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Abstract: Distal symmetric polyneuropathy (DPN), particularly chronic sensorimotor DPN, rep-
resents one of the most frequent complications of diabetes, affecting 50% of diabetic patients and
causing an enormous financial burden. Whilst diagnostic methods exist to detect and monitor
this condition, they have significant limitations, mainly due to their high subjectivity, invasiveness,
and non-repeatability. Corneal confocal microscopy (CCM) is an in vivo, non-invasive, and repro-
ducible diagnostic technique for the study of all corneal layers including the sub-basal nerve plexus,
which represents part of the peripheral nervous system. We reviewed the current literature on the use
of CCM as an instrument in the assessment of diabetic patients, particularly focusing on its role in
the study of sub-basal nerve plexus alterations as a marker of DPN. CCM has been demonstrated to
be a valid in vivo tool to detect early sub-basal nerve plexus damage in adult and pediatric diabetic
patients, correlating with the severity of DPN. Despite its great potential, CCM has still limited
application in daily clinical practice, and more efforts still need to be made to allow the dissemination
of this technique among doctors taking care of diabetic patients.

Keywords: corneal confocal microscopy; diabetes; diabetic peripheral neuropathy

1. Introduction

Diabetes mellitus is one of the most common chronic diseases worldwide, with an
estimated global prevalence among the adult population of 10.5% [1]. Its prevalence will
continue to increase in the next few decades, and it is expected to rise to 12.2% in 2045,
carrying an enormous financial burden mainly due to the complications of the disease [2].

Both Type 1 diabetes mellitus (T1DM), characterized by absolute insulin deficiency
due to the loss of the secretory function of pancreatic β-cells, and Type 2 diabetes mellitus
(T2DM), in which there is a progressive loss of insulin secretion on the background of
insulin resistance [3], are accompanied by characteristic macrovascular and microvascular
complications, the latter including retinopathy, nephropathy, and neuropathy [4].

Diabetic neuropathies represent a heterogeneous group of disorders that could be
classified into generalized symmetric polyneuropathies (i.e., acute sensory, chronic sensori-
motor, and autonomic) and focal and multifocal neuropathies (i.e., cranial, truncal, focal
limb, proximal motor or amyotrophy and coexisting chronic inflammatory demyelinating
polyneuropathy), according to the affected part of the nervous system and to the clinical
presentation [5]. Among diabetic neuropathies, distal symmetric polyneuropathy (DPN)
and, in particular, chronic sensorimotor DPN represents the most frequent disorder, since
it affects approximately 50% of diabetic patients. It is defined as a progressive loss of
peripheral nerve axons in a distal to a proximal pattern, leading to complications such as
pain, reduced sensitivity, and foot ulceration [6].

Corneal confocal microscopy (CCM) is an in vivo technique that allows, in a non-
invasive way, the study of all corneal layers, including the sub-basal nerve plexus, which
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represents part of the peripheral nervous system. In particular, corneal nerves arise from
the ophthalmic branch of the trigeminal nerve, containing myelinated Aδ-fibers that lose
their myelin sheath within 1 mm of the limbus to guarantee corneal transparency and
unmyelinated C fibers. They enter the middle stroma and then track anteriorly reaching
and penetrating the Bowman’s layer, where they spread in a network of fibers running
parallel to the cornea surface forming the sub-basal plexus [7].

Our group previously demonstrated how CCM could represent an in vivo, non-
invasive, and reproducible diagnostic technique [8] for the study of corneal morphological
alterations not only in diabetic patients but also in other conditions such as post-refractive
surgery [9,10], topical chemotherapy in ocular surface squamous neoplasia [11], vernal
keratoconjunctivitis [12], Wilson disease [13], oxaliplatin-induced peripheral neuropa-
thy [14], therapy with epidermal growth factor receptor (EGFR) inhibitor depatuxizumab
mafodotin (ABT-414) in patients affected by EGFR-amplified recurrent glioblastoma [15,16],
and recently in COVID-19 recovered patients [17].

In the last decade, multiple studies conducted on diabetic patients have provided
evidence indicating that morphological changes in the sub-basal nerve plexus strongly
correlate with peripheral nerve damage and, thus, with DPN. In consequence, CCM is
currently considered a reliable, repeatable, and quantitative diagnostic method in the
screening, diagnosis, and monitoring of DPN.

Our purpose was to review the current literature on the use of CCM as an instrument
in the assessment of diabetic patients, focusing on its role in the study of sub-basal nerve
plexus alterations as a marker of DPN, particularly chronic sensorimotor DPN. Hence,
the findings reported in this review regarding diabetic peripheral neuropathy refer to
chronic sensorimotor distal polyneuropathy.

To identify potentially relevant articles in the medical literature, we searched MED-
LINE for English language articles published from January 1995 to May 2022. MEDLINE
was queried using the following search terms (used both individually and in combination
for advanced research): corneal confocal microscopy, diabetes, and diabetic neuropathy.
Additional articles were identified by reviewing the references of examined publications.
To identify potentially relevant articles to include in this review, two investigators reviewed
each paper. Articles included in the reference list were fully examined by the authors.

2. Principles of Confocal Microscopy

Marvin Minsky developed the original confocal microscope (CM) in 1955 [18], but it
was only in 1985 that this technology was used to analyze ex vivo the corneal mor-
phology [19], while the first in vivo images of the human cornea were published by
Cavanagh et al. in 1990 [20].

The difference between a CM and a conventional light microscope is the poorer image
quality of the latter due to reflections and light scattered from the structures that are
outside the focal plane of the microscope [21]. CM overcomes the problem of defocused
light thanks to the confocal principle: A single point of tissue can be illuminated by a
point light source and simultaneously imaged by a camera in the same plane, providing
images with a very high resolution and magnification and an en-face view of the structure
under evaluation [22].

There are three types of corneal confocal microscopes that differ in factors such as the
type and intensity of the light source, magnification, image contrast, and image resolution.
They are, from the oldest to the more recent, tandem scanning confocal microscopes
(e.g., Confoscan P4, Tomey Corporation, Cambridge, MA, USA), slit scanning confocal
microscopes (e.g., Confoscan 4, Nidek Technologies, Japan), and laser scanning confocal
microscopes (e.g., Heidelberg Retina Tomograph III Rostock Corneal Module, Heidelberg,
Germany) [23]. Differently from the others, a laser scanning confocal microscope has the
ability to serially produce images of thin layers from the cornea since it has a smaller
depth of focus, thus providing more accurate imaging of the cornea [24]. For this reason,
the Heidelberg Retina Tomograph III Rostock Corneal Module (Heidelberg, Germany) is
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the most used device in recent studies, approximately since 2010, evaluating the corneal
sub-basal nerve plexus not only in the diabetic population but also in other systemic disease
affecting the peripheral nerves.

3. The Sub-Basal Nerve Plexus Observed through Different Parameters

In 2000, Rosenberg was the first to study corneal structure in T1DM patients by means
of CCM, demonstrating that sub-basal nerve fiber density was reduced in patients versus
healthy controls and that this decrease correlated with DPN severity [25]. A few years
later, other works began to further discuss the same matter, suggesting that CCM could
provide a means to study human diabetic neuropathy in clinical trials [26,27]. The following
three parameters were first developed as potential indicators of corneal nerve fiber status:
corneal nerve fiber density (CNFD—the total number of major nerves per mm2 of corneal
tissue), corneal nerve fiber length (CNFL—the total length of all nerve fibers and branches;
mm per mm2 of corneal tissue), and corneal nerve branch density (CNBD—the number
of branches emanating from major nerve trunks per mm2 of corneal tissue); the latter,
in particular, represents the regenerative capacity of this nervous plexus [26]. They were
all reduced in a diabetic population versus healthy controls, with a tendency for greater
reduction with increasing severity of neuropathy (Figure 1).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 3 of 20 
 

 

Heidelberg, Germany) [23]. Differently from the others, a laser scanning confocal micro-
scope has the ability to serially produce images of thin layers from the cornea since it has 
a smaller depth of focus, thus providing more accurate imaging of the cornea [24]. For 
this reason, the Heidelberg Retina Tomograph III Rostock Corneal Module (Heidelberg, 
Germany) is the most used device in recent studies, approximately since 2010, evaluating 
the corneal sub-basal nerve plexus not only in the diabetic population but also in other 
systemic disease affecting the peripheral nerves. 

3. The Sub-Basal Nerve Plexus Observed through Different Parameters 
In 2000, Rosenberg was the first to study corneal structure in T1DM patients by 

means of CCM, demonstrating that sub-basal nerve fiber density was reduced in patients 
versus healthy controls and that this decrease correlated with DPN severity [25]. A few 
years later, other works began to further discuss the same matter, suggesting that CCM 
could provide a means to study human diabetic neuropathy in clinical trials [26,27]. The 
following three parameters were first developed as potential indicators of corneal nerve 
fiber status: corneal nerve fiber density (CNFD—the total number of major nerves per 
mm2 of corneal tissue), corneal nerve fiber length (CNFL—the total length of all nerve 
fibers and branches; mm per mm2 of corneal tissue), and corneal nerve branch density 
(CNBD—the number of branches emanating from major nerve trunks per mm2 of corneal 
tissue); the latter, in particular, represents the regenerative capacity of this nervous 
plexus [26]. They were all reduced in a diabetic population versus healthy controls, with 
a tendency for greater reduction with increasing severity of neuropathy (Figure 1). 

 
Figure 1. Images of the sub-basal nerve plexus captured with Heidelberg Retina Tomograph III 
Rostock Corneal Module (Heidelberg, Germany) from the central cornea of a healthy subject (A) 
and a diabetic subject with diabetic peripheral neuropathy (B). The comparison clearly shows the 
paucity of corneal nerve fibers in the diabetic neuropathic patient; in particular, there is evidence of 
a reduction in both the main fibers (red arrowheads) and the branches (blue arrowheads), deter-
mining a decrease in corneal parameters of length and density such as CNFL, CNFD, and CNBD. 

In the work of Kallinikos et al., another parameter was introduced in the assessment 
of diabetic corneal neuropathy: nerve fiber tortuosity [28]. It appeared to be significantly 
greater in a group of diabetic patients with severe neuropathy than in healthy control 

Figure 1. Images of the sub-basal nerve plexus captured with Heidelberg Retina Tomograph
III Rostock Corneal Module (Heidelberg, Germany) from the central cornea of a healthy subject
(A) and a diabetic subject with diabetic peripheral neuropathy (B). The comparison clearly shows the
paucity of corneal nerve fibers in the diabetic neuropathic patient; in particular, there is evidence of a
reduction in both the main fibers (red arrowheads) and the branches (blue arrowheads), determining
a decrease in corneal parameters of length and density such as CNFL, CNFD, and CNBD.

In the work of Kallinikos et al., another parameter was introduced in the assessment
of diabetic corneal neuropathy: nerve fiber tortuosity [28]. It appeared to be signifi-
cantly greater in a group of diabetic patients with severe neuropathy than in healthy
control subjects, and in the mild and moderate neuropathic groups (Figure 2). The authors
suggested that an increase in nerve tortuosity may represent a morphologic marker of
nerve regeneration.
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Figure 2. Images of the sub-basal nerve plexus captured with Heidelberg Retina Tomograph
III Rostock Corneal Module (Heidelberg, Germany) from the central cornea of a healthy subject
(A) and a diabetic subject with diabetic peripheral neuropathy (B). While the corneal nerve fibers
of the healthy subject are mostly straight, those of the diabetic neuropathic patient show increased
tortuosity (yellow arrowheads).

Midena et al. first reported alterations in a new corneal parameter in diabetic patients,
since they found, in patients versus healthy controls, a reduction in the number of nervous
beadings with a decreasing trend among patients with an increasing grade of neuropa-
thy (Figure 3) [29]. These authors concluded that, since nerve beadings document the
metabolic activity of the corneal sub-basal nerve plexus, representing an accumulation of
mitochondria along the nerve, their significant decrease mirrors the pathologic metabolic
activity of diabetic small nerve fibers. Nerve beadings were also studied by Ishibashi et al.,
who reported in a T2DM population, beyond a reduction in the frequency of beadings,
an increase in the bead size, in particular in patients with severe neuropathy [30].

Other parameters that were less frequently evaluated as markers of DPN were the
thickness and proportion of curved stromal nerves [31], fiber reflectivity [32], fiber size (i.e.,
width and area) [33], and fractal dimension (which represents the measure of the structural
complexity of the sub-basal nerve plexus, appearing to be reduced in DPN) [34], but it has
been demonstrated that the most reliable parameter for the detection of abnormality of
small fiber morphology is CNFL, which appears to be the most reproducible and strongly
associated with the different measures of neuropathy severity [35,36]. We believe that
nervous beading frequency, mirroring the metabolic activity of the corneal fibers, repre-
sents a great biomarker of peripheral nerve damage, probably being even more accurate
than the measures of density or length. However, we are aware that nervous beading is a
difficult parameter to obtain since it requires a considerable level of expertise, and it may be
affected by subjectivity; thus, a method to standardize this kind of measure as well would
be useful for the future. CNFL showed an even greater ability to differentiate between
diabetic individuals with and without neuropathy when standardized for tortuosity [37].
In a cohort of 89 T1DM patients, the threshold value that optimized sensitivity and speci-
ficity for ruling in DPN, according to clinical and electrophysiological examinations, was a
CNFL of ≤14.0 mm/mm2 (sensitivity 85%, specificity 84%) [38]. In a larger population
composed of both T1DM (516 subjects) and T2DM (482 subjects) patients, the deriva-
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tion AUC for CNFL, representing diagnostic accuracy, was 0.77 in T1DM and 0.68 in
T2DM [39]. The optimal threshold for automated CNFL was 12.5 mm/mm2 in T1DM and
12.3 mm/mm2 in T2DM. In the total cohort, a lower threshold value below 8.6 mm/ mm2

to rule in DPN and an upper value of 15.3 mm/mm2 to rule out DPN were associated with
88% specificity and 88% sensitivity.
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Figure 3. Images of the sub-basal nerve plexus captured with Heidelberg Retina Tomograph
III Rostock Corneal Module (Heidelberg, Germany) from the central cornea of a healthy subject
(A) and a diabetic subject with diabetic peripheral neuropathy (B). Red arrows indicate nerve bead-
ings, counted in 100 µm of a single nerve fiber (red lines). The comparison highlights how nerve
beadings are reduced in diabetic neuropathic patients versus healthy subjects.

Great attention has also been given to the inferior whorl (IW), identified as an area
with a vortex-like pattern located inferior and slightly nasal to the corneal apex. Given
that DPN is a length-dependent, symmetrical neuropathy with the initial involvement
of the most distal sensory nerves, several authors hypothesized that in such a disease,
the fibers of the IW, being the most distal part of the sub-basal plexus, could be depleted
before the more proximal central nerves (Figure 4). Indeed, it was demonstrated that IW
length (IWL) has a comparable [40–42] or even greater [43] ability to diagnose patients
with DPN compared with the other extensively used corneal parameters and that IWL
depletion is particularly useful in the longitudinal assessment of corneal nerve loss in
diabetic neuropathic patients [44].

An issue regarding the reliability of corneal nerve parameters as markers of neuronal
damage in diabetic patients could be the influence of age on their status. However, the ma-
jority of the works searching also for a possible influence of age on the studied corneal
parameters showed that the enrolled subjects’ age at the moment of examination did not
correlate with the corneal sub-basal nerve plexus parameters under evaluation. This in-
volved not only the most frequently used parameters such as corneal nerve fibers’ length
and density and corneal branching density [39,45,46] but also the nerve fiber tortuosity
and corneal nervous beadings [28,29,47], both in patients and in healthy control group [48],
as well as in both adults and pediatric populations [49]. These findings are consistent with
other reports, focusing on healthy subjects, that demonstrated how the morphology of
the corneal sub-basal nerve plexus is not influenced by age, thus allowing the exclusion
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of a relevant biologic parameter when evaluating changes in the corneal sub-basal nerve
plexus [50,51]. Conversely, few other authors evaluating corneal nerve damage in diabetic
patients found a correlation between patients’ age and CNFL, CNFD, and CNBD [52–55],
in accordance with papers reporting that age is a weak determinant of corneal nerve fiber
abundance in healthy people [56,57].
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peripheral neuropathy (B), showing an evident depletion of fibers in the diabetic neuropathic patient.

4. Comparisons between CCM and other DPN Diagnostic Measures

Since the first demonstrations of corneal nerve damage in patients with DPN, CCM has
been proposed as a definitive surrogate marker of neuropathy in diabetic patients, to supply
the request of regulatory authorities for clinically relevant surrogate end points. These
would be vital to accurately define at-risk patients, anticipate deterioration, and assess
the efficacy of new therapies. Indeed, the detection of early signs of neuropathy may
allow intervention with treatments to slow or reverse this condition. Although diagnostic
methods such as electrophysiology, quantitative sensory testing (QST), and the assessment
of neurological disability are advocated to define neuropathic severity, they have relevant
limitations due to, respectively, their inability to detect small fiber dysfunction, their
limited availability, and high subjectivity [58,59]. An objective evaluation of small nerve
fiber damage, which is an earlier indicator of peripheral neuropathy whereas large fiber
deterioration develops later, can be conducted by means of sural nerve or skin biopsy,
nevertheless, these techniques are invasive and non-repeatable [60,61]. On the contrary,
CCM is able not only to detect small fiber changes but also to do so non-invasively, in a
very precise and reproducible way.

Several studies have compared the ability of CCM and skin biopsy to quantify small
nerve fiber pathological changes to diagnose and assess the progression of DPN, demon-
strating comparable diagnostic efficiency between intraepidermal nerve fiber (IENF) pa-
rameters and corneal nerve parameters, with the latter providing the significant further
advantage of revealing damage before detectable nerve dysfunction in an entirely non-
invasive way [62–64]. The diagnostic efficacy of CCM has also been tested in comparison
to corneal esthesiometry, with evidence that not only do they have comparable diagnostic



J. Clin. Med. 2022, 11, 5130 7 of 19

utility for DPN but also that CCM is definitively better and more reproducible to detect
nerve damage earlier and quantitatively better [48,65,66].

The LANDMark study was specifically designed with the purpose to investigate the
utility of corneal nerve morphology and function as markers of diabetic neuropathy [36].
The authors evaluated 231 individuals with diabetes with predominantly mild or no
neuropathy and 61 controls by means of CCM, comparing corneal nerve fiber parameters
with established tests of DPN, in particular diabetic neuropathy symptom score, neuropathy
disability score, testing with 10 g monofilament, QST (warm, cold, vibration detection) and
nerve conduction studies. They found that CNFL shows the strongest associations with
other diagnostic tests of neuropathy as well as with established risk factors for neuropathy.
Furthermore, in a sub-set of 38 T1DM individuals who fulfilled a strict criterion of “normal”
classification for all seven measures of neuropathy at the baseline and were followed over a
4-year period, corneal nerve morphology, as captured by CCM, demonstrated the greatest
and most sustained degeneration, among all the other measures of DPN [67].

5. Role of CCM in the Longitudinal Assessment of DPN

One of the greatest advantages that a diagnostic technique should have is the capacity
to also detect variations in time in order to monitor the disease under evaluation. As regards
CCM and corneal nerve parameters as DPN markers, several longitudinal studies have
investigated changes in sub-basal nerve plexus morphology and its relationship with the
conventional measures of neuropathy in individuals with diabetes. Dehgani et al. followed
a T1DM patient cohort over a period of 4 years [52], and more recently, Dhage et al. enrolled
both T1DM and T2DM patients for a mean follow-up of 6.5 years [68]. The first study, based
on a reported association between corneal parameters and DPN severity, hypothesized
that individuals with diabetes and DPN would demonstrate a faster deterioration of sub-
basal nerve plexus tissue than those without DPN. The authors found that, in the DPN
group, the parameter that underwent the most marked reduction over time was CNFD
and suggested that branch damage might represent the primary pathological change
in DPN, whereas CNFD (a parameter related to the major nerve trunks) deterioration
occurs later. The reduction in CNFD, along with a non-significant decline in the other
two parameters, may suggest the degeneration of major nerve trunks with concomitant
regeneration reflected by an increase in the CNBD and CNFL. The study of Dhage et al.
also identified over a long follow-up period a worsening of diabetic neuropathy by means
of CCM, demonstrating a reduction in CNFD, but also CNBD and CNFL [68].

Longitudinal studies are extremely important since they allow the identification of the
threshold values of a measure that could be used to predict the development of the disease
for which the measure is employed. This also occurred with CCM and sub-basal nerve
plexus parameters. Since CNFL has been demonstrated to be the most reliable parameter
for the detection of abnormality of small fiber morphology, this parameter was compared
between diabetic patients who did or did not develop DPN after a long follow-up period,
and the receiver operator characteristic (ROC) curve was used to determine its capability to
predict DPN, both in T1DM populations [69–71] and in larger T1DM and T2DM cohorts [72].
It was demonstrated that CCM could predict the 4-year incident DPN with 63% to 82%
sensitivity and 69% to 74% specificity for the CNFL threshold cutoff of 14.1 mm/mm2 to
14.9 mm/mm2, according to this previous study.

Lewis et al. identified a new marker of DPN onset and progression, the rapid corneal
nerve fiber loss (RCNFL) [73]. The authors aimed first to determine the reference distri-
bution for the annual change in CNFL in healthy control patients, and then, from this
distribution, to find a threshold for abnormal loss, and finally to apply this reference thresh-
old to diabetic individuals, determining the prevalence of abnormal loss in a large cohort of
patients. The RCNFL was defined by values exceeding the 5th percentile of 6% loss, and it
was found to occur in 17% of diabetic patients. The RCNFL may thus identify patients at
the highest risk for the development and progression of DPN.
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6. How Glycemic Parameters Affect Corneal Nerve Fibers

It is well-known that, in T1DM patients, long-standing hyperglycemia is an important
causative factor of neuropathy, and that vascular risk factors, such as body mass index
(BMI), dyslipidemia, and hypertension are involved in the development of neuropathy
independently from hyperglycemia [74,75]. However, even with good glycemic and risk
factor control, the consequences of DPN can be severe. Furthermore, the results regarding
a possible neurological improvement in DPN are inconclusive, probably because of the
lack of appropriately sensitive and effective methods to evaluate the effect of glycemic
control on DPN. Through CCM, several studies have evaluated how changes in glycemic
parameters could affect corneal nerve fibers.

A group of studies demonstrated, in a population of T1DM patients that underwent
simultaneous pancreas and kidney transplantation, thus reaching euglycemia, an increase in
CNFD and CNFL at 6 months, an increase also in CNBD at 12 months, and the maintenance
of this improvement at 36 months [76–78]. Such improvement in corneal nerve fibers
shown by CCM was not accompanied by significant improvement in other neuropathy
assessing measures including neurophysiology, QST, corneal sensitivity, and intraepidermal
nerve fiber density. Another study based on an interventional strategy that confirmed the
regeneration of corneal nerve fibers after good glycemic control was that of Azmi et al., who
concluded that continuous subcutaneous insulin infusion, which is superior to multiple
daily insulin injections for reducing HbA1c, was also superior in promoting small-fiber
regeneration, as assessed by CCM [79]. Thus, CCM results are able to track the recovery of
DPN after interventions such as simultaneous pancreas and kidney transplantation and
continuous subcutaneous insulin infusion.

Additionally, many observational studies conducted both on T1DM patients and on
streptozotocin-induced diabetic C57Bl/6J mice reported a correlation between the glycemic
control as expressed by levels of HbA1c and corneal nerve parameters, in particular, CNFD
and CNFL but also CNBD and beading frequencies [36,53,80–84].

In recent years, the concept of glycemic variability has emerged as a risk factor for
both the macrovascular and microvascular complications of diabetes, including neuropa-
thy [85]. Diabetic patients with similar mean glucose or HbA1c levels often exhibit dif-
ferent microvascular and neuropathy outcomes, and glucose variability, representing the
number and degree of glucose excursion, could be responsible for these complications.
Mahelkova et al., starting from this assumption, tested for possible associations between
parameters of glycemic compensation and corneal sub-basal nerve fiber status [45]. They
found that corneal parameters were not correlated with HbA1c but instead with glycemic
variability expressed as glycemic standard deviation (SD) and that they were surprisingly
higher in those with higher glycemic variability. Furthermore, CNFD CNFL and CNBD
resulted in significantly higher values in those with a higher total dose of insulin per
kilogram, concurrent with the findings indicating that, in the peripheral nervous system,
insulin facilitates nerve regeneration and that insulin applied to the cornea of diabetic mice
prevent axonal loss in the sub-basal plexus [86]. Thus, the higher total dose in patients with
higher glycemic variability may explain the better status of the corneal nerve fibers [45].
Another study assessing glycemic variability indexes found that the all-time SD of HbA1c
was independently associated with CNFD, CNFL, and fractal dimension [87].

As regards T2DM, various works investigated the correlation between HbA1c and
the corneal nerve morphology via CCM, concluding that the regeneration of corneal nerve
fibers follows an improvement in glycemic control, with a significant association over
time between HbA1c levels and corneal parameters, including bead size and corneal
nerve thickness [30,88–90].

7. CCM Findings Help Defining Diabetic Corneal Neuropathy Pathogenesis

CCM has been revealed to be a useful tool also for the study of the pathogenesis of
corneal neuropathy in diabetic subjects since the underlying basis for corneal nerve damage
is not definitely established.
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It has already been stated that the development of diabetic neuropathy is associated
with poor glycemic control and with the development of microvascular complications,
and a number of metabolic risk factors such as lipids, blood pressure, and BMI have
also been shown to be related to the development of DPN. There is also evidence that an
immune-mediated mechanism may act in concert with hyperglycemia to damage sensory
and autonomic neurons [91]. Tavakoli et al. tested the involvement of this immune-
mediated mechanism in corneal diabetic neuropathy by evaluating the presence and density
of corneal dendritic cells (DCs) in a diabetic population and searching for a correlation
between DCs and the extent of corneal nerve damage [92]. DC density was significantly
increased in diabetic patients, particularly in those with no or mild neuropathy, whereas
it decreased in those with moderate and severe neuropathy, though still remaining above
control values. The authors hypothesized that DCs, at least in the early phase of nerve
damage, could play a role independently of hyperglycemia since no correlation was found
between HbA1c and DC density. The study of Leppin et al. had the same purpose, and to
achieve it, the authors measured DC density and corneal parameters in mice models of
T1DM and T2DM [93]. They found a significant negative correlation between DC density
and nerve fibers in diabetic mice, concluding that the increase in DCs could play an initial
role in the manifestation of diabetic corneal neuropathy. The increase in DCs upon diabetic
induction might be interpreted as a cellular response to inflammation, as diabetes is known
to be associated with systemic inflammation. The close position of DCs and single nerve
fibers of the sub-basal nerve plexus may suggest communication between the two cell
structures. As diabetes is an inflammatory disease, the interaction of the two cell types
could lead to neurogenic inflammation, resulting in the release of neuropeptides, thus
contributing to a bidirectional interaction of corneal DCs and nerve fibers. In conclusion,
these data provide support for a potential immune-mediated basis of corneal nerve damage.

It has also been hypothesized that the pathogenesis of corneal nerve damage could
have something in common with that of the retinal neurodegeneration seen in diabetes.
There is mounting evidence that neurodegeneration has an important role in the patho-
physiology of diabetic retinal disease and may be present even in the absence of vascular
pathology [94]. There are few studies comparing alterations in corneal nerves with retinal
neuropathy-linked parameter modifications in the early stages of DM2 [90,95]. They found
a reduction in both corneal nerve parameters and in retinal nerve fiber layer (RNFL) and
inner macular layer thickness of diabetic patients, but no variable of the corneal nerve
fiber morphology was statistically significantly correlated with the thickness of any of
the retinal layers in the macular or peripapillary region. It has been hypothesized that
small corneal nerve fibers and retinal ganglion cells have different morbidity due to their
different types of nerve structures. Taken together, the results of these studies indicate that
nerve fiber degenerations in the cornea and retina occur as two independent pathological
changes in diabetes, thus excluding the possibility of common pathogenesis, maintaining
the assumption that nerve fiber alterations in the sub-basal nerve plexus of diabetic corneas
represent the first evidence of sub-clinical DPN and appear to progress in parallel with
the disease.

Furthermore, diabetic corneal nerve fiber changes have been suggested to be related
to the progression of diabetic retinopathy (DR). Several studies have demonstrated, mainly
but not only in T2DM populations, a strong association in the progress of DR with dia-
betic corneal neuropathy, which, in turn, seems to run in parallel with DPN, showing that
CCM variables progressively decreased with the increasing severity of DR [31,32,48,96–99].
Some of these works also disserted the possibility that treatment with retinal argon laser
photocoagulation in diabetic patients with proliferative DR could affect in a certain way
the corneal sub-basal plexus determining a more pronounced decrease in CCM parameters,
but the results were contrasting [32,98,100]. Bitirgen et al., beyond demonstrating a correla-
tion between the severity of DR and that of corneal damage, also observed a significant
reduction in CNFD, CNBD, and CNFL in patients without DR [98]. This, therefore, demon-
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strates that diabetic neuropathy in the form of corneal nerve fiber damage occurs before
the development of diabetic retinopathy, in agreement with the previous data [101–103].

It can be argued that the parallel progress of entities such as DR and diabetic corneal
neuropathy is based on their common pathogenetic mechanisms. Hyperglycemia observed
in diabetic patients seems to represent the leading factor for the pathogenesis of macrovas-
cular and microvascular complications, including neuropathy. Chronic hyperglycemia
seems to be the leading factor for the pathogenesis of macrovascular and microvascular
complications of diabetes, including neuropathy, leading to a metabolic cascade that causes
peripheral nerve injury through an increased flux of the polyol pathway, accumulation of
advanced glycosylation end products, excessive release of cytokines, activation of protein
kinase C, and exaggerated oxidative stress [104–106].

We have to keep in mind the avascular nature of the cornea; hence, CCM parameters
may not be dependent on vascular changes. The corneal nerves are nourished mainly by
the aqueous humor via diffusion and partly by the axonal flow, which comes from the nerve
cell body located in the brainstem; therefore, corneal nerves are not likely to have direct
ischemic damage caused by macrovascular impairment, especially arterial stiffness and
structural sclerosis [107]. Given this assumption, the aforementioned effects of glycemic
control on corneal parameters denote the predominant role of the metabolic mechanisms for
the pathogenesis of corneal nerve damage and may also reflect the impairment of metabolic
support for axons normally provided by Schwann cells or the deleterious effect of diabetes
on unmyelinated nerves [53]. Indeed, in histological specimens of corneas of rats with
streptozocin-induced diabetes, Ishida et al. observed irregular patches of thickening and
thinning in the basal lamina of Schwann cells, as well as occasional axonal degeneration in
unmyelinated corneal fibers and irregular distribution of nerve beading [108]. The authors
hypothesized that, in diabetes, the metabolic support for the axon normally provided
by Schwann cells could be impaired, thus providing the basis for the development of
corneal neuropathy. In particular, two studies demonstrated, both in T1DM and T2DM,
a correlation between corneal morphological changes and peripheral nerve fibers’ function
represented by axonal excitability measurements [109,110]. Since axonal excitability reflects
the biophysical properties of axons, these results highlight the structural and metabolic
changes in Schwann cells in diabetes, supporting the concept that axonal degeneration
could be partly due to the impairment of Schwann cells.

8. CCM in Pediatric Population Studies

In recent years great interest has grown in the assessment of corneal nerve damage
in the diabetic pediatric population. Sub-clinical DPN has been reported in 25% of newly
diagnosed and 50% of children within 5 years from the diagnosis of T1DM; however,
the disease is often asymptomatic in children, and early diagnosis is difficult [111]. For this
reason, a technique able to easily and non-invasively detect the early signs of DPN, as CCM
has been demonstrated to accomplish in adults, is fundamental even in diabetic children
and young adults. In vivo CCM image analysis demonstrated good reproducibility with
excellent intra- and interindividual variability in pediatric subjects, giving further evidence
of the robustness of CCM as a rapid and non-invasive approach for the detection of early
neuropathy in children with diabetes [112].

A study by Szalai et al. on T1DM young patients versus healthy controls reported
significantly lower CNFD, CNBD, CNFL, and corneal total branch density (CTBD) and
greater nerve fiber width, with these changes being more severe in patients with DR [113].
From the same population, a group of subjects that underwent a 2-year follow-up visit
was subsequently enrolled to search for the progression of corneal nerve fiber abnormal-
ities [114]. The authors found a significant decrease in CNBD and CTBD, representing
the distal branches, in patients without DR and a reduction in CNFD, representing the
more proximal nerves, in patients with DR, relating this result to the retrograde process of
neurodegeneration typical of the DPN. The same conclusion was drawn by Ferdousi et al.
showing, in a large cohort of children with T1DM, a significant reduction in CNBD and
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CNFL with preserved CNFD and tortuosity [115]. The reduction in CNBD and CNFL
may represent the earliest pathology to the most distal nerves, sparing the more proxi-
mal major nerves represented by CNFD. The retrograde process of neurodegeneration in
corneal neuropathy had already been demonstrated by a greater reduction in IWL, com-
pared with central CNFL [43]. Gad et al. used this parameter in the assessment of corneal
sub-basal nerve plexus damage in children with T1DM, demonstrating an IWL reduction be-
yond a reduction in other corneal parameters including CNFD, CNBD, and CNFL [49,116].
Gotze et al. reported, in otherwise healthy pediatric T1DM patients compared with controls,
a reduction only in CNFL with no significant alterations in other parameters [117].

Therefore, these few studies conducted in young T1DM patients have produced
inconsistent results, probably because of the limited sample size, with low statistical power
for detecting differences between patients and healthy controls. A large cohort of T1DM
children and adolescents has been more recently studied, demonstrating a consistent
reduction in fiber length and density parameters, providing substantial evidence that
early alterations in small corneal nerve fibers are detectable in children and adolescents
with diabetes [118]. These findings highlight the possible need for the earlier screening of
diabetic neuropathy in children with T1DM using CCM.

9. Limitations and Future Perspectives

Throughout this review, we highlighted how CCM has been demonstrated to be
a useful tool for the detection of sub-basal nerve plexus damage in diabetic patients
in a reliable and non-invasive way. Furthermore, it has been demonstrated that this
type of nerve damage correlates with the severity of DPN and that CCM has the ability
to detect it earlier and with the same or even greater diagnostic accuracy than other
known neuropathy measures, which instead present limitations such as subjectivity and
invasiveness. Unfortunately, the use of CCM remains under-utilized and too limited to
research purposes rather than application in standard clinical practice.

Just recently, CCM has been applied in two randomized clinical trials: One confirmed
CCM sensitive enough to detect the superior efficacy of 8-week mecobalamin intramuscu-
lar injection treatment for DPN compared with the oral tablet treatment [119]. The other,
the BOND study, which is still ongoing, aims to assess the effects of treatment with ben-
fotiamine, compared with placebo, in participants with T2DM and mild-to-moderate
symptomatic DPN, with the primary endpoint being a change in CNFL after 12 months of
treatment and secondary endpoints including other CCM measures [120].

However, one of the major problems limiting the extension of CCM to standard
diabetes clinical practice is image analysis. A variety of methods for quantifying sub-basal
plexus parameters have been used in the past several years, often differing from study to
study. Originally, researchers used manual analysis of sub-basal corneal nerve parameters,
but it was a tedious, subjective, and time-consuming procedure. Considerable expertise
was necessary to quantify corneal nerve changes. To be clinically useful as a diagnostic
tool, it is essential that CCM images are automatically analyzed and the different nerve
parameters quantified.

ImageJ, particularly with its plugin NeuronJ, currently represents one of the most
frequently used methods to conduct a semi-automated analysis of the sub-basal nerve
plexus, since it has been used in multiple studies to assess parameters such as IWL, CNFL,
CNFD, CNBD, beading frequencies, and corneal nerve thickness [30,42,48,84,88,90,93,119].
It is a validated open-source image analysis platform developed by the National Institutes
of Health (NIH; Bethesda, MD, USA), which includes NeuronJ, a semi-automated nerve-
tracing plugin that intuitively draws a line over the center of a visible nerve fiber as the
nerve is traced [121–123].

Ruggeri et al. made the first step toward the development of an automated method
of analysis (using Confoscan 4) that does not require any user intervention, designing a
model for the automatic recognition and tracing of corneal nerves in confocal microscopic
images [124,125]. Efron et al. tested a semiautomated nerve analysis software on images
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captured with Heidelberg Retina Tomograph 3 with Rostock Corneal Module to measure
CNFL [126]. All measures presented highly repeatable results. Then, Malik et al. began
to develop an image analysis software that allows an automatic quantification of some
selected, unfortunately not all, corneal nerve parameters (i.e., the previously cited CNFD,
CNBD, CNFL, and CTBD, as well as corneal nerve fiber area and corneal nerve fiber width)
from single or multiple CCM images: the ACCMetrics software (Figure 5) [127–129]. Other
studies confirmed and validated the reliability of corneal nerve fiber measurements via
ACCMetrics; in particular, the automated quantification of CNFL, CNFD, and CNBD has
demonstrated comparable DPN detection ability to manual and semi-automated analy-
sis [63,130,131]. Midena et al. have recently demonstrated, integrating the ACCMetrics with
nerve beading quantification, the presence of corneal neuropathy in subjects previously
affected by the COVID-19 disease [17].
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Figure 5. An example of elaboration via ACCMetrics software (B) of an image of the sub-basal
nerve plexus captured with Heidelberg Retina Tomograph III Rostock Corneal Module (Heidelberg,
Germany) from the central cornea of a healthy subject (A). The elaborated image shows main fibers
in red, branches in blue, and branching points in green.

Nevertheless, the standard criteria for CCM image analysis are still missing. Future
perspectives include methods based on artificial intelligence. A number of fully automated
deep learning methods based on convolutional neural networks (CNNs) have recently been
developed to analyze corneal nerve parameters, in both animals [132,133] and humans.
Models such as U-net [133–136], CNS-Net [137], and deepNerve [132,138] have been used
as multi-step approaches to segment and trace corneal nerves from CCM images and,
therefore, process their properties. Deep learning algorithms have also been applied to
build automatic corneal nerve tortuosity grading systems with the purpose of replacing the
time-intensive and perceptually biased subjective tortuosity grading [136,139]. Recently,
a few studies proposed deep learning models based on CNNs to directly associate CCM
images to healthy subjects or to those with diabetic neuropathy, demonstrating great
accuracy. Moreover, several authors demonstrated the superior performance of CNNs,
compared with ACCMetrics, in state-of-the-art paradigms, thus revealing its potential in
identifying clinically useful features [134,135,140].
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10. Conclusions

In a world in which the incidence of diabetes is continuously increasing, and the
macrovascular and microvascular complications of this disease are incurring an enormous
financial burden, early diagnosis aimed to successfully prevent or monitor invalidating
complications is essential. DPN represents one of the most frequent complications of dia-
betes, affecting approximately 50% of diabetic patients. Several methods used to identify
and follow this condition, including electrophysiology, QST, assessment of neurological
disability, and sural nerve or skin biopsy, have different and significant limitations since
some of them are unable to detect small fiber dysfunction and are highly subjective, while
others are invasive and non-repeatable. CCM, providing a non-invasive quantification
of corneal nervous small fibers, which represent part of the peripheral nervous system,
has been demonstrated to be a valid in vivo tool to detect early sub-basal nerve plexus
damages in adult and pediatric diabetic patients, correlating with the severity of DPN.
Reviewing the current literature, we investigated the utility of CCM in assessing DPN
through an exploration of different aspects of the technique. We focused on the different
corneal parameters used to evaluate sub-basal nerve plexus, among which CNFL is prob-
ably the most reproducible and strongly associated with other measures of neuropathy
severity, and on the corneal nerve changes that directly follow glycemic or other metabolic
parameters’ improvement as well as deterioration. We also evaluated the use of CCM
as an instrument to better understand the pathogenesis of corneal diabetic neuropathy,
which seems to be correlated with an immune-mediated mechanism but independent from
retinal neurodegeneration, which also occurs in the first phases of diabetes. Unfortunately,
despite its great potential, CCM has still limited application in daily clinical practice, mainly
because of the lack of knowledge among doctors taking care of diabetic patients. Probably,
the introduction of artificial intelligence in the evaluation of CCM data will break this
limiting barrier.

Author Contributions: Conceptualization, E.M. and E.C.; methodology, E.M. and E.C.; investigation,
E.C., G.M., L.F., M.B. and M.C.; data curation, E.C., G.M., L.F., M.B. and M.C; writing—original draft
preparation, E.C.; writing—review and editing, E.C., G.M. and E.M.; visualization, E.C.; supervision,
E.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The research contribution by the G.B. Bietti Foundation was supported by
Fondazione Roma and the Ministry of Health.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al.

IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes
Res. Clin. Pract. 2022, 183, 109119. [CrossRef] [PubMed]

2. Liu, R.; Li, L.; Shao, C.; Cai, H.; Wang, Z. The Impact of Diabetes on Vascular Disease: Progress from the Perspective of Epidemics
and Treatments. J. Diabetes Res. 2022, 2022, 1531289. [CrossRef] [PubMed]

3. American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2. In Standards of Medical Care in Diabetes—2016.
Diabetes Care 2016, 39, S13–S22.

4. Nathan, D.M. Long-term Complications of Diabetes Mellitus. N. Engl. J. Med. 1993, 328, 1676–1685. [CrossRef] [PubMed]
5. Thomas, P.K. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Diabetes 1997, 46, S54–S57.

[CrossRef]
6. Boulton, A.J.M.; Vinik, A.I.; Arezzo, J.C.; Bril, V.; Feldman, E.L.; Freeman, R.; Malik, R.A.; Maser, R.E.; Sosenko, J.M.; Ziegler, D.

Diabetic Neuropathies. A statement by the American Diabetes Association. Diabetes Care 2005, 28, 956–962. [CrossRef]

http://doi.org/10.1016/j.diabres.2021.109119
http://www.ncbi.nlm.nih.gov/pubmed/34879977
http://doi.org/10.1155/2022/1531289
http://www.ncbi.nlm.nih.gov/pubmed/35434140
http://doi.org/10.1056/NEJM199306103282306
http://www.ncbi.nlm.nih.gov/pubmed/8487827
http://doi.org/10.2337/diab.46.2.S54
http://doi.org/10.2337/diacare.28.4.956


J. Clin. Med. 2022, 11, 5130 14 of 19

7. Oliveira-Soto, L.; Efron, N. Morphology of corneal nerves using confocal microscopy. Cornea 2001, 20, 374–384. [CrossRef]
8. Midena, E.; Cortese, M.; Miotto, S.; Gambato, C.; Cavarzeran, F.; Ghirlando, A. Confocal microscopy of corneal sub-basal nerve

plexus: A quantitative and qualitative analysis in healthy and pathologic eyes. J. Refract. Surg. 2009, 25, S125–S130. [CrossRef]
9. Midena, E.; Gambato, C.; Miotto, S.; Cortese, M.; Salvi, R.; Ghirlando, A. Long-term effects on corneal keratocytes of mitomycin

C during photorefractive keratectomy: A randomized contralateral eye confocal microscopy study. J. Refract. Surg. 2007, 23,
S1011–S1014. [CrossRef]

10. Ghirlando, A.; Gambato, C.; Midena, E. LASEK and photorefractive keratectomy for myopia: Clinical and confocal microscopy
comparison. J. Refract. Surg. 2007, 23, 694–702. [CrossRef]

11. Parrozzani, R.; Lazzarini, D.; Alemany-Rubio, E.; Urban, F.; Midena, E. Topical 1% 5-fluorouracil in ocular surface squamous
neoplasia: A long-term safety study. Br. J. Ophthalmol. 2011, 95, 355–359. [CrossRef] [PubMed]

12. Leonardi, A.; Lazzarini, D.; Bortolotti, M.; Piliego, F.; Midena, E.; Fregona, I. Corneal confocal microscopy in patients with vernal
keratoconjunctivitis. Ophthalmology 2012, 119, 509–515. [CrossRef] [PubMed]

13. Sturniolo, G.C.; Lazzarini, D.; Bartolo, O.; Berton, M.; Leonardi, A.; Fregona, I.A.; Parrozzani, R.; Midena, E. Small fiber peripheral
neuropathy in Wilson disease: An in vivo documentation by corneal confocal microscopy. Investig. Ophthalmol. Vis. Sci. 2015,
56, 1390–1395. [CrossRef]

14. Campagnolo, M.; Lazzarini, D.; Fregona, I.; Cacciavillani, M.; Bergamo, F.; Parrozzani, R.; Midena, E.; Briani, C. Corneal confocal
microscopy in patients with oxaliplatin-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 2013, 18, 269–271. [CrossRef]

15. Parrozzani, R.; Lombardi, G.; Midena, E.; Leonardi, F.; Londei, D.; Padovan, M.; Caccese, M.; Marchione, G.; Bini, S.;
Zagonel, V.; et al. Corneal side effects induced by EGFR-inhibitor antibody–drug conjugate ABT-414 in patients with recur-
rent glioblastoma: A prospective clinical and confocal microscopy study. Ther. Adv. Med. Oncol. 2020, 12, 1758835920907543.
[CrossRef] [PubMed]

16. Parrozzani, R.; Lombardi, G.; Midena, E.; Londei, D.; Padovan, M.; Marchione, G.; Caccese, M.; Midena, G.; Zagonel, V.;
Frizziero, L. Ocular Side Effects of EGFR-Inhibitor ABT-414 in Recurrent Glioblastoma: A Long-Term Safety Study. Front. Oncol.
2020, 10, 593461. [CrossRef]

17. Midena, E.; Cosmo, E.; Cattelan, A.M.; Briani, C.; Leoni, D.; Capizzi, A.; Tabacchi, V.; Parrozzani, R.; Midena, G.; Frizziero, L.
Small Fibre Peripheral Alterations Following COVID-19 Detected by Corneal Confocal Microscopy. J. Pers. Med. 2022, 12, 563.
[CrossRef]

18. Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10, 128–138. [CrossRef]
19. Lemp, M.A.; Dilly, P.N.; Boyde, A. Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea 1985, 4, 205–209.

[CrossRef]
20. Cavanagh, H.D.; Petroll, W.M.; Alizadeh, H.; He, Y.G.; McCulley, J.P.; Jester, J.V. Clinical and Diagnostic Use of In Vivo Confocal

Microscopy in Patients with Corneal Disease. Ophthalmology 1993, 100, 1444–1454. [CrossRef]
21. Rio-Cristobal, A.; Martin, R. Corneal assessment technologies: Current status. Surv. Ophthalmol. 2014, 59, 599–614. [CrossRef]
22. Efron, N.; Perez-Gomez, I.; Mutalib, H.A.; Hollingsworth, J. Confocal microscopy of the normal human cornea. Cont. Lens

Anterior Eye 2001, 24, 16–24. [CrossRef]
23. Niederer, R.L.; McGhee, C.N.J. Clinical in vivo confocal microscopy of the human cornea in health and disease. Prog. Retin. Eye Res.

2010, 29, 30–58. [CrossRef] [PubMed]
24. Tavakoli, M.; Hossain, P.; Malik, R.A. Clinical applications of corneal confocal microscopy. Clin. Ophthalmol. 2008, 2, 435.

[PubMed]
25. Rosenberg, M.E.; Tervo, T.M.T.; Immonen, I.J.; Muller, L.J.; Gronhagen-Riska, C.; Vesaluoma, M.H. Corneal structure and

sensitivity in type 1 diabetes mellitus. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2915–2921.
26. Malik, R.A.; Kallinikos, P.; Abbott, C.A.; Van Schie, C.H.M.; Morgan, P.; Efron, N.; Boulton, A.J.M. Corneal confocal microscopy:

A non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003, 46, 683–688. [CrossRef]
27. Hossain, P.; Sachdev, A.; Malik, R.A. Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet

2005, 366, 1340–1343. [CrossRef]
28. Kallinikos, P.; Berhanu, M.; O’Donnell, C.; Boulton, A.J.M.; Efron, N.; Malik, R.A. Corneal nerve tortuosity in diabetic patients

with neuropathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 418–422. [CrossRef]
29. Midena, E.; Brugin, E.; Ghirlando, A.; Sommavilla, M.; Avogaro, A. Corneal diabetic neuropathy: A confocal microscopy study.

J. Refract. Surg. 2006, 22, 1047–1052. [CrossRef]
30. Ishibashi, F.; Kojima, R.; Taniguchi, M.; Kosaka, A.; Uetake, H.; Tavakoli, M. The Expanded Bead Size of Corneal C-Nerve Fibers

Visualized by Corneal Confocal Microscopy Is Associated with Slow Conduction Velocity of the Peripheral Nerves in Patients
with Type 2 Diabetes Mellitus. J. Diabetes Res. 2016, 2016, 3653459. [CrossRef]

31. Mocan, M.C.; Durukan, I.; Irkec, M.; Orhan, M. Morphologic alterations of both the stromal and subbasal nerves in the corneas of
patients with diabetes. Cornea 2006, 25, 769–773. [CrossRef] [PubMed]

32. De Cillà, S.; Ranno, S.; Carini, E.; Fogagnolo, P.; Ceresara, G.; Orzalesi, N.; Rossetti, L.M. Corneal subbasal nerves changes in
patients with diabetic retinopathy: An in vivo confocal study. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5155–5158. [CrossRef]
[PubMed]

http://doi.org/10.1097/00003226-200105000-00008
http://doi.org/10.3928/1081597X-20090115-09
http://doi.org/10.3928/1081-597X-20071102-06
http://doi.org/10.3928/1081-597X-20070901-08
http://doi.org/10.1136/bjo.2010.183244
http://www.ncbi.nlm.nih.gov/pubmed/20693564
http://doi.org/10.1016/j.ophtha.2011.09.018
http://www.ncbi.nlm.nih.gov/pubmed/22176802
http://doi.org/10.1167/iovs.14-15004
http://doi.org/10.1111/jns5.12036
http://doi.org/10.1177/1758835920907543
http://www.ncbi.nlm.nih.gov/pubmed/32550861
http://doi.org/10.3389/fonc.2020.593461
http://doi.org/10.3390/jpm12040563
http://doi.org/10.1002/sca.4950100403
http://doi.org/10.1097/00003226-198504000-00001
http://doi.org/10.1016/S0161-6420(93)31457-0
http://doi.org/10.1016/j.survophthal.2014.05.001
http://doi.org/10.1016/S1367-0484(01)80005-9
http://doi.org/10.1016/j.preteyeres.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19944182
http://www.ncbi.nlm.nih.gov/pubmed/19668734
http://doi.org/10.1007/s00125-003-1086-8
http://doi.org/10.1016/S0140-6736(05)67546-0
http://doi.org/10.1167/iovs.03-0637
http://doi.org/10.3928/1081-597X-20061102-08
http://doi.org/10.1155/2016/3653459
http://doi.org/10.1097/01.ico.0000224640.58848.54
http://www.ncbi.nlm.nih.gov/pubmed/17068451
http://doi.org/10.1167/iovs.09-3384
http://www.ncbi.nlm.nih.gov/pubmed/19553615


J. Clin. Med. 2022, 11, 5130 15 of 19

33. Brines, M.; Culver, D.A.; Ferdousi, M.; Tannemaat, M.R.; Van Velzen, M.; Dahan, A.; Malik, R.A. Corneal nerve fiber size adds
utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci. Rep. 2018, 8, 4734.
[CrossRef]

34. Chen, X.; Graham, J.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Ferdousi, M.; Azmi, S.; Efron, N.; et al.
Corneal Nerve Fractal Dimension: A Novel Corneal Nerve Metric for the Diagnosis of Diabetic Sensorimotor Polyneuropathy.
Investig. Ophthalmol. Vis. Sci. 2018, 59, 1113–1118. [CrossRef] [PubMed]

35. Hertz, P.; Bril, V.; Orszag, A.; Ahmed, A.; Ng, E.; Nwe, P.; Ngo, M.; Perkins, B.A. Reproducibility of in vivo corneal confocal
microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med. 2011, 28, 1253–1260. [CrossRef]
[PubMed]

36. Edwards, K.; Pritchard, N.; Vagenas, D.; Russell, A.; Malik, R.A.; Efron, N. Utility of corneal confocal microscopy for assessing
mild diabetic neuropathy: Baseline findings of the LANDMark study. Clin. Exp. Optom. 2012, 95, 348–354. [CrossRef]

37. Edwards, K.; Pritchard, N.; Vagenas, D.; Russell, A.; Malik, R.A.; Efron, N. Standardizing corneal nerve fibre length for nerve
tortuosity increases its association with measuRes. of diabetic neuropathy. Diabet Med. 2014, 31, 1205–1209. [CrossRef]

38. Ahmed, A.; Bril, V.; Orszag, A.; Paulson, J.; Yeung, E.; Ngo, M.; Orlov, S.; Perkins, B.A. Detection of diabetic sensorimotor
polyneuropathy by corneal confocal microscopy in type 1 diabetes: A concurrent validity study. Diabetes Care 2012, 35, 821–828.
[CrossRef]

39. Perkins, B.A.; Lovblom, L.E.; Bril, V.; Scarr, D.; Ostrovski, I.; Orszag, A.; Edwards, K.; Pritchard, N.; Russell, A.; Dehghani, C.; et al.
Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: A pooled multinational consortium
study. Diabetologia 2018, 61, 1856–1861. [CrossRef]

40. Petropoulos, I.N.; Ferdousi, M.; Marshall, A.; Alam, U.; Ponirakis, G.; Azmi, S.; Fadavi, H.; Efron, N.; Tavakoli, M.; Malik, R.A.
The Inferior Whorl For Detecting Diabetic Peripheral Neuropathy Using Corneal Confocal Microscopy. Investig. Ophthalmol. Vis. Sci.
2015, 56, 2498–2504. [CrossRef]

41. Pritchard, N.; Dehghani, C.; Edwards, K.; Burgin, E.; Cheang, N.; Kim, H.; Mikhaiel, M.; Stanton, G.; Russell, A.W.;
Malik, R.A.; et al. Utility of assessing nerve morphology in central cornea versus whorl area for diagnosing diabetic peripheral
neuropathy. Cornea 2015, 34, 756–761. [CrossRef]

42. Utsunomiya, T.; Nagaoka, T.; Hanada, K.; Omae, T.; Yokota, H.; Abiko, A.; Haneda, M.; Yoshida, A. Imaging of the Corneal
Subbasal Whorl-like Nerve Plexus: More Accurate Depiction of the Extent of Corneal Nerve Damage in Patients With Diabetes.
Investig. Ophthalmol. Vis. Sci. 2015, 56, 5417–5423. [CrossRef] [PubMed]

43. Kalteniece, A.; Ferdousi, M.; Petropoulos, I.; Azmi, S.; Adam, S.; Fadavi, H.; Marshall, A.; Boulton, A.J.M.; Efron, N.;
Faber, C.G.; et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful
diabetic neuropathy. Sci. Rep. 2018, 8, 3283. [CrossRef] [PubMed]

44. Ferdousi, M.; Kalteniece, A.; Petropoulos, I.; Azmi, S.; Dhage, S.; Marshall, A.; Boulton, A.J.M.; Efron, N.; Faber, C.G.;
Lauria, G.; et al. Diabetic Neuropathy Is Characterized by Progressive Corneal Nerve Fiber Loss in the Central and Inferior Whorl
Regions. Investig. Ophthalmol. Vis. Sci. 2020, 61, 48. [CrossRef] [PubMed]
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