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Supplemental Table S1. Machine Learning Methods Used 
   
Method Description Suggested 

Literature 
for further 
reading 

Tree-based models All here applied machine-learning methods stem from tree-based models 
which share a tree-like layout applied as a set of ordered, conditional rules in 
the form “If A, then B, else …” that are applied to cues (clinical features, var-
iables) sequentially until a decision is reached. They are non-linear models and 
trained on data where the outcome is known (supervised learning).  

Handelman et 
al., 2018 [1] 
Banerjee et al., 
2019 [2] 

Decision trees Most physicians will be familiar with decision trees, presented by branching 
decisions based on patient data. Generally, a decision tree is comprised of a 
sequence of nodes, representing cue-based questions, branches, representing 
answers to those questions, and leaves, representing decisions. These trees are 
generated by reviewing the evidence and making suggestions based on clinical 
data and physician opinion. With increasing data load and complexity of anal-
ysis, decision trees can be constructed by training decision tree algorithms on 
large databases of patient cases to construct a decision tree based on variables 
which can determine the highest separability on the desired categories. This 
allows for the partition of observations in a hierarchical basis using a set of 
simple decisions and allows for feature selection of discriminant variables. 

Handelman et 
al., 2018 [1] 
Philips et al., 
2017 [3] 
Kotsiantis, 2013 

[4] 

Fast and frugal trees Fast-and-frugal trees are decision trees with strict restrictions on the size and 
shape to solve binary classification tasks while keeping the tree simple and 
easy to interpret. Cues (clinical variables) are sequentially ordered, where at 
every branching point exactly two extending branches are allowed and either 
one or both branches is an exit branch leading to a final decision. This allows 
the algorithm to operate speedily, with little information and makes decisions 
to be optimized with as few cues as possible. 

Martignon et al., 
2003 [5] 

Random forests Single decision trees use only a partial subset of all cue information available 
since, once a decision is made no additional information of this cue is consid-
ered for decisions to follow. Random forests presents an alternative to this re-
strictions by generating collections of decision trees and aggregating their de-
cisions into one final result. By training individual trees on different samples 
of the data, random forests are able to limit overfitting without substantially 
increasing error due to bias which makes them very powerful models. This 
comes with the cost of reduced interpretability, as gaining insight on prediction 
rules is hard due to the large number of trees. 

Breiman, 2001 
[6] 
Couronné et al., 
2018 [7] 
Liaw and Wie-
ner, 2002 [8] 
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Supplemental Table S2. Baseline characteristics 
 
 

Variable 
 
 

All 
 

n = 1772 

Fluid overload at day 3  
yes 

n=387 
no 

n=1385 p-value 
Demographics1     
 Age 63 [51 - 73] 66 [52 - 74] 62 [51 - 72] 0.039 
 Sex (male) 1211 (68.3) 244 (63.0) 967 (69.8) 0.011 
 APACHE IV 21 [5 - 29] 26 [14 - 33] 19 [4 - 28] <0.001 
 LOS (days) 17 [10 - 28] 21 [14 - 36] 16 [9 - 26] <0.001 
Past Medial History2     
 Immune deficiency 242 (13.7) 68 (17.6) 174 (12.6) 0.011 
 Chronic kidney disease 530 (29.9) 152 (39.3) 378 (27.3) <0.001 
 Chronic liver disease 242 (13.7) 77 (19.9) 165 (11.9) <0.001 
 Cancer 178 (10.0) 39 (10.1) 139 (10.0) 0.981 
 Organ transplantation 71 (4.0) 31 (8.0) 40 (2.9) <0.001 
 Arterial hypertension 736 (41.5) 167 (43.2) 569 (41.1) 0.465 
 Diabetes mellitus (any type) 92 (5.2) 21 (5.4) 71 (5.1) 0.814 
 Malnutrition 366 (20.7) 109 (28.2) 257 (18.6) <0.001 
Diagnosis at ICU admission2     
 Sepsis/septic shock 537 (30.3) 161 (41.6) 376 (27.1) <0.001 
 Respiratory failure  571 (32.2) 119 (30.7) 452 (32.6) 0.483 
 Heart failure and cardiogenic shock 486 (27.4) 140 (36.2) 346 (25.0) <0.001 
 Pancreatitis 35 (2.0) 8 (2.1) 27 (1.9) 0.883 
 Major trauma 263 (14.8) 41 (10.6) 222 (16.0) 0.008 
 Non-traumatic neurological disease 277 (15.6) 14 (3.6) 263 (19.0) <0.001 
 Surgery prior to admission 433 (24.4) 185 (47.8) 248 (17.9) <0.001 
 Infection (any type) at admission 689 (38.9) 139 (35.9) 550 (39.7) 0.176 
Treatment at ICU admission2     
 Mechanical Ventilation 790 (44.6) 235 (60.7) 555 (40.1) <0.0001 
 Vasoactiva 79 (4.5) 24 (6.2) 55 (4.0) 0.060 
Lab values at admission1     
 Sodium (mmol/l) 137.8 [135.3 - 140.3] 137.0 [134.7 - 139.7] 138.0 [135.5 -140.5] <0.001 
 Bicarbonate (mmol/l) 22.6 [20.3 - 25.0] 21.1 [18.3 - 23.1] 23.2 [21.0 - 25.7] <0.001 
 Lactate (mmol/l) 2.0 [1.2 - 3.3] 3.5 [2.3 -5.4] 1.7 [1.1 -2.6] <0.001 
 Creatinine (mmol/l) 99 [70.5 - 150.7] 121 [81.5 – 185.0] 95 [68.0 - 137.5] <0.001 
1 median [IQR]; 2 n (%). APACHE IV = Acute Physiology And Chronic Health Evaluation; LOS = Length of Hospital Stay; ICU = 
Intensive Care Unit; IQR = Interquartile Range 
 
 
 
 
 
  



J. Clin. Med. 2022, 11, 336 5 of 7 
 

 

Supplemental Figure S1. Imputed Variables 
 

 

Explanatory variables on admission with missing values (%): APACHE IV score (24.2%), bicarbonate (6.6%), sodium (1.1%), 
lactate (6.0%), and creatinine (7.7%). Variables were imputed using multiple imputation (no. datasets = 10). The density of the 
imputed data for each imputed dataset is showed in magenta while the density of the observed data is showed in blue. 
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Supplemental Figure S2. Boruta Variable Importance 
 

 
Variable selection for contribution to FO on day 3 after ICU admission. Hx = History of, APACHE IV = Acute Physiology And 
Chronic Health Evaluation,  Green columns were confirmed as being “important”, yellow columns represent “tentative” attributes, 
and red columns rejected variables.  
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