal
nerve endings, corresponding approximately to 11,000 fibres/mm? of the corneal sut-
face [15]. These C-fibres are powerful co-regulators of the corneal homeostasis and are
key to providing protection from external stimuli through polymodal nociceptors (70%),
mechano-receptors (20%) and thermal receptors (10%) [22]. Early reports from ~40 years
ago suggested a loss of corneal sensation in type 1 diabetes [23].

2.2. Corneal Confocal Microscopy

CCM is a rapid, non-invasive, and reiterative technique to image the cornea at 600 x
magnification in the clinic, without the need for expensive or time-consuming laboratory
analysis. CCM has been extensively used in ophthalmology practice to diagnose and
manage corneal disease and to monitor wound healing following surgery. Over the past
20 years, our group has pioneered the use of CCM as a biomarker of peripheral neuropa-
thy. In 2003, we demonstrated that CCM identifies subclinical and progressive loss of
corneal sub-basal nerves with increasing severity of diabetic neuropathy [24]. Subsequently,
Quattrini et al. [25] demonstrated comparable reductions in IENFD and corneal nerve mea-
sures in DPN. The subsequent transition from a white light to a laser-based CCM enhanced
the scanning resolution and improved our ability to detect nerve abnormalities and patterns
associated with the underlying pathological process [26-28].

3. The Diagnostic Efficacy of Corneal Confocal Microscopy in Peripheral Neuropathies

CCM has a growing body of evidence demonstrating that corneal nerve fibre loss is
a validated surrogate biomarker of peripheral neuropathies and central neurodegenerative
diseases [29,30]. CCM has age-adjusted normative values in populations from the US, Europe,
and Australia [31]. Dehgani et al. [32] demonstrated the stability of the sub-basal nerve plexus
in healthy volunteers over 36 months. The overall accuracy and diagnostic efficacy of CCM
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has been extensively studied in DPN (Table 1) [33]. CCM has consistently shown greater
corneal nerve fibre loss in patients with DPN compared to without DPN and healthy controls,
demonstrating good-to-excellent sensitivity and specificity [24,25,34-39]. Both Alam [40] and
Chen et al. [41] demonstrated that CNFD had superior performance compared to IENFD for
the diagnosis of DPN. A multicentre, multinational NIH consortium study of 998 participants
with type 1 and type 2 diabetes reported that CNFL had a 0.88 sensitivity and 0.88 specificity
for the diagnosis of DPN [42]. A recent study (n = 220) using a higher optimal threshold
than the consortia paper (CNFL < 15.3 mm/mm?) reported 0.8/0.59 sensitivity/specificity for
diagnosing DPN [43]. CNFL predicts incident neuropathy over 4 years [25,26], thus providing
a putative ‘at-risk’ threshold. Indeed, rapid decline of corneal nerves (defined as >—6% annual
CNFL loss) can stratify patients at greatest risk for DPN onset and progression [44] recently
been confirmed by Alam et al. [45]. Our data have also shown that the risk factors for corneal
nerve loss differ between type 1 and type 2 diabetes, with an association with LDL cholesterol
and triglycerides in type 1 and age, glycemia and weight in type 2 diabetes [46], especially in
patients with a more rapid nerve fibre decline [44,45].

Table 1. Manual and automated approaches using corneal confocal microscopy images to classify

neuropathy:.
Citation Participants Reference Standard Index Test Threshold TesCt:Irll‘;iit"li“z;get AUC Sensitivity Specificity
Diabetic Peripheral Neuropathy
Automated CNFL
2
Perkins Total = 998 Toronto Criteria 125 mn/mn TID—DPN 7 " ®
etal., 2018 T1D =516 )
T - Confirmed DPN 2 Automated CNFL
[42] T2D =482 12.3 mm/mm’ T2D—DPN 0.68 69 63
Automated CNFL T1D
2
12.3 mm/mm’ and T2D—DPN 0.77 67 66
Automated CNFL T1D
2 -
Total < 8.6 mm/mm and T2D—DPN 88 88
2 -
Alam et al., T1D with neuropathy = 31 Toronto Criteria 25 no/mm CNFD—DPN 081 7 it
2017 [40] Control Participants = 27 Confirmed DPN 365 no/mm? CNBD—DPN 0.67 58 7
16.8 mm/mm? CNFL—DPN 0.74 61 86
Manual
CNFD—DPN 0.82 82 71
CNFL—DPN 0.70 59 74
Chen et al., T1D =63 Toronto Criteria 2 SD below the mean CNBD—DPN 0.59 17 96
2015 [41] Control = 26 Confirmed DPN of the control group Automated
CNFD—DPN 0.80 60 83
CNFL—DPN 0.77 59 80
CNBD—DPN 0.80 29 98
Edwards DM =231 Toronto Criteria - CNFL 0.64 32 87
etal., 2014 Control = 61 Confirmed DPN _ Tortuosity-standardised 0.67 38 88
[47] CNFL :
Total = 220 o <15.3 mm/mm? CNFL 0.70 80 59
viang ‘f‘i%l Control = 48 Coronto Chitera <39 no/mm? CNBD 0.66 78 52
: T2D =172 ontirme <25.68 n/mm? CNFD 0.67 85 47
Other Peripheral Neuropathies
Zhang et al., TTR-FAP =15 Genetically <17.99 mm/mm? CNFL 0.88 80 93
2021 [48] Control = 15 Confirmed TTR-FAP <21.95 mm/mm? IWL 0.89 86 80
Central Peripheral Neuropathies
Total = 82 . . <10.08 mm/mm? CNFL 0.67 85 45
gg;le[tﬁl PD = 42 Clinically confirmed <22.85 n/mm? CNFD 0.96 95 88
Control = 40 <26.72 n/mm? CNBD 0.69 92 52
- CNFD 0.84 - -
Fernandes Total = 82 Clinically confirmed - CNBD 0.84 - -
etal., 2021 MS =60
(50] 1o MS - CNFL 0.74 - -
5 Control = 22 _ CNET 0.72 _ _

AUC—area under the curve; CNBD—corneal nerve fibre branch density; CNFD—corneal nerve fibre den-
sity; CNFL—corneal nerve fibre length; CNFI—corneal nerve fibre tortuosity; DM—diabetes mellitus;
DPN—diabetic peripheral neuropathy; IWL—inferior whorl length; PD—Parkinson’s disease; PMNAP—peroneal
motor nerve amplitude; PMNCV—peroneal motor nerve conduction velocity; n—number; MS—multiple sclerosis;
SNAP—sensory nerve action potential; SNCV—sural nerve conduction velocity; TID—type 1 diabetes; T2D—type
2 diabetes; TTR-FAP—transthyretin familial amyloid polyneuropathy.
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4. Beyond Diabetic Peripheral Neuropathy
4.1. CCM in Other Peripheral Neuropathies

CCM has been used to identify corneal nerve loss in a range of peripheral neuropathies
including idiopathic small fibre neuropathy (ISFN), CIPN, chronic inflammatory demyeli-
nating polyneuropathy (CIDP), HIV-associated neuropathy, hereditary sensory-motor
neuropathies [26,51-53], Fabry’s disease [54,55], hypothyroid neuropathy [56], amyloid
neuropathy [48,57], inflammatory neuropathies [58-60], and fibromyalgia [61,62]. The
extent of corneal nerve loss has been associated with underlying pathophysiological defects
and the severity of symptoms and deficits. In HIV-associated neuropathy, CNFD correlated
with neuropathic symptom burden [53], whilst CNFD and CNFL correlated with the neuro-
logical component of the Mainz Severity Score Index (MSSI) and «-galactosidase A enzyme
activity in patients with Fabry’s disease [54]. CNFD, CNFL and CNBD have also been
shown to correlate with neurological deficits assessed using the Scale for the Assessment
and Rating of Ataxia (SARA) and Friedreich’s Ataxia Rating Scale (FARS) as well as the
genotype (GAA repeats) [63]. Recently, CNFL and inferior whorl length have demonstrated
superior sensitivity and specificity in identifying participants with transthyretin familial
amyloid polyneuropathy [48].

4.2. CCM in Central Neurodegenerative Disease

Corneal nerve pathology has been demonstrated in patients with Parkinson’s disease,
multiple sclerosis (MS), dementia [64-66] and amyotrophic lateral sclerosis (ALS) [67].
Corneal nerve fibre loss is associated with cognitive decline and correlates with functional
independence in mild cognitive impairment and dementia [68]. In MS, CNFD is consistently
reduced [65,69,70]. Petropoulos et al. [70] and Bitirgen et al. [65] have additionally reported
a reduction in CNFL and CNBD. In one study, dendritic cell density increased [65], whilst
in another study there was no difference in MS [69]. The heterogeneity of findings in
patients with MS makes it challenging to arrive at a diagnosis based solely on CCM.
However, Al-based analysis of CCM images has shown good diagnostic utility in different
subtypes of MS [71]. CNFL and CNFD are both reduced in ALS when compared to healthy
controls and correlate with a worsening ALS-functional rating scale [67]. In Parkinson’s
disease, motor abnormalities and cognitive dysfunction correlated with corneal nerve
fibre loss [64,72]. A recent study by Che et al. [49] has demonstrated that CNFD has an
area under the curve (AUC) of 0.96 with sensitivity /specificity of 0.95/0.88 in identifying
patients with Parkinson’s disease. Alterations in corneal innervation precede loss of
IENFD in Parkinson’s disease [73] Changes in the number of corneal nerve bifurcations
and beading [66] may be a possible biomarker of early disease. The presence of corneal
nerve abnormalities in multiple peripheral neuropathies and central neurodegenerative
diseases, especially in elderly populations with multiple comorbidities limits specificity
for diagnosis, necessitating perhaps alternative metrics [74]. As such, there is increasing
interest in quantification of the complexity of corneal nerve topography and end-to-end
classification with DLA to help differentiate different peripheral neuropathies and central
neurodegenerative diseases.

5. CCM Image Acquisition and Analysis

Non-overlapping (<20%) images are acquired from the corneal apex (central cornea)
and 5-8 images are selected based on the depth and quality to ensure accurate and repre-
sentative analysis [75]. Quantitative analysis of corneal nerves can be undertaken using
manual (CCMetrics, The University of Manchester, Manchester, UK) and automated (ACC-
Metrics, The University of Manchester, Manchester, UK) software [76]. Both approaches
rely on nerve segmentation and quantification of different sub-basal nerve plexus met-
rics [39]. These metrics include corneal nerve fibre length (CNFL), corneal nerve fibre
density (CNFD), and corneal nerve branch density (CNBD). CNFL is regarded as the
primary biomarker showing an early reduction in diabetes [77], and it is also the most
reproducible corneal nerve metric [78]. Together with CNFD and CNBD, they make up
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three key CCM parameters, that enable an assessment of nerve degeneration and regen-
eration (Table 2) [79]. Other automated measures which are less well validated include
corneal nerve fibre tortuosity (CNFT) [80], corneal nerve fibre total branch density (CTBD),
corneal nerve fibre area (CNFA), corneal nerve fibre width (CNFW) [81], nerve fibre bead-
ing [82], fractals [74] inferior whorl length [79] corneal nerve connection points, and average
weighted corneal nerve fibre thickness [83]. Figure 1 illustrates the difference between
primary corneal nerve fibres and their branches.

Table 2. Corneal confocal microscopy (CCM) biomarkers.

Parameter Description Unit of Measurement
Corneal nerve fibre length (CNFL) Length of all main nerve fibres and branches mm/mm?
Corneal nerve fibre density (CNFD) Number of main nerve fibres no/mm?
Corneal nerve branch density (CNBD) Number of main nerve fibre branches no/mm?
400 pm

wn 00F

(b)

Figure 1. Images of corneal nerves. (a) Original image. (b) Red lines indicate the main corneal fibre,

and blue lines indicate the corneal nerve branch. The greet dot indicates where the branch bifurcates
off the main fibre. Images 400 pm x 400 pm.

5.1. Manual Analysis

Manual analysis relies on expert manual annotation and tracing of corneal nerves
to delineate main nerve fibres, branch points and fibres. Dabbah et al. [84] developed
CCMetrics (The University of Manchester, Manchester, UK), a purpose-built interactive
image analysis software to facilitate manual quantification of CNFD, CNBD, CNFL and
CNFT in each CCM image. The narrow field of view of individual images has been
perceived as a limitation, as such, some centres have used wide field imaging to create
sub-basal nerve plexus maps [85]. Participants are asked to focus on a number of dots across
a square grid in a systematic process, with images acquired mapping out the corneal sub-
basal nerve plexus and inferior whorl [78]. Whilst manual annotation has demonstrated
reliability and reproducibility [30,86], it is labour intensive and requires considerable
expertise [81,84]. For CCM to be utilised as a clinically useful diagnostic tool, reliable
automated analysis is required [84], and this has led to the development of automated
CCM image analysis software [81,84].

5.2. Automated Analysis

Automated CCM image analysis software evaluates nerve fibres through segmentation
and quantification of corneal nerve morphological features. Dabbah et al. [87] developed
a multi-scale, adaptive, dual-model detection algorithm, combining a background (noise
and underlying connective tissue) Gaussian model and a foreground (corneal nerve fibres)
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Gabor wavelet-based model, which achieved a strong correlation with manual-ground
truth annotations. Dabbah et al. [84] published the deterministic software, ACCMetrics,
a multi-scale dual model with a neural network pixel classification-based algorithm that
automatically quantifies CNFD, CNBD, CNFL, CNFA and CNFW and shows an excel-
lent correlation with manual ground truth. Petropoulos et al. validated ACCMetrics by
demonstrating significant reductions in CNBD, CNFD and CNFL which correlated with
increasing neuropathic severity in DPN [39]. Subsequently, Chen et al. [81] demonstrated
comparable efficacy between ACCMetrics and IENFD in diagnosing DPN. Recent advances
in the automated analysis of CCM images have utilised DLA [88-90] and abandoned nerve
segmentation in favour of end-to-end classification to allow the DLA to determine features
of importance for image classification [91,92].

6. Fractal Dimension

Complex geometric structural properties can be characterised by different scale values,
namely fractal geometry [93]. A fractal dimension is a mathematical parameter that de-
scribes the complexity of a biological structure within a two- or three-dimensional space [94].
Fractal dimension have been used in medical imaging to investigate retinal fundus images
in a variety of ocular diseases.

6.1. Fractal Dimension in Diabetic Retinopathy

The architecture of the retinal microvasculature has been quantified using fractal
analysis in patients with diabetes [95-97]. Cheung et al. [95] reported that increased
fractal dimension, representing increased complexity of the retinal microvasculature, was
associated with higher odds of developing diabetic retinopathy (DR), independent of
HbAlc. However, Fan et al. [97] reported no difference in fractal dimension in people
with DR compared to controls. Talu et al. [96] demonstrated that fractal dimension were
higher in mild non-proliferative DR (NPDR), but lower in moderate and especially severe
NPDR when compared to controls. Torp et al. [98] demonstrated that retinal venular
fractal dimension predicted disease activity 6 months after panretinal photocoagulation,
suggesting it may serve as a biomarker of treatment efficacy. The challenges of utilising
the fractal dimension in DR have been described by Forster et al. [99]. Thus, with the
progression of DR, different vascular changes can result in opposing fractal indices, with
an initial decrease followed by increased fractal dimensions in proliferative DR [100].
Given the variability in fractal dimension in different stages of DR, they have not been
incorporated in diagnostic tools and protocols. More research is required on the evolution
of fractal dimension in DR in relation to disease severity and treatment in well-designed
natural history studies. Spectral-domain optical coherence tomography angiography
(OCTA) generates detailed anatomical images of the superficial and deep capillary plexus.
Zahid et al. [94] showed that OCTA derived fractal dimensions were reduced in DR
when compared to controls, but there was no further analysis in relation to the grade
of retinopathy. Current DR detection DLA do not use explicitly extracted features, such
as fractal dimensions, but instead learn a unique set of features directly from fundal
images [101].

6.2. Fractal Deimention in Corneal Confocal Microscopy Images

Corneal nerve geometry can be quantified using corneal nerve fractal dimension
(CNFrD) [74]. CCM images are divided by two-dimensional square grids to generate boxes
subtended by a corneal nerve segment. When a nerve fibre is detected within a box, this
box is further subdivided into equally sized, smaller boxes and the process is repeated
until no nerves are detectable. Thus, a higher number of boxes signifies greater pattern
complexity, generating a higher fractal dimension index [26,74].

The complexity of corneal nerve architecture is altered in DPN [102]. The diagnostic
utility of CNFrD was first assessed by Chen et al. [74], comparing healthy controls to
participants with type 1 diabetes, with or without DPN. Automated CNFrD (AUC 0.74)
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had a comparable diagnostic efficacy to automated CNFL (AUC 0.74) and CNFD (AUC
0.77), suggesting that CNFrD may serve as an additional metric for identifying DPN.
Petropoulos et al. [26] also demonstrated that CNFrD detected differences in corneal nerve
topography by aetiology of underlying neuropathy, even when adjusting for CNFL. Patients
with CIDP, HIV-SN, CIPN and DPN had a lower CNFrD when compared to healthy controls,
but CNFrD was significantly lower in DPN compared to CIDP, HIV-SN and CIPN. To date
no studies have sought to assess the utility of CNFrD in discriminating between peripheral
and central neurodegenerative diseases, perhaps by combining CNFL, CNFD, CNBD with
CNFrD utilising artificial intelligence (AI).

7. Artificial Intelligence (AI)

Artificial intelligence (Al) is a major field of study that aims to develop computers and
machines that can emulate aspects of human intelligence. Machine learning, a sub-field of
Al describes a large and diverse set of algorithms that learn through examples and data.
Artificial neural networks (ANN) are machine learning algorithms structured much like
biological neurons. ANNs can be multi-layered to improve their performance on complex
tasks which is termed deep learning. The non-invasive nature of CCM, and the ability to
capture a large quantity of images leaves it well positioned for use in the Al revolution for
data-driven disease modelling.

7.1. Artificial Intelligence and Deep Learning

Al aims to automate complex tasks normally performed by humans and is best
understood as an umbrella term, with DLA being a specific type of AL DLA are multi-
layered artificial neural networks (ANN) whose architecture is inspired by biological
neurons [103]. Each ANN contains nodes (akin to cell bodies) that communicate with other
nodes via connections (akin to neural axons). An increase in the number of nodes between
the input layer (akin to receptors) and output layer increases the complexity of the network,
and its capacity to learn and perform complex tasks. A common way to train ANNSs is
through a process called supervised learning, whereby the network is given the correct
answer (ground truth) for each case, e.g., the correct neuropathy category for a given CCM
image. Utilising multiple images, the ANN iteratively learns which connections between
nodes to strengthen or weaken so that, for a given input, it generates a prediction which is
as close as possible to the ground truth, and which best minimises the prediction error [104].
Specialised ANN adept at analysing images are convolutional neural networks (CNN)
which have filter-like components which can localise and extract image features [105].

7.2. Artificial Intelligence and Opthalmology

Ophthalmology lends itself well to Al due to the diverse range of digital imaging
modalities and large datasets produced during standard clinical care. DR, age related
macular degeneration (ARMD), retinopathy of prematurity (ROP), glaucoma and cataracts
have all been identified as promising disease areas for AI [106]. A systematic review of Al
in the management of people with cataracts found that Al-driven diagnosis was at least
comparable, and at times superior to expert clinical diagnosis [107]. Al has demonstrated
utility beyond diagnostic purposes with improved intraoperative lens selection and a
subsequently reduced refractive error [108]. Al algorithms have additionally demonstrated
equivocal detection of ARMD when compared to ophthalmologists [109], and have outper-
formed optical coherence tomography metrics in differentiating between glaucomatous
and healthy eyes [110]. Al has also been applied to detect DR and a DLA has gained formal
approval by the US FDA for the detection of more-than-mild DR (IDx-DR) (sensitivity
87.2%; specificity 90.7%) [111,112].

7.3. Artificial Intelligence and Diabetic Retinopathy Screening

With the increasing worldwide prevalence of diabetes and DR [113], solutions to
mitigate the human capital and associated health economic costs of expert graders to
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identify early DR in retinal fundus, enabling prompt diagnosis and treatment to prevent
visual loss from DR [114] However, if the UK DR screening model was applied worldwide,
by 2045, ~2 to 3 billion retinal images per year would require human grading [115]. Al
has the potential to augment clinical decision making and reduce physician/assessor
burden [116]. In non-Al-utilising centres/screening programmes, primary assessors review
and grade retinal images and refer cases of suspected DR to secondary assessors for further
analysis [117]. Currently in the UK, only Scotland incorporates automated Al detection of
DR in their eye screening service [112]. iGradingM (version 1.1, Medalytix/EMIS health,
Leeds, UK) is an automated retinal image analysis system used by the Scottish screening
programme which replaces the primary human assessor, reducing the grading workload
because only images with suspected DR are further graded by the secondary human
assessor who decides whether patients are to be invited back for screening or referred
to the hospital eye service for vision-threatening DR [118]. The use of Al as the primary
assessor is cost-effective [119] and reduced manual grading workload by >35% [120], whilst
achieving a sensitivity of 97.8% for referable DR [120]. EyeArt, another commercially
available software, was recently evaluated in the English DR screening programme, and
demonstrated a sensitivity of 96% for referrable DR with a specificity of 68% for no DR, but
has yet to be implemented in England [115]. Takahashi et al. [121] demonstrated a DLA
(modified GoogLeNet CNN) which can provide prognostic information and determine
future treatment for DR. Indeed, DLA have demonstrated accurate prediction for the
progression of DR from no to mild or worse disease over a 2-year time interval using
fundus images (AUC: 0.79) [122]. Therefore, Al has the potential to be used within a
personalised hybrid model for more individualised screening and treatment of DR.

8. Alin CCM
8.1. Technical Aspects of Al in CCM

The success of Al is underpinned by the availability of big data, high-performance
computing resources such as graphics processing units (GPU), and open-source develop-
ment libraries (e.g., PyTorch™ and Tensorflow™). DLA, such as CNNs, have demonstrated
comparable, and at times superior performance compared to human experts in a plethora
of applications. Hence, DLA have been developed and validated to analyse CCM images.

The non-uniform illumination or imbalanced intensity in CCM images poses chal-
lenges in evaluation for the diagnosis of diseases. Ma et al. [123] investigated the use of
a generative adversarial network (GAN) to enhance CCM images, which utilise a cycle
structure and illumination constrained GAN combining the benefits of global adversarial
loss and cycle consistency constraints. The proposed generator and discriminator pairs
consistently improve the image quality and were trained together, whereby the ‘generator’
translates images from low to high quality until the discriminator model cannot distinguish
between the original and enhanced images by more than chance (equal to 50% accuracy).
Williams et al. [90] proposed to segment corneal nerves from CCM images using a U-Net
model [124] and used an ensemble of multiple U-Net models to demonstrate the model’s
superior segmentation and classification performance compared to the widely available
ACCMetrics [81]. Mou et al. [125] developed a corneal nerve fibre segmentation model
based on a dual attention (e.g., spatial and channel attentions) mechanism for the pre-
diction of regions of interest and demonstrated the model’s effectiveness through their
automated DLA that demonstrated significant differences in the tortuosity of nerves be-
tween patients with diabetes and healthy controls [124]. Preston et al. [92] developed a
DLA using ResNet [126] as the backbone network to diagnose peripheral neuropathy (in
diabetes and prediabetes), achieving a high level of classification accuracy using end-to-end
classification (Figure 2). They also demonstrated image attribution-based explainability
methods to produce "heatmaps’ showing areas in the image which were important to the
classification prediction (Figure 3).
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Figure 2. Diagram of the modified ResNet-50 architecture used by Preston et al. Pink rectangles
correspond to convolutional layers, with the filter size given within. Purple rectangles corresponds
to pooling layers, either maximum pool or global average pool. Green rectangles correspond to
convolution blocks. Blue rectangles correspond to identity blocks. Dark grey rectangles correspond
to dense layers. Orange rectangles correspond to dropout layers (dropout = 0.6). Avg, average; Conv,
convolutional; Max, maximum; ReLU, rectified linear unit.

400 um

wn 0of

Figure 3. Images of corneal nerves and their respective analysis by Al (a) Original images. (b) At-
tribution map generated by Grad-CAM (gradient-weighted-class activation mapping). (c) Attribution
map generated by Guided Grad-CAM. (d) Attribution map generated by Occlusion Sensitivity. First
row correctly predicted healthy volunteer participant; second row, correctly predicted participant
with diabetes or prediabetes without neuropathy and third row, correctly predicted participant with
diabetes or prediabetes with neuropathy. Images 400 um x 400 pm.

8.2. Al Models in CCM

Standard CNN models [127] will typically take one CCM image per patient as the
input, and extract the semantic features (features that help the model distinguish between
different pathologies), via passing them through multiple convolution operations of differ-
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ent CNN layers. The semantic features are key to the DLA decision-making process. The
convolution operation is regarded as a sliding window that filters along the whole image’s
intensity values, resulting in a distilled feature map. After iterative convolution operations,
the semantic features are summarised at a higher-level through pooling operations, which
result in the final output (presence or absence of disease).

For CCM image acquisition, each patient has multiple images taken, and depending
on patient factors, the number of images per patient may vary. Some images contain
discriminative and trustworthy information that can be used for classification of disease,
while others do not. Therefore, it is critical to automatically select the trustworthy and
discriminative images which will contribute to the model’s final prediction.

CA-MIL (Consensus-Assistant Multiple Instance Learning) can take an arbitrary num-
ber of CCM images per patient as it’s input. This can strengthen the upper-bound ability
of the DLA model, as more input information is assessed during the feature learning and
extraction process.

There is a consensus-assistant module that verifies the reliability of selected CCM
images. Random noise (such as Gaussian noise) is inserted into the model along with
the input CCM images to adversely perturb the model’s feature learning and prediction
process. In other words, the predictions of a generalisable MIL classifier should be robust
enough not to be influenced by input perturbations, and if the predicted class score changes
significantly under a certain perturbation, this suggests an unreliable CCM image [128].

This differs from classic MIL-based methods [129] that treat every CCM image per
patient equally. These models are more liable to be biased by images without discriminative
and trustworthy features, leading to a less reliable feature learning process.

8.3. Al in Diabetic Neuropathy

Table 3 summarises studies which have utilised Al in the analysis of CCM im-
ages. Williams et al. [90] demonstrated their DLA achieved an AUC of 0.83, and speci-
ficity /sensitivity of 0.87/0.68, respectively, for the detection of DPN. Salahouddin et al. [130]
demonstrated that their image segmentation DLA had excellent correlation with manually
quantified CNFL, and outperformed ACCMetrics with an excellent AUC (1.0), sensitivity
(1.0) and specificity (0.95) for differentiating between healthy controls and patients with
DPN. The model also achieved an excellent AUC (0.95), sensitivity (0.92) and specificity
(0.8) for discriminating between patients with and without DPN. Scarpa et al. [89] used a
CNN to simultaneously analyse multiple CCM images and achieved a 96% classification
accuracy to differentiate people with DPN from controls, but there was no comparison
between people without DPN. The DLA developed by Preston et al. [92] reported a sen-
sitivity of 1.0, 0.85 and 0.83 for correctly identifying healthy controls, DPN— and DPN+,
respectively, by utilising only one image per participant, and without segmentation prior
to classification (end-to-end classification) [131]. To date, Al has been trained and validated
on relatively small datasets [89,90,92,130,131]. Current Al models for the analysis of CCM
images and diagnosis of DPN have achieved promising results, but large scale, external
and prospective clinical validation is required [92]. Studies on large representative ‘real
world” datasets are critical for developing and evaluating Al algorithms that gain FDA
approval for clinical application. In addition, CCM will require regulatory approval of
its use as a medical device for screening and diagnosis of diabetic and other peripheral
neuropathies as well as central neurodegenerative diseases [132].
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Table 3. Artificial intelligence approaches using corneal confocal microscopy images to classify neuropathy.

s . . Study . e [ Classification
Citation Participants No. of Images Methodology Population AUC Sensitivity Specificity Accuracy Results Summary
Scarpa et al., 2019 Total = 100 Total = 600; NeuroP aﬂIy k‘;ls. iontrol - 98 96 97 CNN identifies ROI allowing
and DPN =50 Training = 480; CNN (single block) multiple images to be binarised into
Scarpa et al., 2020 Control = 50 Cross-validation = 600; Neuropathy vs. Control 08 o4 9 two separate categories
[89,91] Evaluation = 120 (whole subject) ) 6 demonstrating diagnostic efficacy
Images used for training
the Liverpool CNN
Total = 1698;
External validation of
the CNN/DLA
Total - 222 ;otal =1/578; T}];i ]Aiverpool CEI\;N and Lilverpool
o ) otal = I luated usi can quantify corneal nerve
Wﬂzl(l)z%l?geot] al, DPN+ve =132 magte}sleez?vi:pe(z) olu e CNN and DLA DPN+ve vs. DPN-ve 0.83 68 87 - morphometrics in participants with
DPN-ve =90 . confirmed DPN demonstrating
CNN/DLA; . . )
diagnostic efficacy
Participants with and
without DPN as per the
Toronto expert criteria
included.
Total images = 2137
DPN-—ve cs Control © 7072? 94) 84 71 -
Total = 108 ’ ’ Based on CCM images alone ANFIS
Salahouddin et al., Control = 21 Training = 174; B 0.95 classified 43% of participants as
2021 [130] DPN+ve =25 Validation = 534 DL ANFIS DPN—ve vs. DPN+ve (0.91-0.99) 92 80 ) DPN+ve demonstrating
DPN—ve = 62 1.0 diagnostic utility
Control vs. DPN+ve (0.99-1.0) 100 95 -
Control - 100 - 100 Based on a single CCM image
Total = 369 .. . ;
Training = 245; without pre-processing DLA can
Preston etal, Control =90 Validation = 84; DLA faithfully classify participants into
2022 [92] DPN-+ve = 130 alidation = 6%; DPN-ve - 85 - 85 Y y particip
Test = 40 controls, DPN+ve and DPN—ve
DPN—ve = 149 . . . .
categories demonstrating diagnostic
DPN+ve - 83 - 83

utility and accuracy

AUC—area under the curve; ANFIS—adaptive neurofuzzy inference system; CCM—corneal confocal microscopy; CNN—convolutional neural network; DL—deep learning; DLA; deep
learning algorithm; DPN—ve—no diabetic peripheral neuropathy; DPN+ve—diabetic peripheral neuropathy; ROI—region of interest.
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Considering the mass adoption and regulatory perspective, the ‘black-box’ nature of
Al has been subject to resistance by some in the medical community [133]. By the nature of
analysing whole images and discriminating patterns, and not classifying based on specific
abnormalities, Al's lack of ‘explainability” has raised perhaps legitimate concerns in the
medical community [134]. Only a limited number of studies utilising Al and CCM have
sought to provide class activation maps (or heat maps). Such attribution maps attempt
to highlight the influence of different regions of the image on the final diagnostic output
of the Al-based DLA [92]. The maturation of such tools is required to overcome some of
the current barriers to clinical use of Al The current literature undoubtedly supports the
potential of Al in automating the analysis of CCM images to detect DPN. The ability to
consistently distinguish patients with and without DPN, and subclinical DPN, underpins
the power of DLA [92]. The accurate and precise interpretation of CCM images by Al has the
potential to lead to a paradigm shift in the diagnosis of various neurodegenerative diseases.

9. Future Clinical Applications

CCM identifies small nerve fibre damage in early DPN [135,136] before an abnormality
in currently accepted endpoints, such as symptoms and deficits and nerve conduction stud-
ies. Future studies should utilise Al in CCM and Al to differentiate different peripheral and
central neurodegenerative diseases using end-to-end classification and in-depth analysis
of corneal topography/geometry. This may be especially useful at first presentation of
neurological disease; often where diagnostic doubt exists. We have previously shown that
simultaneous pancreas and kidney (SPK) transplantation in patients with type 1 diabetes is
associated with corneal nerve regeneration after 6 months followed by an improvement
in neuropathic symptoms after 24 months and nerve conduction after 36 months [137]
within 28 days of blocking inflammation with ARA-290 in sarcoidosis [138,139]. We have
also shown evidence of corneal nerve regeneration after bariatric surgery in obese subjects
with [140] and without diabetes [141]. In a randomised clinical trial, weekly GLP-1 with pi-
oglitazone or basal bolus insulin led to a~3% improvement in HbA1lc, which was associated
with corneal nerve regeneration over 12 months, but with no change in vibration perception
or sudomotor function [142]. Two recent trials with omega-3 fatty acid in patients with
type 1 diabetes have demonstrated corneal nerve regeneration with no change in nerve
conduction velocity, thermal thresholds, or autonomic nerve function [143,144]. Thus, CCM
truly satisfies the FDA criteria for a biomarker and could play an important role as an
endpoint in clinical trials of therapies for diabetic and other peripheral neuropathies, as
well as central neurodegenerative diseases [145]. CCM has the potential to adopt the hub
and spoke model currently employed the UK'’s national diabetic retinopathy screening
programme, whereby images are collected locally and interpreted at a central hub by Al
This method reduces intra-regional variation and standardises the analytical process. Such
a hub and spoke model allows large volumes of data to be collated, improving the output
and accuracy of future models.

10. Conclusions

Al has the potential to fully unleash the full ability of CCM for the diagnosis of DPN,
peripheral neuropathies and other neurodegenerative diseases. The incorporation of novel
corneal nerve parameters including CNFrD, and the assessment of nerve complexity may
provide unique and distinct disease-specific topographical signatures. Al-driven pathways
for the identification of neurodegeneration will facilitate earlier diagnosis and improved
monitoring of the effectiveness of interventions.
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Abbreviations

Al artificial intelligence

ANN artificial neural networks
CcCM corneal confocal microscopy

CIPD chronic inflammatory demyelinating polyneuropathy
CIPN chemotherapy-induced peripheral neuropathy
CNBD  corneal nerve branch density

CNFD  corneal nerve fibre density

CNFL  corneal nerve fibre length

CNFrD  corneal nerve fractal dimension

DLA deep learning algorithm

DPN diabetic peripheral neuropathy

DR diabetic retinopathy

HIV human immunodeficiency virus

IENFD  intra-epidermal nerve fibre density

IWL inferior whorl length
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