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Abstract: This study aimed to investigate the feasibility of predicting oxygen 6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation in diffuse gliomas by developing a deep learning
approach using MRI radiomics. A total of 111 patients with diffuse gliomas participated in the
retrospective study (56 patients with MGMT promoter methylation and 55 patients with MGMT
promoter unmethylation). The radiomics features of the two regions of interest (ROI) (the whole
tumor area and the tumor core area) for four sequences, including T1 weighted image (T1WI), T2
weighted image (T2WI), apparent diffusion coefficient (ADC) maps, and T1 contrast-enhanced (T1CE)
MR images were extracted and jointly fed into the residual network. Then the deep learning method
was developed and evaluated with a five-fold cross-validation, where in each fold, the dataset was
randomly divided into training (80%) and validation (20%) cohorts. We compared the performance
of all models using area under the curve (AUC) and average accuracy of validation cohorts and
calculated the 10 most important features of the best model via a class activation map. Based on the
ROI of the whole tumor, the predictive capacity of the T1CE and ADC model achieved the highest
AUC value of 0.85. Based on the ROI of the tumor core, the T1CE and ADC model achieved the
highest AUC value of 0.90. After comparison, the T1CE combined with the ADC model based
on the ROI of the tumor core exhibited the best performance, with the highest average accuracy
(0.91) and AUC (0.90) among all models. The deep learning method using MRI radiomics has
excellent diagnostic performance with a high accuracy in predicting MGMT promoter methylation in
diffuse gliomas.

Keywords: MGMT promoter methylation; glioma; deep learning; radiomic

1. Introduction

According to the 2021 WHO classification of tumors of the central nervous system
(2021 WHO CNS), molecular classification is one of the most important prognostic fac-
tors. Oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation
is a significant prognostic factor in diffuse glioma patients, since diffuse glioma patients
with MGMT methylation are shown to have a better prognosis and better response to
temozolomide [1–3]. MGMT promoter methylation is related to longer progression-free
survival in patients treated with radiochemotherapy or radiation alone [4]. The detection of
MGMT promoter methylation plays an important role in the diagnosis of diffuse gliomas.
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At present, the detection of the MGMT promoter mainly depends on genetic analysis after
a tumor operation or biopsy, which is expensive and requires invasive surgery [5].

Conventional magnetic resonance imaging (MRI) plays an important role in determin-
ing glioma patient diagnosis, prognosis, response evaluation, and follow-up. However, the
status of MGMT promoter methylation is difficult to determine via conventional diagnosis
of MR images. With the rapid development of molecular diagnosis and artificial intelli-
gence, the study of tumor biomarkers by radiomics has become a hot research topic [6–9].
Radiomics generally refers to the extraction and analysis of a great number of advanced
quantitative imaging features with high throughput from medical images [10,11]. These
features, i.e., radiomics features, can reveal potential tissue and lesion characteristics, such
as tumor heterogeneity. Radiomics has been widely used to predict molecular markers in
gliomas, such as isocitrate dehydrogenase mutations [12–14]. Deep learning is a kind of
machine learning method that attempts to model high-level abstractions in data by using
multiple processing operations (layers), which has been effectively employed in solving
image-based problems, including medical imaging [15–18]. Studies on the relationship
between MGMT promoter methylation and MRI imaging of glioma are insufficient, and
predicting the methylation status of the MGMT promoter in glioma with MR images is still
a challenging task, requiring further research.

In this paper, a residual network (ResNet) was trained to give a binary prediction of
MGMT promoter methylation status. Instead of using images as an input, as in existing
research [19], our research extracted radiomics features from a selected region of interest
(ROI) in different modalities of MR images and used them as the input of the model.

The purpose of this study is to develop a deep learning model following the hypothesis
that radiomics combined with deep learning would be helpful for predicting the MGMT
promoter status of diffuse gliomas. This work also has clinical significance that would help
clinicians make appropriate treatment decisions.

2. Materials and Methods
2.1. Patient Cohort and Inclusion Criteria

This retrospective study was approved by the local Institutional Review Board (IRB),
and the requirement to obtain informed consent was waived. Patients were recruited
from the Affiliated Drum Tower Hospital of Nanjing University Medical School between
2018 and 2020. The inclusion criteria for the study were as follows: surgical resection and
pathology confirmed WHO grade 2–4 glioma according to the WHO 2021 version of the
central nervous system tumor classification, and none of the patients received radiotherapy,
chemotherapy or underwent antitumor drug treatment before surgery. Plain scan and
enhanced examination were performed on the same MRI machine before surgery. Patients
with incomplete images and poor image quality that could not be used for image analysis
were excluded. Finally, a total of 111 patients meeting the above criteria were enrolled
in the study, including 56 patients with MGMT promoter methylation and 55 patients
with MGMT promoter unmethylation. The data were divided into a training group and a
validation group at a ratio of 8:2, with 89 patients in the training group and 22 patients in
the validation group. An overview of the workflow is shown in Figure 1.

2.2. MRI Data and Image Preprocessing

All MRI data analyzed in the present study were preoperatively acquired using 3.0 T
MRI scanners according to the protocols in each institution, including the Philips instrument
(Achieva TX, Philips Medical Systems, The Netherlands) and United imaging instrument
(uMR770, United Imaging Healthcare, China), and the parameters are shown in Table S1.
Available preoperative MRI images included T1 weighted image (T1WI), T2 weighted
image (T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC)
maps, and T1 contrast-enhanced (T1CE) MR images. We eliminated the difference in
MRI image brightness caused by the deviation in the scanning process and performed N4
deviation field correction on all MRI images.
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Figure 1. Workflow of our research. Radiomics features of 111 glioma patients were extracted from
two regions of interest (the whole tumor area and the tumor core area) of four sequences, including
T1 weighted image (T1WI), T2 weighted image (T2WI), apparent diffusion coefficient (ADC) maps,
and T1 contrast-enhanced (T1CE) MR images were jointly fed into the ResNet-18. The performance
of all models was compared using area under the curve (AUC) and average accuracy of validation
cohorts. The 10 most important features of the best model were calculated via a class activation
map. Abbreviations: oxygen 6-methylguanine-DNA methyltransferase (MGMT); residual network
(ResNet); region of interest (ROI).

2.3. Tumor Segmentation and Feature Extraction

We extracted radiomics features from the tumor edema area and tumor core area of
four sequences, including T1WI, T2WI, T1CE, and ADC. ROIs were easy to determine for
tumors with clear boundaries; however, it was difficult to draw ROIs for gliomas with
blurred boundaries and large edema areas. T2WI has great advantages in determining the
ROI of edema areas, and T1CE is also very important in determining the ROI of the tumor
parenchyma, which is the core region of the tumor. Therefore, the ROI of the whole tumor,
including the parenchyma and edema, was manually segmented on T2WI, and the ROI of
the tumor core was manually segmented on T1CE by two radiologists who were blinded to
all clinical data and histopathological information (Figure 2). If the difference between the
ROIs outlined by the two radiologists was less than 5%, the two ROIs were fused. If the
difference between the two ROIs was greater than 5%, a third radiologist would make the
final determination. Segmentation was performed with ITK-SNAP software (version 3.8.0,
http://www.itksnap.org (accessed on 20 January 2020)).

Radiomics features in the two types of ROIs among the four sequences of each pa-
tient were extracted with the open-source platform called PyRadiomics. The features ex-
tracted comprised 18 first-order features, 14 grey-level difference matrix (GLDM) features,
22 grey-level co-occurrence matrix (GLCM) features, 16 grey-level run length matrix
(GLRLM) features, and 16 grey-level size zone matrix (GLSZM) features. For each pa-
tient, 86 features in 8 regions could be extracted for a total of 688 features. All features
were normalized by the Z-score before feature screening. The radiomics features were
extracted as an input in the deep learning model. The sequences were registered to the
same physical space so that the same patient ROIs matched the same lesion area in each
sequence. Following preprocessing, the patients were randomly divided into training and
testing sets (80%/20% split).

2.4. ResNet Network Overview and Analysis

A convolutional neural network with a depth of 18 layers (ResNet-18) was selected
as the prediction model. The training set was used to implement the deep learning model
to predict the status of MGMT promoter methylation, and the validation set was used to
evaluate the performance of the model. Radiomics features in two types of ROIs of the four
sequences for each patient were separately or combinatorially used as an input. Five-fold
cross-validation experiments were used to optimize this architecture. The input image

http://www.itksnap.org
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should have a size of 224 × 224 pixels, so the radiomics features were treated as greyscale
images and transformed to the required size as the input.
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Figure 2. Process of delineating the ROI. The ROIs of the tumor parenchyma (red area) were
delineated by manually tracing contrast-enhancing lesions on T1CE (a,b). The ROIs of whole tumors
(green area), including the parenchyma and edema, were delineated by manually tracing high-
intensity lesions on T2WI (c,d).

The final network architecture is shown in Figure S1. The softmax function was used
in the last layer, and two 3 × 3 convolutional layers were contained in each residual unit.
To determine the importance of each feature, we removed the final average pool and fully
connected layers after the conv5 layer. Instead, the output with a size of 7 × 7 × 512 after
the conv5 layer was connected to an upsample layer with an output size of 86 (the total
number of features) × total number of modalities and ROIs × 512. (i.e., in the case of all
four image maps and all ROIs used, the output size would be 86 × 8 × 512). The modified
layer enabled us to gain the weight of each feature and rank their importance since the
output size exactly matches the size of the input data. The upsampling layer was followed
by a convolutional layer with an output size of 86 × 8 × 2, and the label was upsampled to
a size of 86 × 8 × 1, with all elements inside the same layer as its original label (i.e., if the
label is 1, then the label in the model is 1 of size 86 × 8 × 1).

Then, the predefined neural network model ResNet-18 was implemented by PyTorch,
which is a framework used for neural networks in Python. The hyperparameters were the
epochs (200, 400, and 600 epochs) and learning rates (0.1, 0.01, and 0.001). For each
single MRI modality or combination of modalities, we tuned those hyperparameters
and used cross-entropy loss to predict the binary classification. The model was trained
with a momentum of 0.9, a weight decay of 0.0004, a batch size of 32, and stochastic
gradient descent. The area under the curve (AUC) and average accuracy were used
as the criteria for evaluation, and other metrics, such as sensitivity (SENS), specificity
(SPEC), positive predictive value (PPV), negative predictive value (NPV), F1 score, and
Matthew’s correlation coefficient (MCC), were also calculated. A brief explanation of the
above-mentioned performance metrics is given in Supplementary Methods Section.

We compared the accuracy metrics of the models to determine the best model and
selected the 10 most important features of the best model via a class activation map. The
structure of the deep learning model is shown in Figure 3.
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Figure 3. Structure of the deep learning model. Residual Networks extract features from 2 ROIs of
4 sequences were developed and evaluated with five-fold cross-validation, where in each fold, the
dataset was randomly divided into training (80%) and validation (20%) cohorts.

2.5. Statistical Analysis

A statistical analysis of basic clinical information was performed using SPSS software
(SPSS 23.0 statistical package; SPSS Inc., Armonk, NY, USA: IBM Corp.). A chi-squared
test was performed to determine significant differences in sex and tumor type between the
two groups. Differences in the age distribution were evaluated using Student’s t-test. A
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics

A total of 117 patients were eligible for analysis, and 6 patients were excluded because
of inadequate MR images (n = 4, patients did not have T2-weighted images) or poor image
quality (n = 2). A total of 111 patients with complete MRI imaging data and complete
results of MGMT promoter methylation status were enrolled in the training (89 patients)
and validation cohorts (22 patients), including 56 patients with MGMT methylated gliomas
and 55 patients with MGMT unmethylated gliomas. The characteristics of the patients
in this study cohort are shown in Table 1. Significant differences in sex and age were not
observed between the two groups.

Table 1. Characteristics of the two groups.

Group Parameters Total MGMT
Methylation

MGMT
Unmethylation p-Value

Sex (males/females, No.) 111 26/30 36/19 0.056 a

Age (mean ± SD, years) - 53.45 ± 13.61 55.85 ± 13.18 0.346 b

Glioblastoma 65 (58.6%) 25 40

0.002 a
Anaplastic astrocytoma 6 (5.4%) 2 4

Diffuse astrocytoma 20 (18.4%) 13 7
Anaplastic oligodendrocytoma 9 (8.1%) 5 4

Oligodendrocytoma 11 (9.9%) 11 0

Abbreviations: oxygen 6-methylguanine-DNA methyltransferase (MGMT). Notes: a: chi-squared test; b: Stu-
dent’s t-test. Unless otherwise noted, the data in the table refer to the number of patients, with percentages
in parentheses.
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3.2. ResNet Model Predictive Capacity Using a Single MRI Modality

Radiomics features in two types of ROIs among the four sequences of each patient
were used as a ResNet input. The following results were achieved in the classification
experiments. Based on the ROI of the whole tumor, including the parenchyma and edema,
the predictive capacity of the T1CE model achieved the highest AUC value (0.81). Based on
the ROI of the tumor core, the predictive capacity of the T1CE model achieved the highest
AUC value (0.84).

3.3. ResNet Model Predictive Capacity Using Multiple MRI Sequences

Radiomics features in two types of ROIs among the four sequences of each patient were
used in combination as an input. The following results were achieved in the classification
experiments. Based on the ROI of the whole tumor, including the parenchyma and edema,
the predictive capacity of the T1CE combined with the ADC model achieved the highest
AUC value (0.85). Based on the ROI of the tumor core, the predictive capacity of the T1CE
combined with the ADC model achieved the highest AUC value (0.90).

3.4. Model Comparison and the Final Model

The results of all the models are shown in Table 2. Receiver operating characteristic
(ROC) curves based on two ROIs of each modality, including single-, dual-, triple-, and
full-modal models, with the highest AUC values are shown in Figure 4. According to
the model comparison, the T1CE combined with the ADC model based on the ROI of the
tumor core exhibited the best performance, with the highest accuracy (0.91) and AUC (0.90)
among all the models. The importance of the features of the best model was calculated via
a class activation map and is shown in Table S2.
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Figure 4. Receiver operating characteristic (ROC) curves based on 2 ROIs of different modal models
with the highest AUC values. (A) ROC curves based on the ROI of the tumor core of different modal
models with the highest AUC values. (B) ROC curves based on the ROI of the whole tumor of
different modal models with the highest AUC values.

The ten most important features were original GLDM Dependence Entropy, original
GLDM Dependence NonUniformity, original GLDM Dependence NonUniformity Normal-
ized, original GLDM Dependence Variance, original GLDM Grey Level NonUniformity,
original GLDM Grey Level Variance, original GLDM High Grey Level Emphasis, original
GLDM Large Dependence Emphasis, original GLDM Large Dependence High Grey Level
Emphasis, and original GLDM Large Dependence Low Grey Level Emphasis.
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Table 2. Results of all models.

ROI Modality Model AUC ACC F1 Score SENS SPEC PPV NPV MCC

WT

single

T1CE 0.82 0.86 0.83 0.69 0.95 0.88 0.68 0.68
ADC 0.71 0.79 0.74 0.48 0.94 0.79 0.49 0.49
T1WI 0.75 0.78 0.75 0.63 0.88 0.70 0.51 0.51
T2WI 0.68 0.78 0.71 0.41 0.94 0.79 0.40 0.40

double

ADC + T1CE 0.85 0.88 0.86 0.76 0.93 0.86 0.72 0.72
T1WI + ADC 0.76 0.79 0.75 0.63 0.89 0.79 0.56 0.56
T1WI + T1CE 0.82 0.84 0.82 0.75 0.89 0.77 0.64 0.64
T1WI + T2WI 0.69 0.77 0.71 0.43 0.95 0.81 0.46 0.46
T2WI + ADC 0.70 0.78 0.73 0.49 0.92 0.77 0.43 0.43
T2WI + T1CE 0.81 0.85 0.82 0.69 0.93 0.84 0.66 0.66

triple

T1CE + ADC + T1WI 0.78 0.83 0.80 0.66 0.90 0.77 0.59 0.59
T1WI + T2WI + ADC 0.71 0.77 0.72 0.52 0.91 0.76 0.47 0.47
T1WI + T2WI + T1CE 0.78 0.81 0.79 0.65 0.91 0.76 0.57 0.57
T2WI + ADC + T1CE 0.80 0.85 0.82 0.65 0.94 0.88 0.65 0.65

all T1WI + T2WI + T1CE + ADC 0.77 0.81 0.78 0.60 0.93 0.84 0.58 0.58

TC

single

T1CE 0.84 0.87 0.85 0.75 0.93 0.84 0.70 0.70
ADC 0.73 0.79 0.76 0.50 0.95 0.87 0.53 0.53
T1WI 0.51 0.73 0.66 0.31 0.71 0.53 0.24 0.24
T2WI 0.76 0.80 0.76 0.66 0.86 0.71 0.54 0.54

double

ADC + T1CE 0.90 0.91 0.90 0.86 0.95 0.89 0.81 0.81
T1WI + ADC 0.69 0.77 0.71 0.49 0.90 0.78 0.45 0.45
T1WI + T1CE 0.86 0.89 0.87 0.78 0.94 0.89 0.75 0.75
T1WI + T2WI 0.72 0.79 0.75 0.50 0.93 0.81 0.50 0.50
T2WI + ADC 0.67 0.76 0.72 0.43 0.90 0.73 0.37 0.37
T2WI + T1CE 0.81 0.86 0.84 0.70 0.91 0.85 0.65 0.65

triple

T1CE + ADC + T1WI 0.85 0.87 0.85 0.81 0.88 0.81 0.70 0.70
T1WI + T2WI + ADC 0.72 0.78 0.73 0.53 0.90 0.75 0.48 0.48
T1WI + T2WI + T1CE 0.81 0.86 0.83 0.69 0.94 0.90 0.68 0.68
T2WI + ADC + T1CE 0.83 0.86 0.83 0.74 0.91 0.84 0.68 0.68

all T1WI + T2WI + T1CE + ADC 0.82 0.86 0.83 0.72 0.93 0.85 0.68 0.68

Abbreviations: area under the curve (AUC); average accuracy (ACC); sensitivity (SENS); specificity (SPEC);
positive predictive value (PPV); negative predictive value (NPV); Matthew’s correlation coefficient (MCC). Notes:
WT means the ROI of the whole tumor, including the parenchyma and edema. TC means the ROI of the
tumor core.

4. Discussion

In this study, a ResNet based on radiomics features was proven to be a feasible tool
for predicting the MGMT promoter methylation status of gliomas. Among single MRI
modalities, the T1CE model based on the ROI of the tumor core achieved the highest
AUC value (0.84). Among multiple MRI modalities, the T1CE combined with the ADC
model based on the ROI of the tumor core achieved the highest AUC value (0.90). In the
final model, the T1CE combined with the ADC model based on the ROI of the tumor core
exhibited the best performance, with the highest accuracy (0.91) and AUC (0.90) among all
the models. Ten features were selected as the most important radiomics features for the
prediction. Our findings suggest that T1CE combined with ADC may be superior to other
single or multiple MRI sequences in the prediction of MGMT promoter methylation. The
model trained with T1CE with ADC achieved better results, followed by the model trained
with T1CE images. Our study demonstrates that a deep learning model based on radiomics
features could help to identify molecular biomarkers from routine medical images and
further facilitate treatment planning.

The results of our study support similar studies that have shown that machine learning,
especially deep learning, may be useful in the prediction of MGMT promoter methylation.
In addition, the AUC of 0.90 achieved via T1CE based on the ROI of the tumor core is
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similar to the results from other studies that used radiomics analysis or deep learning-based
MR image analysis. Tian et al. [20] suggested that the texture features extracted from T1CE
might lead to the high performance of grading gliomas. Reza et al. [21] also reported that
the radiomic features extracted from T1CE were more important than those extracted from
other structural MRI sequence images in accordance with the results of feature importance
ranking in the feature selection. Consistent with the findings of previous studies [22,23],
our results indicated that the T1CE model based on the ROI of the tumor core performed
better than other single models extracted from the other sequences. A possible reason for
the performance was that features extracted from T1CE images contained more useful
information. Unlike the above-mentioned studies, our findings suggest that the T1CE
combined with the ADC model based on the ROI of the tumor core may be superior to the
combination of all MRI sequences in the prediction of MGMT promoter methylation. A
potential reason is the relatively poor imaging resolution of other sequences, which limited
the stability and robustness of the derived radiomics features [24].

Instead of using images as a ResNet input, as in traditional research, our research
extracted features from selected ROIs in different modalities from MR images and used
them as the input for the model. Conventional radiomics studies use MR images as an
input and adopt deep learning algorithms to train the model and evaluate the performance.
However, features are extracted from all regions and modalities, and some regions may
not be discriminative and may cause noise; therefore, we innovatively changed the feature
extraction method. The features were treated as greyscale images in ResNet-18 [25], which
is a residual neural network model used for image recognition.

Machine learning approaches allow the classification of individual genetic mutations
of gliomas, and the prediction of MGMT promoter methylation was also realized through
deep learning algorithms [26,27]. The ResNet-18 neural network is a convolutional neural
network with a depth of 18 layers, which was proposed for image classification in 2015. A
ResNet consists of residual blocks with the same data dimension in the early stage, while
in the later stage, the data are sampled downward, and the number of layers increases.
Deeper architectures based on ResNet are reported to yield better results [28]. Our study
revealed the value of radiomics features in predicting MGMT methylation status. Radiomics
has already been widely adopted for the noninvasive analysis of genetic and clinical
information in different medical fields. Radiomics can be used to obtain information by
extracting a great number of features from lesion areas. The features used for different
diseases are similar, including intensity, shape, texture, wavelet, and other descriptive
features [29]. Several similar attributes have previously been reported, such as texture
features in the whole tumor, and studies have specifically found that a GLSZM of low
grey-level emphasis could delineate the MGMT status with an AUC of 0.71 [30]. Texture
features extracted from contrast-enhanced T1WI adequately separated IDH-mutant gliomas
from IDH wild-type gliomas [31]. Consistent with the above-mentioned research, our study
found that the 10 most important radiomics features were GLDM features, a category of
texture features.

Our study has some general limitations. First, we recruited only 111 patients in this
study. Although radiomics can be performed with as few as 100 patients, recruiting more
patients will provide more power and better support our findings in the future. Second,
we did not include clinical data nor functional MR imaging data, such as MR spectroscopy
and dynamic contrast-enhanced MRI, which may add more value to the prediction model.
Third, an independent external cohort that met the inclusion and exclusion criteria from
other hospitals was requested to validate the model and address overfitting.

5. Conclusions

In summary, deep learning based on radiomics features is able to noninvasively
predict the MGMT promoter methylation status in patients with diffuse gliomas with a
high accuracy. The model trained with T1CE with ADC achieved the best results, followed
by the model trained with T1CE images. This prediction model may aid in providing more
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precise diagnoses and guiding treatment decisions. Further efforts are needed to explore
the full value of deep learning based on radiomics using functional MR imaging data and
clinical data to establish an optimal model for routine clinical use.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11123445/s1, Table S1. MRI protocol, Table S2. Importance of
features of the best model, Figure S1. Residual network architecture, supplementary methods section.
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