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Abstract: Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers, a
definitive diagnosis of cSCC is crucial to prevent patients from missing out on treatment. The gold
standard for the diagnosis of cSCC is still pathological biopsy. Currently, its diagnostic efficiency
and accuracy largely depend on the experience of pathologists. Here, we present a simple, fast,
and robust technique, a microscopic multispectral imaging system based on LED illumination, to
diagnose cSCC qualitatively and quantitatively. The adaptive threshold segmentation method was
used to segment the multispectral images into characteristic structures. There was a statistically
significant difference between the average nucleocytoplasmic ratio of normal skin (4.239%) and cSCC
tissues (15.607%) (p < 0.01), and the keratin pearls cSCC have well-defined qualitative features. These
results show that the qualitative and quantitative features obtained from multispectral imaging can be
used to comprehensively determine whether or not the tissue is cancerous. This work has significant
implications for the development of a low-cost and easy-to-use device, which can not only reduce the
complexity of pathological diagnosis but can also achieve the goal of convenient digital staining and
access to critical histological information.

Keywords: cutaneous squamous cell carcinoma (cSCC); histopathology; multispectral imaging;
image segmentation; feature recognition

1. Introduction

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers,
accounting for 20% to 50% of cutaneous malignant tumors [1,2]. It develops more frequently
in people exposed to environmental factors such as ultraviolet light, as well as smoking,
chronic infections, and immunosuppression [3]. The incidence rate of cSCC increases
worldwide along with the population aging, posing a serious human health risk. Given the
high mortality and morbidities associated with this type of cancer, a correct early diagnosis
is very helpful in the management of this condition [4,5].

Traditionally, pathological diagnosis is the gold standard, according to the tissue
structure and cytological features. However, the diagnosis process is complicated and
largely relies on the pathologist’s experience, and is also subject to intra- and inter-observer
variability [6]. Additionally, the traditional microscopy imaging technique usually presents
an RGB image that can be conceived as a multispectral image with only three spectral
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bands, so some information in the image is mixed. The pathologist spends a great deal
of time making an accurate decision by observing histological samples. Furthermore, as
samples stained by different laboratories may have different degrees of uneven staining or
over-straining, this may lead to observer variability and also makes it difficult to extract
parameters. Therefore, a new method is necessary to mitigate the disadvantages.

The interaction between light and biological tissue involves scattering and absorption
of the photon. Multispectral imaging (MSI) is an optical spectroscopy imaging modality
that directly measures the incoming radiance spectra of light [7]. There are two major
detection modes, depending on the incidence of light within the tissue: light reflection
or light transmission. The spectral information measured by these technologies is usu-
ally related to the information about both scattering and absorption of light within the
sample. MSI technology has a unique capability for skin characterization because it can
take advantage of the spatial relationships among the different tissue absorption spectra
in a neighborhood. Spectral data cube analysis can incorporate complex spectral–spatial
models that provide a more accurate classification of image features specific to a targeted
disease [8]. The histopathological images show morphologic changes associated with cuta-
neous malignancy, such as irregular cell proliferation, irregular nuclear deformation, etc.
In the meantime, the composition of the tissue also changes, with collagen and lipid levels
varying widely between normal tissue and skin tumors. The optical properties of tissues
are also altered by these changes in morphology and composition, which makes spectral
imaging of great significance in tissue recognition. Spectral imaging enables simultaneous
spectral and image analysis, providing information about morphology and composition on
a single graph. Therefore, the samples can be analyzed by using the spectral characteristics
and spatial information contained in the multi-band image.

In recent years, MSI technology for pathological diagnosis has been used in studies on
digital staining in increasing numbers. S Ortega et al. have reviewed systematically that the
use of MSI suggested an improvement in the detection of diseases and clinical practice and
brought new opportunities in the analysis of histological samples [9]. Nevertheless, the
number of studies in this field is currently limited, and more research is needed to confirm
the advantages of this technology compared to conventional imagery. Additionally, to solve
the problem of different sample staining in different laboratories, Yagi et al. proposed a color
normalization method based on MSI technology and standard color tiles, improving the
accuracy and consistency of diagnosis in different laboratories [10]. Bautista et al. stained
sections digitally based on the spectral information of different tissues in MSI, which
highlight fibrous structures and emphasize the less remarkable structures in hematoxylin
and eosin (H&E) stained sections without additional dyeing operations [11]. What is more,
with MSI, Bayramoglu et al. used conditional generative adversarial networks to digitally
stain unstained lung tissues and extract spectral information to mimic the appearance of
H&E staining, directly eliminating the staining steps [12].

Though MSI technology has been widely used in many fields, there are few studies
about its application in cutaneous pathology. To explore the potential clinical value of MSI
technology, this study, based on a self-developed microscopic MSI system, used the optical
absorption properties of H&E staining to analyze pathological sections of cSCC and normal
skin tissue, tested digital segmentation’s actual imaging effect and ability, and is expected
to provide a new method for the pathological analysis of skin and skin cancers.

2. Materials and Methods
2.1. Experimental Equipment

We used the narrow-band LED illumination-based microscopic MSI system from pre-
vious studies [13]. Transmission and reflection are the two main imaging modes available,
depending on the characteristics of biological tissues. Transmission microscopes work by
allowing light to penetrate the image of a sample illuminated by light and are suitable
for transparent or thin samples where the light source is usually not on the same side as
the detector. Reflective microscopy can be used on both transparent and opaque samples
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by illuminating them with light falling from above and illuminating them with a light
source through an objective to obtain a microscopic image of the sample surface. The
light source of the fallout illumination is usually on the same side as the detector, which
allows for smaller systems, simpler optical paths, and easier design of multiple narrow-
band light sources. The subject of this study is skin tissue. Reflection imaging is more
similar to in vivo skin imaging modality, which makes future system modification easier.
In summary, if the multi-channel LED illumination is used, the reflective microscope is
easier to design the light path, has a wider application range, and is more suitable for the
multispectral microscopy system proposed in this experiment. The working principles are
shown in Figure 1. The system mainly uses 13 narrow-band LED lights which the control
software can light in sequence; the fiber bundle and the coupling lens group shape the light
emitted by the LEDs into parallel beams. This is then reflected by the beam splitter onto
the objective lens and focused on the sample. The light reflected back from the sample is
focused through the imaging lens onto a monochromatic digital camera’s sensor, and the
camera control program is used to sequentially expose and acquire spectral images which
form a sequence that leads to simultaneously acquiring both the image and the image’s
spectral information, and any one of the pixels in the image sequence can be taken for
image processing and spectral analysis. In order to study the basic performance of our
system’s relevant functions, we used a fiber optic spectrometer (USB2000+, Ocean Optics,
FL, USA) and a standard discrimination rate board (USAF1951, Thorlabs China, Shanghai,
China) to evaluate the system, and the performance parameters are shown in Table 1.
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Figure 1. Optical schematic diagram of the system.

Table 1. System performance parameters.

Number of
Wavelengths

Wavelength
(nm)

Spectral
Resolution

(nm)

Spatial
Resolution

(µm)

Field of View
(µm) Magnification

13 420–670 20 ≤0.4 520 × 416 140

2.2. Experimental Samples

A total of 10 female, hairless, immunocompetent SKH-1 mice (12 weeks old) were
provided by Shanghai Public Health Clinical Center, Fudan University (Shanghai, China).
The skin condition of cSCC was induced by solar-simulated UVR (Solar UV Simulator,
SIGMA, Shanghai, China) five times weekly. The initial minimal erythema dose (MED)
was 160 mJ/cm2 for UVB and 2520 mJ/cm2 for UVA. Hairless mice were irradiated with
90% of the MED in the first and second weeks. The thickness of the mouse skin gradually
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increased over time, and the tolerance to UVR increased accordingly. Therefore, the dose
was increased to 100% of the MED in the third week and then increased by 12.5% MED
every week. By the eighth week, the UVB dose was increased to 260 mJ/cm2 per day and
was maintained thereafter. Irradiation was stopped when papules measured equal to or
more than 2 mm in diameter [14]. Subsequently, the papules gradually grew to various
sizes of cauliflower-type lesions. When the tumor grew to 5 mm in diameter, 10 normal
mice and cSCC mice were sampled. The tumors of anesthetized cSCC mice were completely
excised with a surgical blade, and the skin of the same position on the back of normal
mice was taken for sampling. Then the tumor tissue and normal tissue were made into
pathological sections to observe the histological changes in skin lesions.

All animal procedures complied with protocols approved by the Institutional Animal
Care and Use Committee of Tongji University.

2.3. Data Acquisition

For this system, the acquisition of data was done under the guidance of a pathologist
in a dark room without any interference from ambient light. When acquiring images, a
13-band grayscale image was collected for each lesion. A histological slide was placed
on the multispectral microscope’s translation stage, and the light source was switched
to both capture and store images which ensured that the camera exposure time was the
same throughout the process of illuminating different areas of the sample with the same
wavelength of light. Noise correction was performed on the collected spectral images using
the dark current and radiation between spectral bands. First, the camera’s dark noise was
collected without illumination, and then the light source was switched so that the image in
the unsampled area of the slide provided the values for reference light intensity. Images
of the sample being tested were collected at each wavelength under the same lighting
conditions as the sample light intensity. The reflectance correction principle is shown in
Formula (1).

R(λ) =
Iraw(λ)− Idark
Ire f (λ)− Idark

(1)

In the formula, Iraw(λ) represents the sample image’s light intensity, Idark represents
background light intensity (when there is no lighting), and Ire f (λ) represents the light
intensity of the reference image on optical slides of different wavelengths. After taking
all the sample images, a program batch processes the images of all 13 bands and saves
the combined image gray value as the reflectance. The average reflectance of the sample’s
region of interest can be extracted, as can the reflectance of a certain point. At the same
time, although problems such as unavoidable noise and uneven illumination may appear
in the image, the average processing method is used to remove image noise. Specifically,
this is done by switching the light source to collect five images in the region of interest
continuously. Then, the image preprocessing algorithm averages the pixel values of each
group of five images, thus reducing interference caused by random noise. To correct uneven
illumination of the image, we have adopted an adaptive two-dimensional gamma function
method which can better correct image uniformity [15], brighten overly dark places, darken
overly bright places, and improve the image’s overall contrast and clarity.

2.4. Segmentation Method

A total of 5 images in each histological sample of 13 wavelengths for 65 multispectral
grayscale images were taken. Multispectral grayscale images can use spectral dimensions
to accurately display the morphological characteristics of different tissues. Because of the
huge variation in gray value, highlighted features are usually obvious, and there is no need
to use complex algorithms for identification and extraction. However, the image quality
of MSI is related to the dyeing level of the tissue section and light source, so the image
may have a lot of noise and uneven local brightness. Firstly, local histogram equalization
was carried out to improve the contrast of the image and make the nucleus more obvious.
Secondly, a median filtering operation was carried out to remove the salt and pepper noise
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on the image. Finally, due to the large number of nuclei and the existence of fuzzy boundary
areas, if we want to segment them accurately, a lot of time should be spent marking them
manually. Therefore, using adaptive threshold segmentation, the image was divided into
many regions, and the threshold segmentation was carried out in each region. Although it
cannot be accurately segmented, due to the same operation of each image, the obtained
nucleus had the same standard, the calculated nucleocytoplasmic ratio can be compared
to each other, and the segmentation speed is fast [16]. In this study, the selected spectral
bands are 520 nm, 600 nm, and 660 nm.

2.5. Statistical Analysis

All measurement values of nucleocytoplasmic ratio were expressed as average, maxi-
mum and minimum. Comparisons between two groups were performed using Student’s
t-tests. GraphPad Prism 7 software was used for analyses, and statistical significance was
defined as p < 0.05.

3. Experimental Results and Analysis
3.1. UVR Induced Skin Canceration in Pathology

Following ultraviolet ray (UVR) exposure, various sizes of cauliflower-type lesions
were found on the previously smooth skin of SKH-1 mice, then the tumor tissue and
normal tissue were made into pathological sections to observe the histological changes of
the skin tumor. This tumor was well-differentiated; the disorderly growth of the squamous
epithelial cells in these large nests with pink keratin was seen in pathology after UVR
exposure. Pathological examination revealed characteristic pathological changes of cSCC.
The normal skin and cSCC tissue pathological images are shown in Figure 2A,B.
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Figure 2. Histological staining of mice exposed to UVR. (A) Normal skin; (B) cSCC.

3.2. The Features on the cSCC Images Were Highlighted after Segmentation

A total of 5 images in each histological sample of 13 wavelengths for 65 multispectral
grayscale images were taken by microscopic MSI system based on LED illumination.
Multispectral grayscale images can use spectral dimensions to accurately display the
morphological characteristics of different tissues. Figure 3 shows the single-band and
pseudo-color composite images of the mouse skin’s normal and cSCC tissue areas, with
3A and 3B displaying the single-band and composite pseudo-color images of the cSCC
tissue slide and the normal tissue slide, respectively. It can be seen from the segmentation
results that the structural features of normal tissue and cancerous tissue in each band
of images are better segmented. Using a certain difference in the depth of staining to
show both the dermis with and without lesions, the segmentation results can highlight
what would have been initially inconspicuous features on the pathological image while
avoiding influence from staining. The image at 660 nm spectral bands is used to segment
cell nuclei; the image at 600 nm spectral bands is used to segment large lipid droplets in
normal tissues and keratin pearls in cancerous tissues; and the image at 520 nm spectral
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bands segments collagen fibers in normal tissues and diseased epidermis in cancerous
tissues. Corresponding to the characteristics of typical cSCC and according to the pseudo-
color image synthesized from the segmentation results, the nuclei of the cancerous tissue
have become larger and darker. The keratin pearls (a marker of cSCC) have appeared.
Seeing the various structures made more evident by the pseudo-color image, the cancerous
histopathology can be well distinguished from a qualitative point of view, and the goal
of digital staining is achieved. The adaptive threshold method has a significant reference
value because it can better extract various structures from multispectral images, avoid the
different diagnostic decisions caused by staining differences, and provide pathologists with
a more objective and more realistic basis for diagnosis.
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Figure 3. Single-band images of stained sections of normal and cancerous tissues (scale bar 50 µm).
(A) cSCC tissue; (B) normal skin tissue; (a) Image at 520 nm spectral bands; (b) Image at 600 nm
spectral bands; (c) Image at 660 nm spectral bands; (d) mixed imaging.

3.3. Nucleocytoplasmic Ratio Quantitative Analysis Can Distinguish Obscure cSCC from Normal
Skin after Segmentation

A quantitative analysis of the nucleocytoplasmic ratio can be done for qualitatively
analyzed histological samples with hidden keratin pearls. The resolution of the raw image
is 1280 × 1024 pixels. The area with 100 × 100 pixels is about one-tenth of the whole image,
which is good for selecting multiple areas and reducing the probability of area overlap.
Moreover, if the selected area is too large, it is likely to contain blank non-nuclear areas of
the image, and if it is too small, it is likely to have specific areas (blank or aggregated areas
of nuclei), which will affect the final recognition. In this study, we used sliding window
technology to create a 100 × 100 pixels window to search the region of interest and further
analyze the nuclei of the normal and cancerous tissues. Limiting the threshold value of
the searched area, underexposed images and the junction area between the nucleus and
keratin pearls were excluded, and the nucleus-cytoplasmic ratio was calculated for the
automatically selected area. Finally, five windows were selected to calculate the nuclear-
cytoplasmic ratio in both normal and cancerous tissues. As shown in Figure 4, Figure 4A is a
normal tissue cell with an 8.99% average nucleocytoplasmic ratio in five regions. Figure 4B
is cancerous tissue with a 25.9% average nucleocytoplasmic ratio in five regions. It can be
seen from this that normal tissue’s nucleocytoplasmic ratio is less than that of cancerous
tissue and that quantification of the nucleocytoplasmic ratio of tissue sections allows for
the automatic differentiation of normal and cancerous tissue. To statistically identify the
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differences between normal and cancerous tissue, 21 sections of normal and cancerous
tissue were segmented and calculated their nucleocytoplasmic ratio. There is a significant
difference (p < 0.001) in the nucleocytoplasmic ratio of normal and cancerous tissues, with
the results in Figure 5 and the statistical results in Figure 6. During the early stages of
carcinogenesis, there may be cases where keratinization of the carcinoma is not yet obvious.
Therefore, to further analyze the difference between normal and cancerous tissues by
simply calculating the nucleocytoplasmic ratio, we analyzed the specificity and accuracy
with average, maximum, and minimum nucleocytoplasmic ratio values with the ROC
curve results, shown in Figure 7.
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4. Discussion

Although multispectral imaging has been widely used in fluorescent labeling research
and has become a commonly used information enhancement method in research since
the invention of multicolor fluorescent labels, the design of fluorescence-based multispec-
tral imaging systems requires full consideration of spectral disturbances. In practice, the
excitation light’s spectral width is highly required, which should be narrow enough [17].
This paper studied the segmentation of different structures of conventional, single H&E
stained cSCC tissue via a self-developed multispectral microscopy imaging system with
narrow-band LED illumination. The optical properties of the tissue reflected by images of
different wavelengths could effectively identify the tissue’s various structures. The image
in an H&E stain slide is similar to the stained image by other additional operations. The
MSI helps achieve digital staining abilities, improve the visual effects, and simplify the
steps, providing a basis for studying the cSCC pathology. According to this study, with
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the application of MSI in the diagnosis of cSCC, the equipment cost and slice process are
reduced, and the manpower required for pathological diagnosis is also reduced. Addition-
ally, the problem of diagnostic differences caused by differences in tissue staining is solved.
All the above indicated that the MSI process is advantageous for the diagnosis of cSCC.

However, this system is not automated enough. During our experiments, because
the system is still semi-manual, we encountered many common problems that optical
microscopy imaging has, such as issues caused by blurry images, under or overexposure,
uneven lighting, or a lack of focus. Although these issues are operationally important, they
can be solved by some technical means (such as the automatic focusing technology realized
by combining the electronic control platform and the image focusing algorithm [18]).
However, they mean that one of the main goals of this field of research in the future is
cooperation with automatic control algorithms and driving devices to achieve automatic
focusing, field scanning, and image stitching. If that is done alongside the analysis function,
it will be possible to create a set of special equipment for pathological analysis truly.
Additionally, looking at things from the point of view of the light source being utilized,
narrow-spectrum excitation and analysis capabilities are required for many multicolor
fluorescently labeled pathologies. Therefore, from the emission spectrum of the LED light
source selected in this system, we can see that as long as the four light sources in the
range of 520–570 nm are limited by the spectral width and the lower half-width of the
excitation spectrum of all 13 channels is within 20 nm, it may also be suitable for some
pathological sections of multicolor fluorescent labeling with a fluorescence emission peak
lower half-width of 30–60 nm.

The establishment of a noninvasive diagnosis system for skin tumors is an important
direction of modern dermatology. Optical coherence tomography (OCT) and Reflectance
confocal microscopy (RCM) are emerging noninvasive techniques. OCT is a popular
technique that, although not yet a routine technique, is being used in several specialized
dermatological practices and hospitals. OCT penetrates the skin up to 1.5 mm, and it has
been mainly used for diagnostics of basal-cell carcinoma [19,20] and presurgical margin
assessment of non-melanoma skin cancer [21]. However, OCT has a low resolution, and
cell-level imaging is difficult. RCM has a high resolution of 1 um, but its low penetration
depth makes it difficult to observe information in the deep dermis.

Pathological biopsy is still the gold standard of diagnosis, focusing on solving the
diagnostic efficiency and the diagnostic differences caused by staining; this paper verifies
the ability of our self-designed multispectral microscopy imaging system in the digital
staining of cSCC tissue sections and the segmentation of the main pathological features.
By analyzing the inherent spectral characteristics of more skin diseases in the visible light
range (from both image and spectral aspects), studying more excellent feature extraction
algorithms for the extraction of typical pathological features of spectral or feature channel
images, and realizing digital staining on unstained sections, our future research will be in
the direction of further system automation and artificial intelligence. After establishing
more animal models or collecting more clinical data, accumulating multispectral data of
other diseases, and solving the pathological diagnosis of more diseases, we expect to make
more efficient, high-quality diagnoses with an optimal overall cost.

5. Conclusions

In the study, our self-developed LED illumination-based microscopic multispectral
imaging system was utilized, and we obtained pathological multispectral images of both
normal skin tissue and squamous cell carcinomas. Usually, there are cancer nests in the
tissues of squamous cell carcinoma, but because of the size limitation of the image, it is very
likely that no cancer nests can be found on one image, so it is necessary to calculate the
nuclear-cytoplasmic ratio of the cells. Due to the uneven illumination and different degree
of slice dyeing, the edge area of each image is dark, and there is a certain gray difference
between different images; it is necessary to denoise and histogram equalize the image.
The adaptive threshold segmentation was used to segment the multispectral images into
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structures such as cell nuclei, collagen, and keratin pearls and allowed us to effectively
extract important diagnostic information. Making use of sliding window technology, we
created windows 100 × 100 pixels and searched randomly in the image, preserving five
eligible areas. The nucleocytoplasmic ratio was calculated within the window, after which
a ROC curve was used to analyze sensitivity and specificity. At a p < 0.01, our statistically
significant results showed that the average nucleocytoplasmic ratio of normal skin tissue
was 4.239%, and the average nucleocytoplasmic ratio of squamous cell carcinoma tissue
was 15.607%. When the maximum value and the average value are used as the criterion,
the AUC of the ROC curve is 1, so it has good sensitivity and specificity. Additionally,
because squamous cell carcinoma’s keratin pearls have well-defined qualitative features,
the qualitative and quantitative features of keratin pearls can be used to comprehensively
determine whether or not the tissue is cancerous.
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