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Abstract: Lung cancer is the major cause of cancer-related deaths around the world. Lung adenocar-
cinoma (LUAD), the most common subtype of lung cancer, contributed to the majority of mortalities
and showed different clinical outcomes in prognosis. Tumor-infiltrated immune cells at the tumor
site are associated with better survival and immunotherapy response. Thus, it is essential to further
investigate the molecular mechanisms and new prognostic biomarkers of lung adenocarcinoma
development and progression. In this study, a six-gene signature (CR2, FGF5, INSL4, RAET1L, AGER,
and TNFRSF13C) was established to predict the prognosis of LUAD patients, as well as predictive
value. The prognostic risk model was also significantly associated with the infiltration of immune
cells in LUAD microenvironments. To sum up, a novel immune-related six-gene signature (CR2,
FGF5, INSL4, RAET1L, AGER, and TNFRSF13C) was identified that could predict LUAD survival and
is highly related to B cells and dendritic cells, which may provide a theoretical basis of personalized
treatment for targeted immunotherapy.

Keywords: lung adenocarcinoma; immune-related gene signature; risk model; tumor infiltration
immunity; prognosis

1. Introduction

Lung cancer is currently the most aggressive cancer in terms of morbidity and mortality
worldwide [1–3]. There are two main types of lung cancer, small cell lung cancer (SCLC)
and non-small cell lung cancer (NSCLC). The most common type of lung cancer is non-
small cell lung cancer (NSCLC), which is diagnosed in 85% of all lung cancers [4,5]. Lung
adenocarcinoma (LUAD) is considered to be the most common histologic subtype of
NSCLC, which accounts for approximately 40% of patients with lung cancer. Although
there have been major advances in lung cancer treatment in recent decades, including
surgical resection, radiotherapy, chemotherapy, and immunotherapy, the prognosis and
survival of patients are still unsatisfactory [6]. Possible reasons are that patients diagnosed
were in advanced stages, or that patients diagnosed early cannot receive targeted therapy
yet because they do not carry the common molecular mutations (EGFR, BRAF V600E, MET,
or ALK) that could be treated with targeted therapy. It is necessary to further investigate
the molecular mechanisms of tumorigenesis and the development of new and reliable
biomarkers to improve the survival of LUAD patients.

It is known that a tumor immune microenvironment plays significant roles in tumor
development and progression [7–12]. The primary cause is the inhibition of immunosup-
pressive checkpoints such as CTLA4 or PD-1/PD-L1 or the breakdown in the development
of cytotoxic T-cell lymphocytes (CTLs) [13–15]. An increasing number of studies suggest
that several tumor prognostic and predictive biomarkers are highly associated with immune
response. For example, an immune-related gene signature of 11 genes was able to predict
the prognosis and the immunotherapy efficacy of hepatocellular carcinoma (HCC) [16]. A
robust six immune-related gene signature played a role in risk stratification and overall
survival in patients with lower-grade glioma [17]. An uncovered seven-gene signature was
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verified to predict the prognosis in osteosarcoma [18]. A four-gene signature was developed
to predict the prognosis and survival of lung adenocarcinoma patients [19]. These findings
have been proven to demonstrate the importance of tumor immune microenvironments in
carcinogenesis, progressions, and the development of tumors.

Although many immune-related gene-based markers for LUAD are available, im-
munotherapy could only benefit a small proportion of patients [19,20]. There is an urgent
need for a more comprehensive and reliable indicator that can predict both the survival
of LUAD patients and the efficacy of immunotherapy. In this study, we constructed an
immune-related prognostic gene signature. Furthermore, we also performed the evalu-
ation of prognostic significance, Gene Set Enrichment Analysis (GSEA) and the possible
predictive value in immunotherapy of the gene signatures. The workflow of this study was
summarized in Figure 1. We hope the immune-related prognostic gene signature could be
used as the predictive biomarker for the prognosis and immunotherapy of LUAD patients.
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2. Materials and Methods
2.1. Generation of Differentially Expressed Immune-Related Genes (DEIRGs)

Differentially expressed genes (DEGs) between LUAD tumor samples at stage T1
(n = 175) and stage T2-T4 (n = 357) from a TCGA dataset were assessed by using R package
“DESeq2 (v 1.26.0)” with the criteria of |log2 (Fold change)| > 1 and p.adj < 0.05 [21]. The
volcano plot of DEGs was drawn by using R package “ggplot2 (v3.3.3)”. The 1793 immune-
related genes (IRGs) were downloaded from the Immunology Database and Analysis
Portal (ImmPort) database (https://www.immport.org/home) [22]. The differentially
expressed immune-related genes (DEIRGs) between DEGs and IRGs were analyzed by
using R package “ggplot2 (v3.3.3)” and visualized as the Venn diagram.

2.2. Functional Enrichment Analyses

The 40 DEIRGs were obtained from the intersection between DEGs and IRGs. The
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were performed using clusterProfiler (v3.14.3) and org.Hs.eg.db (3.10.0) [23]. The bubble
diagram was visualized by R package “ggplot2 (v3.3.3)”. Gene set enrichment analysis
(GSEA) analysis was conducted by clusterProfiler (3.14.3) and shown as the mountain
plot. The reference gene set was c2.cp.v7.2.symbols.gmt [Curated]. Gene set databases
are MSigDB Collections. The False Discovery Rate (FDR) < 0.25 and p.Adjust < 0.05 are
considered to be significant [23,24].

2.3. Establishment and Validation of the Prognostic Immune-Related Gene Signature

Differentially expressed immune-related genes (DEIRGs) were used for the Least
Absolute Shrinkage and Selection Operator (LASSO) coefficient screen using the R software
glmnet (v4.1-2) and survival (3.2-10). The prognostic immune-related gene signature (risk
model) with coefficients were selected based on the optimal lambda value. Overall survival
(OS), disease specific survival (DSS) and the progression-free interval (PFI) between high
and low risk score groups were conducted using the R software survminer (0.4.9) and
survival (3.2-10) [24]. Univariate and multivariate Cox analyses and 1-, 3-, and 5-year
receiver operating characteristic (ROC) analysis were used to estimate the prognostic value
of the risk model [25]. The predictive risk factors were evaluated by Nomogram and
Calibrate curves using the R software rms (6.2-0) and survival (3.2-10) [25].

2.4. Immune Cell Infiltration Analysis

The ssGSEA algorithm was applied for the correlation between the risk score and
24 tumor-infiltrated immune cells by using GSVA (1.34.0) [26,27]. The ESTIMATE method
was used for the comparison of the immune score, ESTIMATE score, and stromal score
between the low- and high-risk groups [28]. The prognostic value of the 24 tumor-
infiltrated immune cells was analyzed by the univariate Cox regression analysis and
Kaplan–Meier analysis.

2.5. Gene Expression and Genetic Alterations Analysis

The immunohistochemistry images of six gene signatures in LUAD tumor tissues and
normal tissues were obtained from the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org). The Genetic alteration analysis was performed using
the cBioPortal for Cancer Genomics (https://www.cbioportal.org) [29].

2.6. Reverse Transcription and Real-Time Quantitative PCR (RT-qPCR)

Human lung cancer cell lines (A549, NCI-H1975, Calu-3) and human normal epithe-
lial cells BEAS-2B were purchased from Procell (https://www.procell.com.cn). The A549
cells were cultured in Ham’s F-12K Medium (Thermo Fisher, Waltham, MA, USA). The
NCI-H1975 cells were cultured in RPMI1640 medium (Hyclone, Logan, UT, USA). The
Calu-3 cells were cultured in modified Eagle’s medium (MEM, containing NEAA, Procell,
Wuhan, China). The BEAS-2B cells were cultured in Dulbecco’s modified Eagle’s medium

https://www.immport.org/home
https://www.proteinatlas.org
https://www.cbioportal.org
https://www.procell.com.cn


J. Clin. Med. 2022, 11, 6154 4 of 18

(DMEM, HyClone, USA). All cells were cultured in the specific mediums supplemented
with 10% fetal bovine serum (Hyclone, USA), penicillin sodium (100 U/mL) and strepto-
mycin (100 mg/mL). The cells were incubated in the thermostatic cell incubator at 37 ◦C
with 5% CO2. Total RNA was extracted using the RNeasy Plus Mini Kit (QIAGEN, Hilden,
Germany). Quantitative PCR (qPCR) was performed using the ABI 7900 qPCR system.
Relative RNA expression was normalized to GAPDH and calculated by the 2−∆∆Ct method.
The primers were listed in Table 1.

Table 1. Primers for qRT-PCR.

Gene Forward Sequence (5′-3′) Reverse Sequence (5′-3′)

CR2 ACCATGGTCGTCATACAGGTG AGCCAGGATTGCATCAACA
INSL4 AGCCTGTTCCGGTCCTATCT ATGATGGCTGCCCTTCAGAC
FGF5 CGCTCACAGTCACCTGGTTT CACCCTCGTTTGGCTTTTCC

RAET1L CCATCCCAGCTTTGCTTCTGT TGACGGGTGTGACTGTCTTG
AGER GCTTGGAAGGTCCTGTCTCC CCACCAATTGGACCTCCTCC

TNFRSF13B GTCAAAGTCCGGCCAAGTCT CCACTGTCTGGGATGTGTGG
GAPDH GAGAAGGCTGGGGCTCATTT AGTGATGGCATGGACTGTGG

2.7. Statistical Analysis

Data were analyzed using the R software (v3.6.3) and the qPCR analysis was performed
by GraphPad Prism. DEGs were analyzed by “ggplot2”. GO-KEGG and GSEA analyses
were performed by “clusterProfiler”. The LASSO analysis was conducted by “glmnet
and survival”. Univariate and multivariate Cox regression analyses were assessed by
using the “survival”. The Kaplan–Meier analysis was performed using the “survival” and
“survminer” R packages. An immune cell infiltration analysis was applied by “GSVA”. A
p value < 0.05 is statistically significant.

3. Results
3.1. Identification of DEIRGs

The workflow of this study is illustrated in Figure 1. We analyzed a total of 535 LUAD
samples and 59 normal samples and obtained 697 DEGs, including 411 upregulated and
286 downregulated genes as shown in the volcano map (Figure 2A). In addition, the forty
differentially expressed immune-related genes (DEIRGs) were generated (Figure 2B). The
functional analysis of the DEGs was performed. The GO enrichment analysis showed that
the DEGs were enriched in “humoral immune response”, “defense response to bacterium”,
and “antimicrobial humoral response” (Figure 2C). The KEGG pathway analysis revealed
that the highly relevant signaling pathways were neuroactive ligand—receptor interaction
and complement and coagulation cascades (Figure 2D). The functional analysis (GOs and
KEGGs) for the remaining genes that were differentially regulated in cancer versus normal
tissue were also performed. The enriched functions of either upregulated or downregulated
genes were not related to immune responses as shown in Figure 2E,F.

3.2. Construction of a Prognostic Immune-Related Gene Signature

We used a LASSO Cox regression model to perform the overall survival analysis of
40 immune-related potential prognostic genes (Figure 3A). Six genes included in the
analysis were identified to be the best predictors for prognostic significance (Figure 3B).
Hence, the prognostic model consists of these six genes noted as CR2, FGF5, INSL4,
RAET1L, AGER, and TNFRSF13C. The regression coefficient of each gene was displayed in
Table 2. The risk scores of this model are formulated as follows: Risk score = −0.01996 *
expression level of CR2 + 0.07140 * expression level of INSL4 + 0.03141 * expression level of
FGF5 + 0.12065 * expression level of RAET1L + (−0.00451) * expression level of AGER +
(−0.00301) * expression level of TNFRSF13B.
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Figure 2. Construction of DEIRGs for LUAD. (A) Volcano plot of DEIRGs between LUAD and normal
tissues. (B) Venn diagram of the intersections of DEGs with IRGs. (C) GO enrichment analysis of forty
DEIRGs. (D) KEGG enrichment analysis of forty DEIRGs. (E) GO and KEGG enrichment analysis
of the upregulated remaining genes (except the above forty genes). (F) GO and KEGG enrichment
analysis of the downregulated remaining genes (except the above forty genes).
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Figure 3. Establishment of the prognostic gene signature using LASSO regression analysis. (A) LASSO
coefficient profiles of 40 immune-related potential prognostic genes. Each curve corresponds to a
gene. (B) Tenfold cross-validation for tuning parameter selection in the LASSO model. The partial
likelihood deviance is plotted against log (Lambda), where Lambda is the tuning parameter. Partial
likelihood deviance values are shown, with error bars representing SE. The dotted vertical lines
are drawn at the optimal values by minimum criteria and 1-SE criteria. LASSO—the least absolute
shrinkage and selection operator Cox regression model.

Table 2. Six immune-related prognostic genes obtained from LASSO Cox regression model.

Gene Symbol Description Risk Coefficient

CR2 Complement C3d receptor 2 −0.019957508
INSL4 Insulin-like 4 0.071400283
FGF5 Fibroblast growth factor 5 0.031415586

RAET1L Retinoic acid early transcript 1L 0.120647299
AGER Advanced glycosylation end-product specific receptor −0.004511221

TNFRSF13B TNF receptor superfamily member 13B −0.003010621

3.3. Evaluation of the Prognostic Value of the Six-Gene Signature

The risk score of each LUAD patient was a linear combination of each six-gene signa-
ture expression and its risk coefficient. High- and low-risk groups of LUAD patients were
divided according to the median risk score. The distribution plots of risk scores and the
outcome status, including the Overall Survival (OS), Disease Specific Survival (DSS), and
Progression-Free Interval (PFI) of the gene signature, are shown in Figure 4A. Patients in the
high-risk group showed a lower survival probability compared with those in the low-risk
group. Consistently, Kaplan–Meier plotter analysis showed that the OS, DSS and PFIs of
the patients in the high-risk group exhibited remarkably worse outcomes than those in the
corresponding low-risk group (Figure 4B). Next, we performed the univariate analysis to
validate the six immune-related genes with prognosis significance in LUAD (Figure 4C). In
addition, we generated a nomogram tool to predict the 1-year, 3-year and 5-year overall
survival risk based on the selected factors (Figure 4D). Moreover, the calibration curves for
the prognostic nomograms presented a better accuracy and consistency between prediction
and actual 1-, 3-, and 5-year survival in the TCGA-LUAD cohort (Figure 4E).
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Figure 4. Evaluation of prognostic significance of the six-gene signature risk score. (A) Risk score
distribution and outcome status, including OS, DSS, and PFI of LUAD patients in low- and high-risk
groups. (B) Kaplan–Meier plotter curves of the six-gene signature risk score. (C) Forest plot for the
multivariable Cox model results of each gene in the six-gene signature risk score. (D) Nomogram
for predicting 1-, 3-, and 5-year OS in TCGA-LUAD cohort. (E) Calibration curves of prognostic
nomogram on consistency between prediction and observed 1-, 3-, and 5-year survival in TCGA-
LUAD cohort. Dashed line at 45◦ implicated a perfect prediction, and the actual performances of
our nomogram were shown in blue lines. OS—overall survival. DSS—disease specific survival.
PFI—progression-free interval.
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We performed the time-dependent receiver operating characteristic (ROC) plotter
and found that the values of the area under the curve (AUC) for the six-gene signature
risk score at 1, 3, 5, and 10 years were all above 0.6 (Figure 5A). Next, we performed the
correlation between the six genes individually and the risk score analysis using the Pearson
correlation analysis as shown in Figure 5B–H. TNFRSF13B was significantly related with
most of the genes, except for RAET1L, among the six-gene signature model (Figure 5B).
There were negative correlations between CR2, AGER, TNFRSF13B and the risk score
(Figure 5C,E,H). There was a positive relationship between RAET1L, FGF5, INSL4 and the
risk score (Figure 5D,F,G). These results indicated that the six-gene signature risk score
could be used as an independent prognostic factor for LUAD.
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Figure 5. ROC analysis and molecular correlation analysis of the six-gene signature risk score. (A) The
1-year, 3-year, 5-year and 10-year ROC curve plot of LUAD patients. (B) Heatmap shows the
correlation between the six-gene signature molecules. (C–H) Scatter diagram shows correlation
between risk score and CR2 (C), RAET1L (D), AGER (E), FGF5 (F), INSL4 (G), and TNFRSF13B (H).
p < 0.001. ROC—receiver operating characteristic.
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3.4. Functional Enrichment Analysis of the Six-Gene Signature Risk Score

To further understand the biological functions of the six-gene signature risk score in
LUAD, we performed enrichment analyses of GO and KEGG pathways. Results showed
that the six-gene signature was enriched in lymphocyte mediated immunity, leukocyte
proliferation, mononuclear cell proliferation, and lymphocyte proliferation (Figure 6A).
Consistently, multiple GSEA analyses revealed that the six-gene signature was highly en-
riched in immune-related signaling pathways such as antigen activates B cell receptor (BCR)
leading to the generation of second messengers, reactome immunoregulatory interactions
between a lymphoid and a non-lymphoid cell, reactome interleukin 20 family signaling,
type II interferon signaling, and CD22 mediated BCR regulation (Figure 6B–G).
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differential genes associated with CR2, RAET1L, AGER, FGF5, INSL4, and TNFRSF13B, respectively.
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3.5. Clinicopathological Characteristics Correlation Analysis

Next, we investigated the possible relationship between multiple clinicopathological
features and the six-gene signature risk score. The correlation analysis indicated that a
higher risk score was significantly associated with age, gender, pathologic stages, T/N/M
stages, and OS/DSS/PFI events (Figure 7A–I). Moreover, we also did univariate and
multivariate Cox analyses with risk scores as shown in Table 3. The results validated that
higher age, T/N/M and pathologic stage, as well as higher risk scores were risk factors for
LUAD patients with HRs > 1, p < 0.01.
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Figure 7. Clinicopathological features correlation analysis. (A–I) The relationships between risk score
and clinicopathological factors (Age, Gender, Pathologic stage, T stage, N stage, M stage, OS, DSS,
and PFI events) in TCGA-LUAD cohort, respectively. *** p < 0.001.



J. Clin. Med. 2022, 11, 6154 11 of 18

Table 3. Univariate and multivariate Cox regression analyses of risk score and other clinicopathologic
factors for OS in the entire TCGA cohort.

Characteristics Total (N)
Univariate Analysis Multivariate Analysis

Hazard Ratio (95% CI) p Value Hazard Ratio (95% CI) p Value

T stage 501
T1 168 Reference

T2&T3&T4 333 1.668 (1.184–2.349) 0.003 1.591 (1.004–2.520) 0.048
N stage 492

N0 325 Reference
N1&N2&N3 167 2.606 (1.939–3.503) <0.001 1.790 (1.004–3.191) 0.048

M stage 360
M0 335 Reference
M1 25 2.111 (1.232–3.616) 0.007 1.371 (0.744–2.523) 0.311

Gender 504
Female 270 Reference
Male 234 1.060 (0.792–1.418) 0.694
Age 494
≤65 238 Reference
>65 256 1.228 (0.915–1.649) 0.171

Pathologic stage 496
Stage I 270 Reference

Stage II & Stage III & Stage IV 226 2.975 (2.188–4.045) <0.001 1.177 (0.617–2.244) 0.621
Smoker 490

No 71 Reference
Yes 419 0.887 (0.587–1.339) 0.568

Risk group 482
Low 244 Reference
High 238 2.217 (1.625–3.025) <0.001 1.612 (1.081–2.402) 0.019

3.6. Evaluation of Immune Cell Infiltration Characterization

To further explore the association between the six-gene signature risk score and
immunity, we firstly evaluated the correlation with 24 types of tumor-infiltrating immune
cells in the high- or low-risk groups using the ssGSEA algorithm (Figure 8A). Results
showed that T cells, plasmacytoid DC (pDC), mast cells, DC, cytotoxic cells, B cells, and
Th17 cells showed a lower expression in the high-risk group (p < 0.05), whereas T gamma
delta (Tgd) and Th2 cells were highly expressed in the high-risk group. Furthermore, we
investigated the correlation with tumor lymph cells by Spearman’s correlation analysis.
The lollipop chart indicated that risk score was positively related to Th2 cells and Tgd
(Figure 8B). Moreover, a negative correlation was observed between risk score and TFH, B
cells, Mast cells, T cells, and CD8 T cells (Figure 8B).

In addition, we also investigated the prognostic significance of 22 types of tumor-
infiltrating immune cells. The Kaplan–Meier analysis demonstrated that the lower infil-
trating abundance of B cells and dendritic cells were significantly associated with better
OS (p < 0.05, Figure 8C,D). The univariate Cox analysis revealed that B cells and CD4 T
cells remarkably influenced prognosis (Figure 8E). These findings indicate that B cells and
CD4 T cells may play a meaningful role in the prognostic ability of the six-gene signature
in LUAD.
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Figure 8. Relationship between immune cell infiltration and six-gene signature risk score and prognostic
value evaluation. (A) Correlations of risk score with immune cell infiltration. The blue and yellow boxes
represented the six-gene signature low- and high-risk group, respectively. The medium line inside the box
represented the mean value. Wilcoxon rank-sum was applied for the significance test. * p < 0.05; ** p < 0.01;
*** p < 0.001. (B) Lollipop chart showing the Spearman analysis of risk score with tumor-infiltrating
immune cells. (C) Relationship between overall survival and B cells. High level (Red line) vs. low
level (black line). (D) Relationship between overall survival and dendritic cells. High level (Red line)
vs. low level (black line). (E) Univariate Cox regression model built for six tumor-infiltrating immune
cell types (B cells, CD8 cells, CD4 cells, Macrophage, Neutrophil, Dendritic) based on overall survival.
T cells; pDC [Plasmacytoid DC]; NK cells; NK CD56dim cells; NK CD56bright cells; Neutrophils;
Mast cells; Macrophages; iDC [immature DC]; Eosinophils; DC; Cytotoxic cells; CD8 T cells; B cells;
aDC [activated DC]; T helper cells; Tcm [T central memory]; Tem [T effector memory]; Tfh [T follicular
helper]; Tgd [T gamma delta]; Th1 cells; Th17 cells; Th2 cells; and Treg.
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3.7. Estimation of the Immunity Response

We also evaluated the association between the six-gene signature and tumor immune
infiltration to calculate the immune score, ESTIMATE score, and stromal score using the
ESTIMATE package. We observed that there was a significant difference in the immune
score and stromal score between the low-risk group and the high-risk group, except for
the ESTIMATE score (Figure 9A–C), suggesting that the six-gene signature risk score was
significantly associated with the immune score and stromal score. Next, we also did
the correlation analysis of immune checkpoints as shown in Figure 9D–I. There was a
significant relationship between CD27, TNFSF15, TNFRSF25, TIGIT, VSIR, BTNL2 and risk
score, suggesting that the six-gene signature risk score might have an immune response
and respond to immunotherapy in LUAD.
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Figure 9. Correlation analysis of six-gene signature risk score with the ESTIMATE score and immune
checkpoints. (A–C) Immune score, ESTIMATE score, and stromal score between low risk-group
and high-risk group of six-gene signature, respectively. * p < 0.05; *** p < 0.001. (D–I) Correlation
analysis of immune checkpoints (CD27, TNFSF15, TNFRSF25, TIGIT, VSIR, and BTNL2) with risk
score, respectively. p < 0.001.
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3.8. Verification of Hub Genes

The mRNA level of CR2, INSL4, FGF5, RAET1L and TNFRSF13B was upregulated in
LUAD tumor tissues compared with paired normal tissues whereas AGER was downregu-
lated (Figure 10A). The protein distribution from the HPA database showed the consistency
at protein level of CR2, TNFRSF13B, and AGER in LUAD tissues without the other three
other genes present for the immunohistochemistry staining as they were not available in
the HPA (Figure 10B). In addition, we also measured the mRNA levels of the six hub genes
in LUAD cell lines, including A549, NCI-H1975, and Calu-3 as shown in Figure 10C, of
which the patterns were consistent with the RNA level of tumor tissues. We also analyzed
genetic alterations of the hub genes in LUAD via cBioportal. There were 16% (186/1144)
genetic alterations in total, and CR2 was found to have the highest alteration (8%) in LUAD
patients (Figure 10D).
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Figure 10. Verification of the expression and genetic alterations of 6 hub genes in tumor and normal
tissues. (A) The boxplot showed the expression of 6 hub genes between paired LUAD tumor and
normal tissues in TCGA database. (B) The immunohistochemical staining of CR2, AFER, TNFRSF13B
was obtained from HPA database. (C) The mRNA levels of hub genes were measured by qRT-PCR in
lung adenocarcinoma cell lines (A549, NCI-H1975, and Calu-3) and compared with human normal
lung epithelial cells BEAS-2B. (D) Genetic alterations of hub genes in LUAD in TCGA datasets.
* p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussions

In recent years, the development of cancer treatment strategies has been toward im-
munotherapy [30,31]. Cell-mediated immunity has been shown to play a role in both
lung cancer monitoring and development. As studies on first-line immunotherapy for
NSCLC proceeds, it is more and more challenging to choose the most suitable therapeu-
tic treatment for patients with different clinicopathological features from among such
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options as immunotherapy alone, or chemotherapy combined with immunotherapy, or
immunotherapy combined with other treatment [32]. Thus, it is essential and urgent to
develop an immune-related prognostic model to better predict the prognosis and evaluate
the efficacy of immunotherapy in LUAD patients. In this study, we identified 40 signifi-
cantly different immune- related genes between LUAD tumors and normal tissues. We
established a prognostic risk model that included six hub genes as determined by LASSO,
univariate, and multivariate regression analyses. Moreover, the gene signature was found
to be highly associated with tumor-infiltrated immune cells, which might be used as an
independent factor. The prognostic risk model consisting of CR2, INSL4, FGF5, RAET1L,
AGER, and TNFRSF13C acts as a novel potential biomarker for evaluating the prognosis
and the efficacy of immunotherapy in LUAD.

Nowadays, it has become a growing focus for research to construct prognostic models
based on lncRNA, miRNA, and mRNA to predict the prognostic or diagnostic value in
tumors [33]. In this study, the gene signature was established by taking the cross from
LUAD transcriptome differential expressed genes and immune-related genes. We found
a total of 40 genes that were involved in the “humoral immune response” and “defense
response to bacterium”, suggesting that the gene signature was closely related to immune
response. Next, LASSO and regression analyses were performed to identify 6 out of these
40 immune-related genes to construct a prognostic risk model, which included CR2, INSL4,
FGF5, RAET1L, AGER, and TNFRSF13C. Therein, the complement receptor type 2 (CR2)
was reported to combine with the B-Cell receptor to inhibit the activation, proliferation,
and antibody production of human B cells [34]. CR2 was also verified to be involved in the
nine-gene signature with the prognostic and predicted values for LUAD [35]. Insulin-like 4
(INSL4) has been reported to be required for the growth and viability of LKB1-inactivated
lung cancer [36]. A recent study showed that INSL4 might be a prognostic marker for
proliferation and invasiveness in non-small cell lung cancer (NSCLC) [37]. It was reported
that FGF5 could promote cell proliferation via activation of the MAPK signaling pathway
in osteosarcoma [38]. Moreover, high FGF5 expression was found to be significantly
associated with poor overall survival and relapse-free survival in LUAD [39]. A report
showed that RAET1L together with ULBP1, ULBP2, ULBP3 had the high diagnostic values
in colon adenocarcinoma (COAD) [40]. AGER overexpression was found to suppress
the cell proliferation, invasion and migration of H1299 cells [41]. TNFRSF13C has been
demonstrated to be involved in a five-gene signature (CD40LG, TNFRSF6B, TNFSF13,
TNFRSF13C, and TNFRSF19) which was helpful for the prognosis and immunotherapy
response prediction in LUAD [42]. These previous studies have revealed that several genes
were closely related to lung adenocarcinoma, which also further confirmed the validity and
reliability of our prognostic six-gene risk model.

Studies have shown that a tumor microenvironment plays a key role in NSCLC devel-
opment and is closely related to immunotherapy response [43,44]. Given the importance of
tumor immune infiltration, we performed the correlation analysis of immune infiltrates
using ssGSEA and stromal score algorithms. Recent studies have shown that Th2 cells have
tumor-promoting effects in lung cancer and even human primary NSCLC tumors [45–47].
Existing evidence shows that tumor-infiltrating B cells play a role in almost all stages of
lung cancer [48,49]. Consistent with the above findings, our work showed that the risk
score (six-gene signature) was highly correlated with Th2 and B cells, suggesting a poten-
tial role in immune response. Moreover, we identified that higher infiltrations of B cells
and dendritic cells were associated with a better cumulative survival of LUAD patients,
findings which were well in line with recent research showing that a gene expression
signature associated with B cells was correlated with survival using immunotherapy in
lung adenocarcinoma [50]. Our findings were identical to a clinical trial where personalized
neoantigen pulsed dendritic cell vaccines were administered for advanced lung cancer [51].
Above all, the six-gene signature risk model constructed in this study may have a better
prognosis value and clinical significance in LUAD. Furthermore, we built a nomogram to
assess the prediction accuracy by linking the risk model with T stage, N stage, age, and
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gender. Similarly, it was reported that a nomogram was also used to enhance the prognostic
prediction accuracy by combining the risk index in HCC patients with clinicopathological
features [16]. Thus, it is of significance to provide and improve the reliability and efficacy
of survival risk prediction for LUAD patients by using the novel prognostic model.

The present study identified an original immune-related risk model for LUAD. There
are some highlights in this study. First, we did a comprehensive analysis of the six-gene
signature in LUAD, including the functional enrichment, the correlation with clinical
features, the tumor-infiltrated immune cells, the immune checkpoints, and the expression
profiles in tissues and cell lines. Second, a nomogram and calibration were used to further
validate the accuracy for clinical outcomes for the risk model in LUAD. Nevertheless, there
are some limitations in this study. First, clinical LUAD samples need to be collected to
verify the validity and accuracy of the prognostic model. Second, relevant functional and
mechanical experiments should be carried out to further explore the effect of this risk model
in vitro and in vivo.

5. Conclusions

In conclusion, we established an immune-related prognostic gene signature which
was significantly associated with the tumor immune microenvironment. The six-gene
signature model could predict the prognosis and survival of LUAD patients, as well as
imply a better response to immune-based therapies, which may provide a theoretical basis
for the prognosis and immunotherapy of LUAD.
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